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Abstract
Attenuation is one of the most important quantities in describing seismic wave propagation, which is also anisotropic because 
of the dispersion relationship between the seismic wave and the symmetry direction. Transverse isotropic media with titled 
symmetry-axis (TTI) is a widespread approximation of the Earth’s surface. For 2D TTI attenuating media, we firstly use the 
acoustic assumption to simplify the exact eikonal equation for the complex-valued quasi P-wave traveltime. Then we design a 
perturbation method to obtain the new approximation by solving the acoustic attenuating eikonal equation of TTI media and 
use Shanks transform to increase precision. Compared with former studies, the new approximation considers the symmetry-
axis angles of the media as a factor, which will improve its robustness. The approximation is tested in several medium to 
demonstrate its effectiveness. The energy velocity which derived by the steepest-descent method is used to calculate the 
exact complex-valued traveltime. We test the accuracy of the approximations developed with and without Shanks transform 
in the following. Finally, we discussed the possibility to apply this approximation to the methods like fast marching methods.

Keywords  Attenuation · TTI · Acoustic · Perturbation · Shanks transform

Introduction

The wave propagation in the layers of Earth subsurface can 
be better described by considering the medium to be ani-
sotropic. Specially, a transverse isotropic (TI) media with 
symmetry-axis normal to the layering could be more effi-
cient to represent big parts of the subsurface (Audubert et al. 
2006; Alkhalifah and Sava 2010). In many applications, 
developing simple traveltime formulations for such models 
is of great significance.

Modeling the attenuating nature of the earth becomes 
more and more important because we need a closer look 
at amplitude for inversion purposes during analysis of 
recorded data. In attenuating media, seismic wave propa-
gation is different from that in elastic media. The value of 
traveltime of time-harmonic wave is complex, and the com-
plex-valued traveltime is governed by the complex-valued 

eikonal equation (Červený and Pšenčík 2009). The real and 
imaginary parts of the complex-valued traveltime, respec-
tively, correspond to the phase of the waves and the waves’ 
amplitude decay caused by energy absorption. The inversion 
approaches of Q filtering naturally use the imaginary part of 
the complex-valued traveltime. Besides, in other techniques 
such as attenuation tomography and Kirchhoff migration, the 
complex-valued traveltime is also a fundamental component.

By means of similar principles to the real ray-tracing 
methods, the complex ray tracing methods have been devel-
oped for anelastic anisotropic media (e.g., Zhu and Chun 
1994; Thomson 1997; Chapman et al. 1999; Kravtsov et al. 
1999; Hangya and Seredynska 2000; Amodei et al. 2006). 
The complex ray theory can exactly solve the complex-val-
ued eikonal equation, and it is hardly affected by the strength 
of anisotropy and attenuation of the media (Vavryčuk 2010). 
But in realistic 3D models, the complex ray theory is dif-
ficult to accomplish because the model parameters cannot 
be extended into complex space. To implement the complex 
ray tracing in practice, researchers (Gajewski and Pšenčík 
1992; Červený 2001; Červený and Pšenčík 2009; Klimeš 
and Klimeš 2011) developed the perturbation method to 
calculate the complex-valued traveltimes of body waves in 
attenuating media approximately by setting the imaginary 
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parts of complex-valued stiffness coefficients as the pertur-
bation parameters. In perturbation methods, wave attenua-
tion is presumed to be weak and similar to the nonattenu-
ating reference medium, the complex-valued traveltimes 
are calculated along the real ray path. Therefore, the per-
turbation methods are simpler and more efficient than the 
complex ray tracing method. Without considering strongly 
attenuating media, the perturbation methods are more suit-
able for realistic models. By perturbation theory, Hao and 
Alkhalifah (2017a, b) developed an approximate method to 
solve the acoustic eikonal equation for attenuating trans-
versely isotropic media with vertical symmetry-axis (VTI). 
For TI media with known symmetry-axis angle, Hao and 
Alkhalifah’s approximation could work with a simple trans-
formation. However, if the symmetry-axis angle is unknown, 
the approximation will certainly suffer from this limitation.

Besides, finite-difference methods (e.g., Vidale 1988, 
1990), fast sweeping methods (e.g., Zhang et  al. 2006; 
Luo and Qian 2012), fast marching methods (e.g., Sethian 
1996; Vladimirsky 2001; Alkhalifah 2011) and many other 
methods related to solve the eikonal equation by spatial dis-
cretization have been applied in nonattenuating isotropic 
media. General obstacles of these methods are solving the 
eikonal equation and selecting the minimum of traveltime 
in the heap to update the traveltime in the grids along the 
direction of wave front expansion. These methods have high 
computational efficiency but in attenuating media, it’s not 
valid to select the minimum complex-valued traveltime. For 
this reason, these methods involved in solving the eikonal 
equation directly have been limited to nonattenuating media.

In this paper, we develop an approximate method to solve 
the acoustic eikonal equation for attenuating transversely 
isotropic media with titled symmetry-axis (TTI) under the 
assumption that the symmetry of velocity and attenua-
tion is same. We adopt the Thomsen’s (1986) and Zhu and 
Tsvankin’s (2006) notations as well as the symmetry-axis 
angle to parameterize the media (see “Appendix 1”). Besides, 
we also combine the Vogit’s notation to describe the sym-
metry-axis directions. We simplify the eikonal equation by 
setting Vs0 = 0 and As0 = 0, which is called acoustic approxi-
mation. The acoustic eikonal equation for attenuating TTI 
media contains two nonlinear partial differential equations 
correspond to the real and imaginary parts of the traveltime, 
respectively. We adopt these parameters to characterize 
the acoustic eikonal equation: the vertical velocity vp0 , the 
anellipticity parameter � , the vertical attenuation coefficient 
Ap0 , the attenuation anisotropy parameters �Q and �Q and 
the NMO velocity vn . We design a perturbation method to 
approximately calculate the complex-valued traveltime. In 
the second-order Taylor series expansion consisting of the 
parameters � , ik and sin� (here k is calculated by the param-
eter Ap0 , which is mentioned in the following text), we obtain 
several equations which are related to the partial derivative of 

these parameters. In the case of homogeneous media, we can 
get the complex-valued traveltime by solving these equations 
analytically. To find results with higher accuracy, we apply 
two different Shanks transforms to the Taylor series solution.

At the same time, the parameterization in the perturbation 
method also allows us to proceed in inhomogeneous media. 
For the complex part of traveltimes is divided by the param-
eter ik , we don’t need to select the minimum value from 
complex-valued traveltimes. At the end of the paper, we 
discuss a fast marching method based on this approximation.

The exact eikonal equation

As is stated by Ben-Menahem and Singh (1981) and Car-
cione (2015), wavefield-modeling methods could expand 
to attenuation by using the complex-valued stiffness coef-
ficients to substitute the real-valued stiffness coefficients. 
In attenuating media, Voigt notated frequency-domain stiff-
ness coefficients cij , which are real-valued in nonattenuating 
media are expressed by (Červený and Pšenčík 2005, 2009): 

In this equation, the letter i is the imaginary unit, the ele-
ments cR

ij
 and cI

ij
 denote the real and imaginary parts of cij . As 

to nonattenuating media, the imaginary part of cij becomes 
zero. The symbol “ − ” is due to the minus sign in the expo-
nential element exp(−i�t) considering the time-harmonic 
wave (Červený and Pšenčík 2009), where t is the time, and 
� is the angular frequency. For nonattenuating anisotropic 
media, the cij matrix is a positive definite matrix, because the 
strain energy is always positive (Fedorov 1968; Carcione 
2015). For a time-domain harmonic plane wave in an attenu-
ating anisotropic media which is described by the exponen-
tial factor exp(−i�t) , the cR

ij
 and cI

ij
 matrices are also positive 

definite (Červený and Pšenčík 2006), which is a descendent 
of the positive strain energy and the dissipat energy.

According to Eq. 1, (Gajewski and Pšenčík 1992; Vavryčuk 
2007, 2010) obtained the zeroth-order time-domain harmonic 
ray solution described by the particle displacement vector:

In this equation, x is the position vector; t and � denote 
the same vector as in the exponential element exp(−i�t) ; U(x) 
is the element that affects wave amplitude along the ray path, 
and its direction is identical to the displacement vector u(x, t) ; 
� = �R + i�I denotes the complex-valued traveltime of rays.

We can rewrite the exponential term exp(−i�(t − �(x))) 
in Eq. 2 to the form:

(1)cij = cR
ij
− icI

ij
.

(2)u(x, t) = U(x)exp(−i�(t − �(x))).

(3)
exp(−i�(t − �(x))) = exp(−i�(t − �R(x)))exp(−��I(x)).
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In this equation, the element exp(−i��I(x)) denotes the 
attenuation of wave amplitude. In accordance with Eq. 1, 
the positive and negative of �I are the same as � . For posi-
tive � , �I must always be positive which corresponds to the 
stiffness coefficients defined in Eq. 1, and for negative � , �I 
must always be negative, which corresponds to the stiffness 
coefficients described by the complex conjugate of Eq. 1 
(Hao and Alkhalifah 2017a). In attenuating isotropic media, 
this condition is similar to that the quasi P- and S-waves’ 
quality factors are odd functions of angular frequency � (Aki 
and Richards 2002).

In attenuating anisotropic media, we substitute Eq. 2 into 
the elastic-dynamic equation and obtain the Christoffel equa-
tion (Vavryčuk 2007) of quasi P- and S- waves for 2D VTI 
media, which is given by:

In this equation, aij = cij∕� denote stiffness coefficients 
normalized by the density of the media, where cij has the 
same definition as the cij in Eq. 1, and � is the density of 
the media. In attenuating anisotropic media, we can define 
aij by using Thomsen’s (1986) parameters and Zhu and 
Tsvankin’s (2006) parameters in “Appendix 1”; g1 is the 
horizontal directional polarization components; and g3 is 
the vertical directional polarization components;p1 is the 
horizontal directional slowness components, and p3 is the 
vertical directional slowness components. We can rewrite 
p1 and p3 as the spatial derivative of the complex-valued 
traveltime of rays in time–space domain:

Using the rewritten forms of p1 and p3 in Eq. 4, we 
obtain the traveltime function of 2D attenuating VTI media 
described by the first order nonlinear partial differential in 
the x–z dimension:

The structure of this equation is similar to that in nonat-
tenuating VTI media. When it comes to 3D attenuating VTI 
media, we can replace the partial differential 

(
��

�x

)2

 by the 

factor 
((

��

�x

)2

+
(

��

�y

)2
)

.

When it comes to TTI media, ��
�x

 and ��
�z

 in Eq. 6 are taken 
in the tilt direction. To get the eikonal equation for a 3D TTI 
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medium, the partial differential in Eq. 6 should be rotated 
with the rotation matrix:

Here,� is the angle of the symmetry-axis measured from 
the vertical, and � is the angle of the azimuth of the vertical 
plane (Alkhalifah 2011). In a 2D TTI medium, the azimuth 
of the vertical plane � is zero, we can get the eikonal equa-
tion in x–z dimension:

Equation 8 governs the complex P and SV wave travel-
times of 2D TTI media by density-normalized stiffness coef-
ficients as well as directional slowness components. In order 
to solve Eq. 8, we will replace the complex density-normal-
ized stiffness coefficients by several widespread parameters 
and rewrite this equation in the following.

The acoustic eikonal equation

For the acoustic eikonal equation of nonattenuating TI 
media, there is an approximation that the S-wave velocity 
vs0 has little influence on the quasi P-wave velocity. That is 
called the “acoustic approximation” (Hao and Alkhalifah 
2017a). When it comes to attenuating anisotropic media, a 
similar approximation is defined such that the S-wave attenu-
ation coefficient As0 also doesn’t affect the P-wave attenu-
ation coefficient much (Zhu and Tsvankin 2006). Accord-
ing to the acoustic approximation, we can set vs0 = 0 and 
As0 = 0 , and then we use Alkhalifah’s (1998, 2000) param-
eters vp0 , vn = vp0

√
1 + 2� , � = (� − �)∕(1 + 2�) to describe 

the nonattenuating reference media (see Eqs. 26 and 27 in 
“Appendix 1” and use Zhu and Tsvankin’s (2006) notation 
Ap0 , �Q , �Q to describe the attenuation part. Ap0 describes 
the decay of displacement amplitude per wavelength, �Q and 
�Q describe the anisotropy for the media’s attenuation. Ap0 
is normalized by the corresponding wavenumber, which is 
defined as the number of radians in a unit distance. The 2D 
acoustic attenuating TTI eikonal equation is given by:

(7)
⎛
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in which A, B and C, respectively, correspond to:

with:

Equation 9 with Eqs. 10–13 is the acoustic eikonal equa-
tion for 2D TTI attenuating media. Solving Eq. 9 numeri-
cally requires solving a quartic equation at each computa-
tional step, which will bring huge computational cost. As an 
alternative, we can use perturbation theory to solve Eq. 9 by 
approximating it with a series of simpler linear equations. 
Considering �,k and � constant and small, we can represent 
the traveltime solution as a series expansion in �,k and �.

The analytical solution for homogeneous 
media

We set a trial solution to the Eq. 9 by perturbation method 
for homogeneous media:
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Equation 14 is an expansion in terms of the attenuation 
anisotropy parameters in Eq. 15. By inserting this equation 
into Eq. 9, we obtain a second-order expansion of the eiko-
nal equation with the respect to the parameters in Eq. 15. On 
the basis of that all the coefficients of the same parameters 
must equal zero, we could derive several equations to govern 
the traveltime coefficients:

Equations 16–18, respectively, represent the zeroth-, 
first-, and second-order traveltime coefficients.

Solving Eq. 16, we can get that:

Then with the result in Eq. 19, we can evaluate ��0
�x

 and 
��0

�z
 and insert them into Eq. 17 to calculate τi(i = 1,2,3). 

Using the same method, we can get τij(i = 1,2,3, and i ≤ j) 
by solving Eq. 18. With the solutions obtained by Eqs. 17 
and 18, we can calculate the approximate traveltime in 
Eq. 14. The right-hand-sides of Eqs. 17–18 are shown in 
“Appendix  2”, and their solutions are shown in 
“Appendix 3”.

Bender and Orszag (1978) produced a method to improve 
the convergence rate of a sequence of partial sums (or of 
any sequence for that matter) by eliminating its most pro-
nounced transient behavior, which is called Shanks trans-
form. In this approximation, it could be applied on the 
traveltime coefficients to get the approximation further 
improved. We designed two Shanks transform solutions in 
Eqs. 20 and 21:
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Equations 20 and 21 could reduce to the approximate 
traveltime for simpler media on some special condition. 
When we set all the perturbation parameters to zero, then 
� = �0 , Eqs. 20 and 21 will reduce to the traveltime equation 
for isotropic VTI media. When we set k = 0 , Eqs. 20 and 21 
will reduce to the traveltime equation for nonattenuating TTI 
media, which is the same as Alkhalifah (2011). When we set 
sin� = 0 , Eqs. 20 and 21 will reduce to the traveltime equa-
tion for attenuating VTI media (Hao and Alkhalifah 2017a).
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Fig. 1   The real (a) and the imaginary (b) part of the complex-valued 
traveltime for TTI medium whose azimuth angle is 10◦
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Fig. 2   The real (a) and the imaginary (b) part of the complex-valued 
traveltime for TTI medium whose azimuth angle is 30◦
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Fig. 3   The real (a) and the imaginary (b) part of the complex-valued 
traveltime for TTI media whose azimuth angle is 50◦
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Fig. 4   The real (a) and the imaginary (b) part of the complex-valued 
traveltime for TTI media whose azimuth angle is 70◦
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1616	 Acta Geophysica (2021) 69:1611–1621

1 3

Examples

In this part, we firstly demonstrate the effectiveness of 
Eq. 14 with the results in “Appendix 3”. Figures 1, 2, 3 and 
4 show the real part as well as the imaginary part of the 
complex-valued traveltimes for TTI medium with different 
azimuth angles. Figure 5 shows the complex-valued travel-
times for VTI media with the same anisotropic parameter as 
Fig. 1. Figure 6 shows the traveltimes for a TTI media whose 
attenuation is isotropic. The model parameters of the tested 
models are listed in Table 1. The attenuation parameters in 
Table 1 are derived from Zhu and Tsvankin (2006).

From Figs. 1, 2, 3 and 4, we can see the symmetry axes 
of the isochrons perfectly meet the symmetry axes of the 
corresponding models. It is worth to mention that even when 
the azimuth angle of the model is 70◦ , which couldn’t be 
regarded as small, the Eq. 14 with the results in “Appen-
dix 3” works smoothly. From Figs. 1, 2, 3 and 4, we can 
obtain that the attenuation anisotropy performed stronger 
than the wave propagation anisotropy. In Figs. 1a to 4a, the 
traveltime along the azimuth’s direction is smaller than the 
traveltime along the direction perpendicular to the azimuth, 
because the P-wave velocity along the azimuth’s direction 
vp0 is larger than the NMO velocity vn . This could also be 
proved by the following result in VTI media. From Figs. 1b 
to 4b, we can find that the shape of the isochrons is differ-
ent to the corresponding real part, which is caused by the 

anisotropic of the attenuation. We will use a same media 
with isotropic attenuation to verify this finding.

In Fig. 5, we could clearly see the traveltimes along dif-
ferent directions are different, which is caused by the differ-
ent between vp0 and vn . The real and imaginary part of the 
complex-valued traveltime in Fig. 4 is also the same as the 
result in Hao and Alkhalifah (2017a).

Compare Figs. 6b and 2b, we can see when the attenu-
ation of the media is isotropic, the shape of the imaginary 
traveltime’s isochron is the same as the real traveltime’s 
isochron. The anisotropic of attenuation has obviously influ-
ence on the imaginary traveltime. However, the isochron in 
Fig. 6a, compared with that in Fig. 2a, doesn’t have much 
difference, which indicate that the changes on attenuation 
parameters have little influence to the real traveltime.

After demonstrating the effectiveness, we will test the 
accuracy of the approximate traveltime Eq. 14 in the fol-
lowing. The exact traveltime to be compared is calculated 
by the propagating distance, and the complex-valued energy 
velocity calculated by Vavryčuk (2007). Figure 7 shows the 
real part as well as the imaginary part of the exact complex-
valued traveltime. The model parameters of Fig. 7 are the 
same as Fig. 2, which could be found in Table 1.

We could see little difference between the isochron in 
Fig. 7 and Fig. 2 that means the approximate traveltime 
Eq. 14 has reliable accuracy. We will use Eqs. 22 and 23 to 
calculate the absolute errors of the real part and the imagi-
nary part of the complex-valued traveltime:
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Fig. 6   The real (a) and the imaginary (b) part of the complex-valued 
traveltime for media with isotropic attenuation

Table 1   Model parameters of 
the numerical model

v
n
(km∕s) v

p0
(km∕s) � �

Q
�
Q

�

Figures 1, 2, 3 and 4 3 3.286 0.167 − 0.33 0.98 10
◦

, 30
◦

, 50
◦

, 70
◦

Figure 5 3 3.286 0.167 − 0.33 0.98 0
◦

Figure 6 3 3.286 0.167 0 0 30
◦
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Fig. 7   The real (a) and the imaginary (b) part of the exact complex-
valued traveltime
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Here, x and z represent the horizontal and vertical axis 
of the tested model, ΔTr and ΔTi are the absolute errors in 
the real and imaginary parts of the complex-valued travel-
time. Tex

r
 and Tex

i
 are the real and imaginary parts of the 

exact complex-valued traveltime as shown in Fig. 7. Tcal
r

 and 
Tcal
i

 are the real and imaginary parts of the complex-valued 
traveltime calculated by the approximate traveltime equa-
tions, in Fig. 8, they are calculated by Eq. 14 and in Figs. 9 
and 10, they are calculated by Eqs. 20 and 21.

We evaluate the accuracy by the average value, the maxi-
mum value and the percentage error. The error data are listed 
in Table 2.

The average value is about a quarter of the maximum, so 
the errors are more distributed in small values. The percent-
age error of Tr is acceptable, and the percentage error of Ti 
need to be improved.

We also evaluate the accuracy by the average value, the 
maximum value and the percentage error. The error data for 
Fig. 9 are listed in Table 3.

From the data listed in Table 3, we can obtain that there 
is no singular value appears, so the application of Shanks 
transform doesn’t reduce the stability. From the updated 
error data in Table 2, the maximum value and the percent-
age error are greatly reduced, and the errors are still more 
distributed in small values, the accuracy has been improved.

From the error data in Fig. 10 and Table 4, we can find 
that the maximum value and the percentage error is similar 

(22)||ΔTr(x, z)|| = |||T
cal
r
(x, z) − Tex

r
(x, z)

|||,

(23)||ΔTi(x, z)|| = |||T
cal
i
(x, z) − Tex

i
(x, z)

|||.
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Fig. 8   Absolute errors in the real (a) and imaginary (b) part of the 
complex-valued traveltime calculated by Eq. 14
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Fig. 9   Absolute errors in the real (a) and imaginary (b) part of the 
complex-valued traveltime calculated by Eq. 20
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Fig. 10   Absolute errors in the real (a) and imaginary (b) part of the 
complex-valued traveltime calculated by Eq. 21

Table 2   Error evaluation

/ Average Maximum Percentage (%)

||ΔTr|| 3.41 13.31 0.4
||ΔTi|| 0.32 1.52 1.85

Table 3   Error evaluation with Equation 20

/ Average Maximum Percentage (%)

∆Tr 0.66 2.53 0.1
∆Ti 0.09 0.38 0.5

Table 4   Error evaluation with Equation 21

/ Average Maximum Percentage (%)

∆Tr 0.68 2.56 0.1
∆Ti 0.14 0.61 0.4
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to that in Fig. 9 and Table 3. Compare with the isochrons in 
Fig. 9, the real part of the absolute error in Fig. 10 is smaller 
on the direction perpendicular to the inclination. At the same 
time, the imaginary part of the absolute error in Fig. 10 is 
relatively larger on the incline direction. We could choose 
between Eqs. 20 and 21 according to the practical needs in 
the application.

Discussion

Besides perturbation theory, we could also solve the approx-
imation eikonal equation by spatial discretization methods. 
With all the real items in Eqs. 16, 17 and 18, we are able 
to select the minimum traveltime in the real and imaginary 
part, respectively, which provides probability to use the 
methods like finite-difference methods (e.g., Vidale, 1988, 
1990), fast sweeping methods (e.g., Zhang et al., 2006; Luo 
and Qian, 2012) and fast marching methods in attenuating 
media. As an example, we would discuss a fast marching 
scheme to calculate the two-point traveltime numerically.

First, we evaluate the zeroth-order traveltime coeffcient 
�0 . The fast marching method (Sethian, 1996; Alkhalifah, 
2011) is implemented to solve Eq. 16 numerically. Second, 
we evaluate the first- and second-order traveltime coeffcients 
�i and �ij by solving Eqs. 17 and 18 successively in the order 
of calculating �0 in the fast marching method.

With �0 , �i and �ij evaluated, the Shanks transform is also 
valid to improve the accuracy of the traveltime in fast march-
ing method. As we see in the ‘Numerical examples’ section, 
the Shanks transform solution 2 (Eq. 21) is most accurate 
among all of the proposed traveltime solutions for a homo-
geneous attenuating TTI medium. Hence, we could evaluate 
the traveltime � from the Shanks transform solution 21.

Conclusion

We obtain an acoustic eikonal equation describes the com-
plex-valued traveltime in attenuation anisotropy TTI media. 
This eikonal equation is derived on the basis that the S-wave 
parameters (includes Thomsen’s notation vs0 and Zhu and 
Tsvankin’s notation As0 ) have little affection on the travel-
time of P-wave in attenuation anisotropy TTI media. We 
use perturbation method to solve the acoustic eikonal equa-
tion and use Shanks transform to improve the accuracy of 
the solutions for homogeneous attenuation anisotropy TTI 
media. Numerical tests show that the solution of the acoustic 
eikonal equation could work smoothly in TTI medium with 
different azimuth angles. We demonstrate the influence of 
azimuth angle and anisotropic attenuation by VTI media 
and isotropic attenuation media. We test the accuracy of the 

solution of the acoustic eikonal equation. Finally, we discuss 
a fast marching scheme according to the approximation.

Appendix 1

Parameters’ definition of attenuating TI 
media

In this part, we further define the parameters for attenuation 
TI media to match the calculation process of traveltime. 
These parameters are all defined with stiffness coefficients 
cij , quality factors Qij and density � . The stiffness coefficients 
are described in Eq.  1. The quality factors matrix is 
Qij = cR

ij
∕cI

ij
.

(1)	 vp0: P-wave’s velocity when propagating along the 
z-axis,

(2)	 vs0: S-wave’s velocity when propagating along the 
z-axis,

(3)	 �, �, � : The nonattenuating Thomsen’s (1986) param-
eters,

(4)	 Ap0: P-wave attenuation coefficients along the z-axis,

(5)	 As0: S-wave attenuation coefficients along the z-axis,

(24)vp0 ≡

√
cR
33

�
.

(25)vp0 ≡

√
cR
55

�
.

(26)� ≡
cR
11
− cR

33

2cR
33

(27)� ≡
(cR

13
+ cR

55
)
2
− (cR

33
− cR

55
)
2

2cR
33
(cR

33
− cR

55
)

(28)� ≡
cR
66
− cR

55

2cR
55

.

(29)Ap0 ≡ Q33

(√
1 +

1

Q2
33

− 1

)
.
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(6)	 �Q, �Q, �Q : The attenuating Thomsen-type parameters,

Equations  24–28 are from Thomsen’s (1986) and 
mainly describe the real part of the complex-valued travel-
time. Equations 29–33 are from Zhu and Tsvankin (2006) 
and describe the imaginary part of the complex-valued 
traveltime.

Appendix 2

The right‑hand‑side of the equations 17 
and 18

By inserting Eq. 14 into Eq. 9, we obtain a second-order 
expansion of the eikonal equation with the respect to the 
parameters in Eq. 15. On the basis of that all the coefficients 
of the same parameters must equal zero, we could derive the 
right-hand-side of the Eqs. 17 and 18.

The right-hand-side of the Eq. 17 are:

The functions in the right-hand-side of Eq. 18 are:

(30)As0 ≡ Q55

(√
1 +

1

Q2
55

− 1

)
.

(31)�Q ≡
Q33 − Q11

Q11
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Q55
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55
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13
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2
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+ 2
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13
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Appendix 3

The analytical solutions for homogeneous 
attenuating TI media

The analytical solution to Eq. 16 is:
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The analytical solutions to Eq. 17 are:

The analytical solutions to Eq. 18 are:
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