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Abstract
Accurate modeling of groundwater level (GWL) is a critical and challenging issue in water resources management. The 
GWL fluctuations rely on many nonlinear hydrological variables and uncertain factors. Therefore, it is important to use an 
approach that can reduce the parameters involved in the modeling process and minimize the associated errors. This study 
presents a novel approach for time series structural analysis, multi-step preprocessing, and GWL modeling. In this study, 
we identified the time series deterministic and stochastic terms by employing a one-, two-, and three-step preprocessing 
techniques (a combination of trend analysis, standardization, spectral analysis, differencing, and normalization techniques). 
The application of this approach is tested on the GWL dataset of the Kermanshah plains located in the northwest region 
of Iran, using monthly observations of 60 piezometric stations from September 1991 to August 2017. By removing the 
dominant nonstationary factors of the GWL data, a linear model with one autoregressive and one seasonal moving average 
parameter, detrending, and consecutive non-seasonal and seasonal differencing were created. The quantitative assessment 
of this model indicates the high performance in GWL forecasting with the coefficient of determination (R2) 0.94, scatter 
index (SI) 0.0004, mean absolute percentage error (MAPE) 0.0003, root mean squared relative error (RMSRE) 0.0004, and 
corrected Akaike’s information criterion (AICc) 151. Moreover, the uncertainty and accuracy of the proposed linear-based 
method are compared with two conventional nonlinear methods, including multilayer perceptron artificial neural network 
(MLP-ANN) and adaptive neuro-fuzzy inference systems (ANFIS). The uncertainty of the proposed method in this study 
was ± 0.105 compared to ± 0.114 and ± 0.126 for the best results of the ANN and the ANFIS models, respectively.
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Acronyms
AI  Artificial intelligence
AICc  Corrected Akaike’s information criterion

ANFIS  Adaptive neuro-fuzzy inference systems
Diff  Differencing
Dtr  Detrending
FEI  Forecasted error interval
GWL  Groundwater level
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HidN  The number of hidden neurons
IDW  Inverse distance weight
IFE  The individual forecasting error
InV  The number of inputs
JB  Jarque–Bera
MAPE  Mean absolute percentage error
MF  Membership function
MIFE  The mean of IFE
MK  Mann–Kendall
MLP-ANN  Artificial neural network
MWU  Mann–Whitney
OutV  The output of the model
QLjung-Box  Ljung-Box test
R2  Coefficient of determination
RMSRE  Root mean squared relative error
SDIFE  The standard deviation of IFE
Sf  Spectral analysis
SI  Scatter index
SMK  Seasonal Mann–Kendall
Std  Standardization
WUB  Width of the uncertainty band

Introduction

In recent decades, challenging factors such as population 
growth, climate factors, as well as socio-economic develop-
ments have led to an increase in demand for water resources 
(Asnaashari et  al. 2015; Betts et  al. 2015; Salek et  al. 
2018; Salimi et al. 2020). The exploitation of groundwater 
resources is an emerging problem due to water scarcity in 
many parts of the world (Motiee et al. 2006; Perera et al. 
2013; Harvey et al. 2015; Nalley et al. 2019). Thus, the need 
for integrated management of these resources is essential 
including groundwater level prediction.

Iran is in a semiarid region. The average annual rainfall 
is about one-third of the world’s average rainfall. However, 
in the Kermanshah province of Iran, agricultural activities 
dominate other economic activities. Factors such as drought 
and inefficient water management policy have resulted in 
a irrigation water ban more than 30% of the plains in the 
province, meaning that groundwater extraction is forbidden 
in these plains (Taheri et al. 2016). Therefore, the long-term 
trends of groundwater level changes in this province are of 
particular importance. The groundwater models are the main 
traditional tools in forecasting groundwater level (GWL). 
The need for many input variables in these traditional mod-
els is the main drawback of using them. In practice, the 
available data are often limited, and often providing accurate 
forecasts is more important than understanding underlying 
theory. Hence, a new generation of data-driven machine 
learning models must be considered as suitable alternatives 
to the traditional physically based models.

Groundwater level changes due to the effect of various 
parameters such as hydrological variables, geology, and 
soil science are considered a highly nonlinear and complex 
problem (Coppola et al. 2003; Daliakopoulos et al. 2005). 
Recently, different artificial intelligence (AI) and machine 
learning-based techniques have been applied to forecast the 
groundwater level, including artificial neural network (ANN) 
(Bonakdari et al. 2020; Emamgholizadeh et al. 2014; Gong 
et al. 2015; Golami et al. 2019; Moosavi et al. 2013; Nourani 
and Mousavi 2016; Mukherjee and Ramachandran 2018), 
adaptive neuro-fuzzy inference systems (ANFIS) (Emamg-
holizadeh et al. 2014; Fallah-Mehdipour et al. 2013; Gong 
et al. 2015; Moosavi et al. 2013; Nourani and Mousavi 2016; 
Stajkowski et al. 2020a, b; Zare and Koch 2018).

Like the other techniques, AI-based techniques have 
many advantages, such as high-speed modeling and simplic-
ity of usage, and disadvantages, such as low generalizability 
and overtraining. GWL variations prediction is considered 
a nonlinear problem. So, to solve this problem, nonlinear 
methods are required. In modeling a time series, the lack of 
understanding of the required problem may cause inappro-
priate input combinations to be chosen, and consequently, 
modeling with acceptable accuracy is not provided. Also, 
recent studies show that accurate knowledge of the problem 
can have a considerable impact on the modeling process 
(Moeeni et al. 2017a, 2017b). Recent studies suggest that 
even some nonlinear problems can be modeled linearly 
(Bonakdari et al. 2018; Ebtehaj et al. 2019; Zeynoddin et al. 
2019; Zeynoddin and Bonakdari 2019).

Bonakdari et al. (2018) presented a stochastic model 
based on soil temperature forecasting at two stations and 
different depths (four different time series). They declared 
that the proposed methodology outperformed nonlinear 
ANN and ANFIS models so that it provides a precise model 
and has less complexity than nonlinear models (i.e., ANN 
and ANFIS). To predict soil temperature at different depths, 
Zeynoddin et al. (2019) employed a linear method based on 
recognizing deterministic elements in a studied time series. 
Results demonstrated that the proposed linear model has 
better performance than nonlinear models in terms of accu-
racy and simplicity. Zeynoddin et al. (2020) and Ebtehaj 
et al. (2019) also responded to a fundamental question about 
lake level forecasting. Is lake level forecasting solvable as 
a linear problem, or it needs to be modeled nonlinearly? 
They evaluated their suggested generalized linear stochastic 
model for different time intervals of case study lake levels. 
By comparing results with several AI methods, they claimed 
that accurate and desirable results can be attained by using 
a suitable approach.

Understanding and evaluating the time series structure 
is a crucial step before embarking on data modeling. This 
step becomes paramount when linear models. No preproc-
essing method alone can completely eliminate nonstationary 
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factors. Hence it is required to assess the data structure in 
multiple levels and apply multi-preprocessing methods. This 
point is less addressed in previous studies. Therefore, in this 
study, a new methodology is presented based on which the 
groundwater time series is analyzed, preprocessed, and mod-
eled. This methodology has not yet been applied to ground-
water time series to the best knowledge of the authors.

To develop the proposed methodology, the new linear 
stochastic-based method and the integrated multi-step 
evaluation and preprocessing approaches are coded in the 
MATLAB environment. This novel set of techniques and 
approaches are applied to groundwater level (GWL) time 
series forecasting-based one-step-forward values. The intro-
duced methodology includes two approaches: (I) a one- and 
two-step and (II) a two- and three-step preprocessing tech-
niques. In the first approach, each method of differenc-
ing, spectral analysis, standardization, and detrending is 
employed on time series separately to stationarize it as a 
one-step preprocessing. Detrending, meanwhile, is applied 
before the other mentioned methods, as the two-step pre-
processing in the first approach. In the second approach, 
following the steps of the first approach, a normalization 
transform is applied. Afterward, in case of meeting the con-
ditions, stochastic modeling is performed. Model residual 
white noise is investigated by cumulative periodogram and 
Ljung-Box tests.

Besides, the results of the proposed stochastic-based 
methodology are compared with the two most popular AI-
based techniques (i.e., ANFIS and ANN) using uncertainty 
analysis and different statistical indices. The reason for using 

these two methods is the acceptable performance of them in 
groundwater level forecasting: (1) Successful application of 
the ANN and ANFIS as two well-known machine learning 
techniques in modeling groundwater level forecasting in the 
recent studies (He et al. 2014; Jafari et al. 2021; Seifi et al. 
2020; Shirmohammadi et al. 2013, Vetrivel and Elangovan 
2017). (2) High performance of these models in solving 
nonlinear problems, especially in hydrology. (3) Existing a 
low number of adjustable parameters compared with other 
machine learning techniques so that developing a model 
with less adjustable parameters makes the model simpler 
and reduces the model complexity.

Regional description and hydrological data

With an area of 24,998  km2, Kermanshah accounts for 1.5% 
of the area and 2.44% of the country’s population. Despite 
historic attractions and mines in the latest industrial rank-
ings in Iran, this city has been fallen within the undeveloped 
provinces. In terms of climate diversity, the province pre-
sents a great variety, with tropical weather in the west, cold 
and mountainous weather in the east, and moderate climate 
in central regions. Due to the climatic conditions, numerous 
crops are produced in this province, and most of the prov-
ince’s economic income is earned in the same way. Multiple 
droughts (Moradi et al. 2016); the pattern of inappropriate 
use of water consumption over the years; and the lack of leg-
islation and inefficient management have led to the fact that 
agricultural activities and water extractions are prohibited 

Fig. 1  Map and location of piezometers of the studied area (Kermanshah plain, Kermanshah province, Iran)
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in 8 plains from the 23 plains in the province during the 
year 2017–2018 (Taheri et al. 2016). Influenced by the prov-
ince’s severe dependency on the agricultural industry and 
the problems introduced, a prerequisite is the study of the 
plains groundwater conditions, forecasting, and management 
of consumption patterns (Soltani and Dadashi 2013).

Groundwater data of Kermanshah plain were collected 
monthly from 60 piezometric stations from September 1991 
to August 2017. Choosing the stations, long-term statistics 
(minimum 26 years), the lowest errors, and missing data 
are considered. The area, location, and coordinates of the 
stations are illustrated in Fig. 1. After reviewing and inter-
polating the data of stations that did not have statistics by 
a suitable interpolation method, the unit hydrograph of 
the Kermanshah plain’s groundwater level was prepared, 
as shown in Fig. 2. The methods of interpolation and unit 
hydrograph extraction are explained in the methodology sec-
tion. The 312-month’ unit hydrograph data are divided into 
two categories: train with 218 months, and test (94 months). 
The statistical characteristics of the hydrograph in these two 
data partitions are presented in Table 1.

Methodology

Geostatistical concepts

Many problems and limitations have always accompanied 
information collection about the phenomena around us. One 
of the problems and limitations is the lack of access to the 
data collection sites, lack of good tools, devices, and operator 

errors. Hence, in many cases, the data provided are a sample of 
the entire data and always have defects and errors. Researchers 
have endeavored to find mathematical and statistical methods 
to eliminate these defects and transform hydrological phenom-
ena into interpretable models using two general categories of 
deterministic and geostatistical techniques. Deterministic tech-
niques are established on mathematical equations and meas-
ured points such as inverse distance weight (IDW), spline, 
local polynomial interpolation (Childs 2004; Ly et al. 2011). 
Geostatistical techniques are based on statistical relationships 
and concepts that include methods such as Kriging (simple, 
ordinary, universal) and empirical Bayesian kriging (Bhunia 
et al. 2016; Childs 2004; Goovaerts 2000). In the current study, 
the inverse distance weighted (IDW) method was employed to 
interpolate data of stations, which had missing records. The 
relationship of this method is presented below (Eq. 1):

where Zi,j,τ is the interpolated value, Xi,j,τ is the measured 
groundwater level in Xi station at month j and year τ, Di is 
the distance between the station with missing data and the 
nearest reliable station, α is the weighting parameter, and N 
is the number of all sample. The α parameter is used to eval-
uate the data of stations with a different distance from the 
station. So, if the value of α > 1, the values of closer stations 
worth more than the farther stations. The α parameter for 
the IDW method is usually considered 2 in various studies 

(1)Zi,j,� =

N∑
i=1

�
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�
D�
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�
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Fig. 2  Unit hydrograph of 
Kermanshah plain, from Sep. 
1991 to Aug. 2017 obtained 
from information of 60 stations 
gathering data in the Kerman-
shah plain

Table 1  Statistical Indices of GWL data, divided into Train and Test Parts

No: Number of data, Min. and Max: Minimum and Maximum of data, 1st Q. and 3rd Q: first and third Quarters, σ(n): Standard Deviation, γ1: 
Skewness, γ2: Kurtosis, UH: Unit hydrograph

No Min Max 1st Q Median 3rd Q Mean σ(n) γ1 γ2

UH Total 312 1293.56 1312.68 1301.00 1306.10 1310.36 1305.46 4.91 -0.31 -1.12

Train 70% 218 1298.93 1312.68 1305.91 1308.24 1310.87 1307.99 3.32 -0.73 -0.14
Test 30% 94 1293.56 1305.04 1298.38 1299.79 1301.19 1299.58 2.19 -0.33 0.28
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(Goovaert 2000; Lloyd 2005; Ly et al. 2011). Therefore, 
α = 2 is considered in this study.

Another method of interpolation is the Thiessen poly-
gon. In this method, an area is assigned to each set of points 
(in this study, piezometric stations), and the value of the 
un-sampled points is considered equal to the values of the 
sampled neighbor points. Thiessen polygon determines the 
regions of influence surrounding each piezometric station, 
and hence, sample points take the nearest point data (Tatal-
ovich 2005). This method has many applications in hydrol-
ogy, including calculating the precipitation amount, the 
distribution of spatiotemporal air temperature in a region, 
interpolation of missing data, and derivation of the unit 
hydrograph (Chuanyan et al. 2005; Fiedler 2003; Gorgij 
et al. 2017). After determining the influencing areas and 
obtaining the weight of each station data, the unit hydro-
graph using the following equation can be obtained (Eq. 2):

where Zi,j,τ is the interpolated data, Ai is the area of each sta-
tion, and K is the number of each station. GWL(t) is the unit 
hydrograph groundwater level at tth month.

Stochastic process concepts

A linear stochastic model as a subset of statistical mod-
els follows a set of rules and statistical relationships. The 
simplest stochastic model is autoregressive (AR(p)) model, 
which contains one non-seasonal autoregressive param-
eter (p). The seasonal autoregressive moving average 
(SARIMA(p,d,q)(P.D.Q)ω) model is the general stochas-
tic model with the seasonal and non-seasonal parameters. 
These models are established based on different situations 
and problems described in detail by Box et al. (2015). The 
related equations of the introduced stochastic model are pre-
sented in the Appendix section (equations A1–A3).

By using the historical series, the model can predict one-
step forward values after calculating the model parameters 
with high accuracy. For modeling by sing stochastic meth-
ods, it is required to stationarize and normalize the studied 
time series distribution before modeling (the constancy of 
statistical characteristics, such as mean and standard devia-
tion, means stationarity).

Since most hydrological phenomena such as GWL are 
non-stationery and lacking normal distribution, it is requisite 
to preprocess the time series with appropriate methods. Each 
time series dataset is made of 4 terms of the trend, jump, 
period, and stochastic terms [GWL (t) = Trend (t) + Jump 
(t) + Period (t) + Stochastic (t)]. Each one of the first three 
elements (deterministic terms) in a given time series dataset, 

(2)
GWL(t) = Zi,j,� ×

Ai

K∑
i=1

Ai

,

alone or simultaneously together, can cause non-stationar-
ity. Thus, to achieve accurate results by using the simplest 
methods, three stationarizing methods are used, including 
differencing (Diff), detrending (Dtr), standardization (Std), 
and spectral analysis (Sf) (Bonakdari et al. 2018). Non-sea-
sonal differencing (Eq. A4) eliminates trend in mean and 
variance, jumps in mean, and eliminates periodic changes in 
variance. Trend analysis (Eq. A5), the other stationary time 
series method, can fit a linear equation to the dataset and 
eliminates the trend in the dataset by subtracting the value 
of the equation from the given time series (Jain and Kumar 
2012). Standardization (Eq. A6), in addition to normaliza-
tion of the data, eliminates jump and trend. Spectral analysis 
(Eqs. A7–A10) also transmits time series to the frequency 
domain and, by using Fourier series expansion, eliminates 
seasonal fluctuations (Zeynoddin et al. 2018). For equa-
tions A4–A10, please refer to Appendix.

Various methods have been offered to transform the dis-
tribution of time series, which do not follow the normal 
distribution. One of these methods is the normalization 
method presented by Manly (Stajkowski et al. 2020a, b), 
which is developed based on the Box-Cox transformation 
(Eq. A11, Appendix). This transformation can transform the 
time series with both positive and negative intervals and can 
convert data distribution to normal distribution, unlike the 
Box-Cox transformation, which works merely on the posi-
tive intervals.

There are several tests for assessing the time series’s dis-
tribution, including the Jarque–Bera (JB) (Eq. A12) test. 
This test is a goodness-of-fit test, which compares the value 
of skewness and kurtosis of a given sample with the corre-
sponding values in a normal distribution (Bai and Ng, 2005). 
The test’s equation is presented in Appendix (Eq. A12). If 
the JB value is less than its critical value  (JBCR = 5.99) or the 
corresponding probability  (PJB > 5%), then the normal time 
series distribution is normal.

Time series components investigation methods

To meet the two conditions of stochastic modeling, 
namely stationarity and the normal distribution of time 
series, it is essential to identify the time series compo-
nents. Therefore, methods and tests are provided for this 
purpose. The first test that is applied to any time series 
is the KPSS (Eqs. A13–A15) test (Murat et al. 2018). 
This test examines the overall stationarity of time series. 
If the series is not stationary, it is necessary to exam-
ine the reasons for non-stationarity (finding determinis-
tic terms) by other methods. In the KPSS test, the time 
series (GWLt) is assumed to be a regression equation 
with three parts: deterministic term (rt), trend term, the 
random term (βt), and stationarity error (εt), as follows: 
GWLt = rt + βt + εt. In this equation, rt = rt-1 + ui, rt is a 
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random walk, ui represents independent variables with 
the same distribution, βt is the deterministic term of the 
trend, εt is stationary errors. The latter equations of the 
test are presented in Appendix.

The existence of seasonal or non-seasonal trends is 
one of the reasons for having a nonstationary time series. 
The Mann–Kendall  (MK) test (Eq. A16–A18) allows us to 
identify the trend in time series (Jain and Kumar 2012). 
The above relationship is employed to detect the ongoing 

changes in time series. If these changes have occurred sea-
sonally and have created a seasonal trend, the seasonal 
Mann–Kendall  (SMK) test will be used (Eq. A19–A21). 
If the probability corresponding to these tests’ statistic is 
greater than 0.05 (significant level), then the series has no 
trend. Some natural phenomena occur suddenly, which are 
named jumps, causing these changes to occur as a climb 
or sudden descent into the series. Usually, such changes 
can be detected intuitively in the time series. Still, there 

Fig. 3  Flowchart of GWL modeling using proposed integrated preprocessing techniques with linear stochastic approaches
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are tests to distinguish these variations, including the 
Mann–Whitney  (MWU) test, a non-parametric test, as pre-
sented in Appendix (Eq. A23) (Clarke et al. 2011). If the 
values of MWU become higher than the confidence level α 
(α = 1%), the assumption of the equal distribution of series 
is confirmed, and the main time series is jump-free.

The proposed stochastic‑based methodology 
for GWL modeling

As mentioned earlier, the main goal is to accurately fore-
cast Kermanshah’s groundwater level by using the simplest 
methods. Furthermore, the effect of normalization on the 
modeling results which, were scrutinized in previous work, 
is also measured in this study. In Fig. 3, the modeling pro-
cess is presented thoroughly. The figure shows that prepa-
ration of the Kermanshah plain groundwater level time 
series is performed, before defining the two approaches 
of preprocessing and modeling. In the first approach, pre-
processing is done by using stationarizing methods. In this 
approach, stationary is divided into two stages A and B. 
In step A, each one of the stationary methods is applied 
individually.

In step B, the trend is omitted primarily, and with 
the help of the other two methods, then the series is sta-
tionarized. In the second approach, all stages of the first 
approach are investigated before the normalization trans-
form being applied to the series. After performing these 
preprocesses and verifying stationarity tests’ conditions, 
the time series generated by the preprocessing methods 
are modeled, and the results are evaluated using various 
indices. Eventually, the best approach and methodology 
for modeling groundwater level in the Kermanshah plain 
is selected.

Verification indices to evaluate each model

To examine the performance of obtained results in GWL 
prediction using the proposed method in this study, a set of 
various indices, including a coefficient of determination (R2, 
Eq. 3), is used. Comparing different models, it is compulsory 
to consider the model’s performance in different conditions 
by presenting different indices. In addition to R2, the scatter 
index (SI, Eq. 4), mean absolute percentage error (MAPE, 
Eq. 5), and root mean squared relative error (RMSRE, Eq. 6) 
are also used. In addition, to examine the simplicity with 
goodness-of-fit of developed models, the corrected Akaike’s 
information criterion (AICc, Eq. 7) (Burnham & Anderson 
2002; Stajkowski et al. 2020a, b) is used as well.

where k and n are the number of parameters and the months, 
respectively, σε is the residuals’ standard deviation, GWLobs,i 
and GWLP,i are the ith value of observed and predicted 
groundwater level. The accuracy of the time series modeling 
is another index of the conditions that should be investigated 
after modeling the time series, which is done by analyzing 
the independence of the model’s residual. The Ljung-Box 
test (Eq. 8) is employed to verify the independence of the 
residuals as follows (Dabral and Murry 2017):

In this relationship, rh is the residual coefficient of the 
autoregression (εt) in delay h, N is the number of samples, 
the value of m is also equal to ln(N). If the Ljung-Box test 
statistic value in the χ 2 distribution is greater than the 
α-level (in this case  PQ > α = 0.05), the residues series is 
white noise model is appropriate.

Results and discussion

Raw data preparing

After collecting and sorting the data of piezometric sta-
tions, stations with statistical defects were identified. 
There was a total of 326 months of statistical failure, 
accounting for less than 2% of the total data, comparing 

(3)
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to the 18,720 months of recorded data by the 60 piezo-
metric stations.

To use the IDW method to retrieve data from stations 
without statistics, 5 to 8 adjacent stations were chosen, 
which were assured of their data accuracy. These sta-
tions were located in all directions and at the nearest dis-
tances to stations with missing data. By measuring the 
distances and using the IDW method, the months that were 
not recorded for the groundwater level were rebuilt. Fol-
lowing, by determining the region of influence of each 
of the piezometric stations, using the Thiessen method, 
the weight of each station’s data was determined, and the 
unit hydrograph of the groundwater level of Kermanshah 
plain was obtained (Fig. 2). ArcGIS software (ArcMap, 
V10.4.1) was used in all stages of the process.

Preprocessing procedure

Groundwater level unit hydrograph (UH) of Kermanshah 
plain was divided into two intervals train (first 218 months) 
and test (remaining 94 months). As shown in the UH graph 
(Fig. 2), the data have a downwards trend and seasonal 
fluctuations. In Fig. 4, the UH ACF and PACF charts were 
plotted. The existence of intense correlations between the 
primary 27 lags, trends, and fluctuations in the ACF graph 
can be seen. The PACF plot on the other hand has been 
negative after the first lag and then after 6 lags were com-
pletely damped. The spectral density can demonstrate the 
periodicity in time series and the lag of the periodic pattern 
in it. Therefore, the spectral density of the time series was 
drawn (Fig. 5) and it was observed that there is a peak in the 
spectral density graph at the frequency equivalent to the lag 
12. This means the GWL data have a periodic pattern with 
a lag of 12.

Fig. 4  Autocorrelation and partial autocorrelation diagram of Unit Hydrograph (UH) of Kermanshah plain groundwater level

Fig. 5  Spectral density diagram 
of Unit Hydrograph (UH) of 
Kermanshah plain groundwater 
level
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To ensure that the UH time series is nonstationary 
and deterministic terms exist in its structure, the numeri-
cal tests presented before were applied to the series, and 
then the mentioned preprocessing was applied on the time 
series. Table 2 provides information on the processes and 
test results. It should be noted that the time series of the 
Kermanshah plain groundwater unit hydrograph (KSH UH) 
has seasonal and non-seasonal trends  (PMk and  PSMK < 0.05) 
and jumps  (PMWU < 0.01). Additionally, as mentioned before, 
periodicity with lag 12 exists. Subsequently, the series is 
nonstationary  (PKPSS < 0.05) with non-normal distribution 
(PJB < 0.05).

In both approaches of part I of Table 2, only, the methods 
were able to reduce the impact of non-stationarity factors, 
in which trend analysis was initially applied. These methods 
even normalized the time series distribution (Dtr, Dtr-Std, 
Dtr -Sf, Dtr-Mn, Dtr-Std-Mn, Dtr-Sf-Mn). This indicates 
the effect of eliminating the trend as the dominant factor of 
non-stationarity at the beginning of the preprocessing and 
the time series stationarizing. However, the nonstationary 
factors were not completely eliminated (such as seasonal and 
periodic trends), which caused to low stationarity percent-
age in these methods (with an average of 10.35%). In the 
ACF and PACF graphs of these time series, the effect of the 
detrending was well observed, so that the lags’ correlations 

Table 2  Results of tests on the 
original GWL time series (KSH 
UH) and time series obtained 
from preprocessing techniques

Tests Trend Jump Stationary Normality

Pvalue (%) MK SMK MWU KPSS JB

PART I 1st Appr KSH UH 0.01 0.01 0.01 0.01 0.01
A Dtr 26.98 1.87 19.24 10.18 22.40

Std 0.01 0.01 0.01 0.01 0.01
Sf 0.01 0.01 0.01 0.01 0.03

B Dtr-Std 26.98 1.87 19.24 10.18 22.40
Dtr-Sf 36.46 7.83 13.56 9.74 56.80

2nd Appr A Dtr-Mn 26.98 1.87 19.24 10.96 96.17
Std-Mn 0.01 0.01 0.01 0.01 0.04
Sf-Mn 0.01 0.01 0.01 0.01 1.50

B Dtr-Std-Mn 26.98 1.87 19.24 10.94 96.28
Dtr-Sf-Mn 36.46 7.83 13.56 10.13 94.86

Non-seasonal 1st Diff. test results
PART II 1st Appr KSH UH 82.60 43.75 57.95 74.73 67.44

A Dtr 82.60 43.75 57.95 74.73 67.44
Std 82.60 43.75 57.95 74.73 67.44
Sf 73.14 47.72 73.98 80.91 70.99

B Dtr-Std 82.60 43.75 57.95 74.73 67.44
Dtr-Sf 88.03 73.46 61.88 81.30 70.73

2nd Appr A Dtr-Mn 89.95 73.46 59.60 80.05 62.25
Std-Mn 90.84 45.06 52.14 91.50 0.49
Sf-Mn 88.18 50.48 64.51 95.89 0.00

B Dtr-Std-Mn 90.10 73.46 59.45 79.91 63.03
Dtr-Sf-Mn 95.30 81.84 61.57 84.10 67.41

Non-seasonal & Seasonal Diff. test results
PART III 1st Appr KSH UH 23.30 18.69 31.17 92.18 0.01

A Dtr 23.30 18.69 31.17 92.18 0.01
Std 23.30 18.69 31.17 92.18 0.01
Sf 68.75 59.26 24.46 94.30 0.01

B Dtr-Std 23.30 18.69 31.17 92.18 0.01
Dtr-Sf 34.83 20.32 33.02 94.60 0.01

2nd Appr A Dtr-Mn 23.87 20.32 27.68 94.79 0.01
Std-Mn 32.57 25.86 33.97 97.03 0.01
Sf-Mn 71.77 76.63 20.32 95.19 0.01

B Dtr-Std-Mn 23.38 20.32 27.16 94.71 0.01
Dtr-Sf-Mn 33.59 22.06 26.95 95.82 0.01
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reduced up to a maximum of 5 non-seasonal lags and 3 sea-
sonal lags. An example of the ACF chart is presented in 
Fig. 6 (due to the similarity of the results of the methods, 
presentation of others is avoided, and only Dtr-Sf-Mn is 
provided). In the first diagram (Dtr-Sf-Mn), the trend elimi-
nation effect is observed in the series. Other methods that 
could not stationarize the time series, their ACF and PACF 
charts were similar to the original UH series with high cor-
relations and trends. With the preprocessing done in Part I 
for stationary methods, the SARIMA model (p, 0, q) (P, 0, 
Q)12 was found to be suitable, and it is not possible to model 
other methods that are not stationary. The main feature of the 
SARIMA model is the seasonal and non-seasonal differenc-
ing within the model itself to stationary the time series when 
they are not. Therefore, all the time series generated by the 
proposed approaches were non-seasonal and then seasonal 
differenced of first order by lag 12. The results are provided 
in PART II and III of Table 2.

As shown in PART II of Table 2, all time series have been 
stationary after non-seasonal differencing, even the KSH UH 
time series, which is the original series with no preproc-
essing. Averaging the results of the tests, the probability 
corresponding to each statistic after the non-seasonal dif-
ference is significantly increased (average% P:  MK = 67.91, 
 SMK = 54.09,  MWU = 50.04, KPSS = 74.93, JB = 15.92). 
After the non-seasonal differencing, the ACF and PACF 
charts were calculated. The number of non-seasonal cor-
relations considerably decreased (maximum 3 lags) and the 

number of seasonal correlations reached a maximum of 6 
seasonal lags. This value for the preprocessed series that 
were stationary in PART I (Dtr-Std / Sf-Mn) means growth 
in seasonal correlations and, as a result, an increase in the 
order of seasonal parameters of the SARIMA model, which 
is not appropriate (Fig. 6). Since the modeling time increases 
and the number of model parameters and subsequently, the 
complexity of the model surges. Therefore, the preprocessed 
series also were seasonally differenced.

The results of applying both non-seasonal and seasonal 
differencings are provided in PART III of Table 2. It is 
observed that the percentage of probability corresponding to 
all test statistic has been reduced except for the stationarity 
test (KPSS). The increase in the probability associated with 
the KPSS test can be seen in reducing the effect of seasonal 
variations caused by non-seasonal differencing.

By drawing the ACF and PACF plots for all of the 
preprocessed time series, it was observed that the number 
of seasonal and non-seasonal correlations of the series 
has decreased so that the non-seasonal correlations are 
continued to a maximum of 3 and the seasonal correla-
tions have reached 1 (Fig. 6). Figure 6 demonstrates the 
ACF plots preprocessing data with the Dtr-Sf-Mn method 
before and after the differencing. As seen in this graph b, 
the non-seasonal correlation decreased to 2 lags and the 
seasonal correlations on the other hand were increased 
to 6 lags. But after seasonal differencing (Fig. 6c), this 
problem also was solved, and all seasonal correlations 

Fig. 6  Alternations of autocor-
relation function (ACF) diagram 
of sample preprocessing tech-
nique (Dtr-Sf-Mn) before and 
after differencing
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were removed. Moreover, the magnitude of the non-sea-
sonal correlation was reduced, so only 2 non-seasonal 
lags remained. After the non-seasonal and seasonal dif-
ferences, although the probability of corresponding tests 
decreased, on the one hand, all series were stationary and, 
as against Part I, all percentages have increased averagely 
(average% P:  MK = 16.64  SMK = 26.73  MWU = 18.52 
KPSS = 87.89). Methods Sf-Mn (%P:  MK = 71.77 
 SMK = 76.63  MWU = 20.32 KPSS = 95.19 JB = 0.01), 
Std-Mn (%P:  MK = 32.57  SMK = 25.86  MWU = 33.97 
KPSS = 97.03 JB = 0.01) showed the best results.

Monthly groundwater modeling

By stationarizing time series after different preprocess-
ings and determining the order of each of the parameters 
using the ACF and PACF graphs, the number of param-
eters and the differencing orders for one-step-ahead sto-
chastic forecast was chosen as p and q = {0,1,2,3} and P 
and Q = {0,1}, d = 1 and D = 12. The modeling results are 

recapitulated in Table 3. In this table, the selected models 
and percentage of model accuracy indices are presented. 
The coefficient of determination and error indices for all 
models as well as modeling complexity indices (AICc) 
are very close and very good, which indicates the power 
of stochastic linear modeling methods in modeling time 

Table 3  Superior stochastic 
models assessment results 
(indices%)

SARIMA R2 SI MAPE RMSRE AICc

First Appr KSH UH (1,1,2)(1,1,1)12 94.6054 0.0394 0.0275 0.0394 15,728.82
A Dtr (1,1,0)(0,1,1)12 94.5484 0.0397 0.0277 0.0396 15,073.79

Std (1,1,0)(0,1,1)12 94.5484 0.0397 0.0277 0.0396 15,073.79
Sf (2,1,3)(1,1,1)12 94.4045 0.0399 0.0282 0.0399 16,190.91

B Dtr-Std (1,1,2)(0,1,1)12 94.6040 0.0394 0.0275 0.0394 15,505.56
Dtr-Sf (1,1,2)(0,1,1)12 94.5815 0.0395 0.0274 0.0395 15,505.57

2nd Appr A Dtr-Mn (1,1,0)(1,1,1)12 94.4561 0.0401 0.0282 0.0401 15,287.42
Std-Mn (1,1,2)(0,1,1)12 94.4073 0.0407 0.0292 0.0407 15,505.31
Sf-Mn (1,1,3)(0,1,1)12 93.7884 0.0433 0.0310 0.0433 15,728.36

B Dtr-Std-Mn (1,1,0)(1,1,1)12 94.4616 0.0401 0.0282 0.0401 15,287.42
Dtr-Sf-Mn (1,1,0)(1,1,1)12 94.4856 0.0399 0.0279 0.0399 15,287.39

Fig. 7  Cumulative periodogram 
of sample superior models’ 
residuals

Fig. 8  Ljung-Box residuals test to check modeled series fitness of 
GWL
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series of the groundwater level. However, the best and the 
worst  R2, SI, MAPE, and RMSE indices do not belong 
to specific models and the highest and lowest indices are 
scattered among different methods. Therefore, selecting a 
sole superior model based on these criteria is challenging. 
In this case, the evaluation is done based on the complex-
ity of the models. In other words, since the models’ accu-
racy is almost equal, the simplicity of the models can be 
considered an important parameter. Hence, the AICc index 
is used to select the superior model. The lower the value 
of this index, the better the model is obtained. The lowest 
value of AICc is related to the Dtr and Std method in the 
first approach (A).

Using the cumulative periodogram of models resid-
ual series and locating all quantities within Kolmogo-
rov–Smirnov 1% limits, it was ensured that by eliminating 
the periodicity in the models and the absence of leakage in 
the residual (Fig. 7; 4 samples of the methods). Moreover, 

Fig. 8 indicates the Ljung-Box test results that all values for 
the 60 primary lags are above the confidence level of 0.05, 
and the validity of the provided models is confirmed.

Comparison of the proposed linear‑based 
methodology with MLP and ANFIS

To evaluate the proposed linear model’s performance in 
comparison with nonlinear methods known in GWL pre-
diction, stochastic models are examined and evaluated by 
ANN and ANFIS methods. To use these models, the input 
combinations should be defined first; in this study, the ACF 
presented in Fig. 4 is used. According to this diagram, four 
different models are presented that consider the effects of 1 
to 4 previous lags in modeling (Table 5). After determin-
ing the models, the adjustable parameters for both ANN 
and ANFIS methods should be adjusted. It should be noted 
that the lack of precise selection of these parameters may 
significantly increase the complexity of the model or cause 
problems in achieving an optimal solution. Therefore, in 
this study, with the help of trail-and-error, the adjustable 
parameters were determined to present simple and accurate 
models (Table 4).

The results of nonlinear modeling for both methods and 
four proposed models, along with the best linear model, 
are provided in Table 5. In the table, the ANN (InV, HidN, 
OutV) model indicates the number of inputs as InV, the 
number of hidden neurons as HidN, and the output of the 
model is OutV. Additionally, the ANFIS (FCM, InV, MF) 
model indicates that the FCM method is used (Moradi et al. 
2018). Considering simultaneously the accuracy and com-
plexity of the model, the values of the models are adjusted. 
In the ANN method, the number of hidden layer neurons 
has a considerable effect on the accuracy of modeling and 

Table 4  The optimal values of adaptable parameters of ANN and 
ANFIS techniques

Method Parameter Setting

ANN Activation function tansig
Number of hidden layers 1
Number of hidden neurons 1, 7 13, 15, 18
Training algorithm BP
Iteration number 5000

ANFIS MF number 2& 3
FIS generation technique FCM
Training algorithm Hybrid (BP-LS)
Iteration number 5000

Table 5  Comparison of the proposed linear-based methodology with nonlinear techniques (indices%)

Model Inputs R2 SI MAPE RMSRE AICc

Current study (1,1,0)(0,1,1)12 94.5484 0.0397 0.0277 0.0396 15,073.79
ANN (1,18,1) GWL(t-1) 87.6395 0.0597 0.0458 0.0597 41,871.2
ANN (2,15,1) GWL(t-1), GWL(t-2) 92.8741 0.0452 0.0319 0.0452 50,498.3
ANN (3,13,1) GWL(t-1), GWL(t-2), GWL(t-3) 93.1132 0.0442 0.0318 0.0442 60,616.3
ANN (4,7,1) GWL(t-1), GWL(t-2), GWL(t-3), GWL(t-4) 93.5707 0.0427 0.0311 0.0427 30,829
ANN (4,1,1) GWL(t-1), GWL(t-2), GWL(t-3), GWL(t-4) 91.4906 0.0499 3.5569 0.0499 16,192.5
ANFIS(FCM,1,2) GWL(t-1) 86.2896 0.0623 0.05015 0.06229 16,430.8
ANFIS(FCM,1,3) GWL(t-1) 86.1828 0.0625 0.05031 0.06248 17,446.8
ANFIS(FCM,2,2) GWL(t-1), GWL(t-2) 91.7457 0.04933 0.03521 0.0493 17,993.1
ANFIS(FCM,2,3) GWL(t-1), GWL(t-2) 91.2551 0.05025 0.03621 0.05021 20,145.3
ANFIS(FCM,3,2) GWL(t-1), GWL(t-2), GWL(t-3) 91.8251 0.04884 0.03488 0.04882 19,812.1
ANFIS(FCM,3,3) GWL(t-1), GWL(t-2), GWL(t-3) 91.7092 0.04847 0.0358 0.04844 23,614.2
ANFIS(FCM,4,2) GWL(t-1), GWL(t-2), GWL(t-3), GWL(t-4) 91.9966 0.0479 0.03439 0.04787 21,956.9
ANFIS(FCM,4,3) GWL(t-1), GWL(t-2), GWL(t-3), GWL(t-4) 92.1818 0.04698 0.03444 0.04694 28,239.4



1407Acta Geophysica (2021) 69:1395–1411 

1 3

increasing of the complexity of the model as well, yet in 
the ANFIS method; the membership function (MF) has a 
considerable impact on the accuracy and simplicity of the 
model. It is noticeable that, for ANNs with 4 parameters, 
the simplest mode of a hidden layer neuron is considered 
simultaneously along with a model with good accuracy of 7 
hidden layer neurons. Although the AICc value of the sim-
pler model is better than the other one, the former is mark-
edly lower in terms of accuracy. In ANFIS, MF = 2 and 3 
are considered for all four simultaneously. By increasing 
the number of MFs, although the accuracy of the model has 
not increased considerably, its complexity grew significantly. 
Hence, the further increase of this parameter cannot be con-
sidered as an appropriate strategy for increasing the accu-
racy. The linear model presented has the highest  R2 value 
rather than all other models of nonlinear methods.

In addition to that, the linear method, also has the small-
est amount of the AICc index, considering the complex-
ity and accuracy simultaneously. Conspicuously, the least 
amounts of SI, MAPE, and RMSRE indices are for the lin-
ear method. Accordingly, the linear model presented more 
precisely than nonlinear models and is simpler than ANN 
and ANFIS.

Uncertainty analysis

The quantitative appraisal of the uncertainties in predict-
ing the GWL is provided using the linear methodology for 
KSH UH versus ANN and ANFIS. The uncertainty analysis 
(UA) results are applied for test data. By calculating the 
individual forecasting error (IFE), the standard deviation of 
IFE (SDIFE), and the mean of IFE (MIFE) and using the 
Wilson score method without continuity correction, a con-
fidence band across the predicted samples is defined (Azimi 
et al. 2018; Ebtehaj et al. 2018). The results of the UA for 

linear and nonlinear techniques are presented in Table 6. 
In addition to MIFE and SDIFE, the 95% forecasted error 
interval (FEI) and the width of the uncertainty band (WUB) 
are calculated and illustrated in this table, as well. It can be 
concluded that the proposed linear stochastic methodology 
has been implemented better than ANN and ANFIS methods 
with less calculated uncertainty. The positive MIFE for a 
linear method and three ANN-based models (ANN (1,18,1), 
ANN (3,13,1), ANN (4,7,1)), indicates overestimate the per-
formance of these approaches in GWL predicting while the 
negative MIFE for the other models showed the underesti-
mate performance of the desired models. The lowest SDIFE 
and WUB are 0.515 and ± 0.105, concerning the proposed 
stochastic linear methodology. Therefore, the UA shows the 
higher performance of the proposed method versus ANN 
and ANFIS as the two most popular nonlinear techniques in 
GWL forecasting.

Advantages, limitations, and future 
improvements

The proposed linear stochastic-based methodology inte-
grated with multi-step preprocessing techniques was devel-
oped in the current study for one-step-ahead groundwater 
level forecasting at Kermanshah plain. The main advantages 
of the proposed methodology are as: (1) Easy to implement. 
Application of the proposed multi-step preprocessing-sto-
chastic method is straightforward so that anyone can apply 
them with basic knowledge of time series. (2) Less user-
defined parameters. In the developed method, the user needs 
to adjust only the autoregressive and moving average param-
eters. (3) Less training time. The proposed method requires 
less training time than the AI methods. (4) Providing a sim-
pler model with a smaller number of adjustable parameters 

Table 6  Uncertainty analysis 
for the linear methodology for 
ANN and ANFIS techniques

Model NS MIFE (m) SDIFE (m) WUB 95% FEI

Current study 94 0.058 0.515  ± 0.105 (−0.048 0.163)
ANN (1,18,1) 94 0.085 0.776  ± 0.159 (−0.074 0.244)
ANN (2,15,1) 94 −0.046 0.589  ± 0.121 (−0.167 0.074)
ANN (3,13,1) 94 0.051 0.576  ± 0.118 (−0.067 0.169)
ANN (4,7,1) 94 0.047 0.556  ± 0.114 (−0.067 0.161)
ANN (4,1,1) 94 −0.090 0.646  ± 0.132 (−0.222 0.042)
ANFIS(FCM,1,2) 94 −0.016 0.814  ± 0.167 (−0.182 0.151)
ANFIS(FCM,1,3) 94 −0.013 0.816  ± 0.167 (−0.181 0.154)
ANFIS(FCM,2,2) 94 −0.068 0.641  ± 0.131 (−0.199 0.063)
ANFIS(FCM,2,3) 94 −0.057 0.654  ± 0.134 (−0.191 0.077)
ANFIS(FCM,3,2) 94 −0.060 0.635  ± 0.130 (−0.190 0.070)
ANFIS(FCM,3,3) 94 −0.040 0.632  ± 0.129 (−0.169 0.090)
ANFIS(FCM,4,2) 94 −0.039 0.625  ± 0.128 (−0.167 0.089)
ANFIS(FCM,4,3) 94 −0.023 0.613  ± 0.126 (−0.149 0.103)
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through the training phase in comparison to AI methods. 
(5) The stochastic model parameters are predetermined, and 
the model offers an interpretable general equation that can 
be used for other data at different times. This feature pro-
vides a constant determined uncertainty which prioritizes it 
over machine learning methods that do not have a constant 
uncertainty.

Each method has its own disadvantages. The disadvan-
tages of the proposed method are combining several differ-
ent methods and steps to achieve the final results and the 
need for basic knowledge of time series. In the current study, 
knowing the structure of the time series is important. There-
fore, the application of several tests and preprocessing tech-
niques is required to provide a completely stationary series. 
In some cases, the data have a complex structure, similar to 
this study’s data, multiple evaluations, and consequently, 
multi-step preprocessing techniques are required. This 
can be considered a time-consuming process which some 
researchers may consider as a disadvantage. Also, preproc-
essing methods are not always capable of removing or reduc-
ing the impact of nonstationary factors properly. In this case, 
the results of the linear models will not be acceptable. To 
solve this problem some researchers, tend to AI models or 
their hybridization. Finally, it is recommended to investigate 
the impact of smoothing methods on preprocessing of GWL 
time series. Since the GWL data are periodic and trend, the 
smoothing methods Holt-Winters can be to the data. Moreo-
ver, since the deep learning models are developed to model 
and forecast the time series exclusively, the combination of 
the proposed methods with deep learning methods like the 
long-short-term-memory model is suggested.

Conclusions

We have presented a novel linear stochastic-based method-
ology for groundwater level forecasting and demonstrated 
its application for a case study in Kermanshah city, west of 
Iran. The proposed new methodology is an integration of 
preprocessing technique with linear stochastic approaches, 
including standardization, spectral analysis, normalization, 
and differencing techniques as one-, two-, and three-step 
preprocessing methodology.

The proposed methodology’s performance was veri-
fied against the two most conventional nonlinear methods 
(i.e., ANN and ANFIS) in terms of simplicity and accuracy, 
simultaneously. After reviewing the preprocessing results, we 
noticed that in the case of no-differencing mode, the meth-
ods of Dtr-Std, Dtr-Sf, Dtr-Sf-Mn present the best results, 
respectively.

These methods stationarize the Kermanshah plain ground-
water level and extended the distribution of the series to a nor-
mal distribution. Other methods were not able to stationarize 

or normalize the UH time series properly. By drawing the ACF 
and PACF graphs of preprocessed time series, high seasonal 
and non-seasonal correlations were noticed. As a result, the 
order of model parameters increases and so errors may occur.

Hence, non-seasonal and seasonal differencing was applied. 
After applying the non-seasonal and seasonal differencing, 
the non-seasonal correlation decreased to a maximum of 3 
lags and less in different methods, e.g., the Dtr-Sf-Mn method 
only required 2 non-seasonal parameters to be modeled. The 
seasonal correlation also decreased for all methods to one sea-
sonal lag. For example, the mentioned Dtr-Sf-Mn method only 
required one seasonal parameter for modeling after consecu-
tive differencing. Therefore, choosing the order of parameters 
for linear modeling is important.

Since the optimized selection of the parameters reduces the 
modeling time and reduces the associated errors, estimation 
of each parameter is accompanied by errors. Therefore, add-
ing any extra parameter results in adding errors to the model 
equation. After modeling and analyzing the related indices, the 
linear one-step-forward forecast modeling method can forecast 
the groundwater level of Kermanshah’s plain judiciously.

The proposed methods without differencing, which man-
aged to stationarize and normalize the time series, also suc-
ceeded in producing accurate model results and achieved the 
best forecasts. On the other hand, the UH series modeling 
without preprocessing has also produced very good results. 
Finally, the proposed linear method outperformed the ANN 
and ANFIS nonlinear methods in terms of simplicity and accu-
racy simultaneously.

Appendix

If P represents{φ,θ} and Pω represent {Φ,Θ} and ω be the 
periodicity, then the expansion of the stochastic modeling 
[SARIMA(p,d,q)(P,D, Q)ω] is as follows (Eqs. A3 - A5) (Box 
et al. (2015):

This model is defined using non-seasonal parameters of 
φ and θ (moving average and autoregressive parameters 
respectively) and seasonal parameters of Φ and Θ (mov-
ing average and autoregressive parameters respectively). 
The number of these parameters with p, q, P, Q respectively 
indicate the order of stochastic parameters (n). Both d and 
D parameters represent the differencing orders in this model 
that show the number of non-seasonal and seasonal differ-
encing times. (B(GWLt) = GWL (t-1)) is the differencing 

(A1)
j(B)Φ(B�) (1 − B)d(1 − B�)DGWL(t) = �(B)Θ(B�)e(t)

(A2)P(B) = 1−P1B−P2B
2−P3B

3 − … − PnB
n,

(A3)
P�(B

�) = 1−P�1B
�−P�2B

2�−P�3B
3� − … − P�nB

n�.
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operator. The differencing operator in the SARIMA model 
makes the nonstationary series stationary and uses seasonal 
parameters to model seasonal variations in time series.

The equation of the introduced preprocessing techniques 
in Sect. 3.2 is as follows (Jain and Kumar 2012; Bonakdari 
et al. 2018; Zeynoddin et al. 2018).

GWLt(t) is the mean of GWL(t); βt is the average change 
from one period to the next; ε(t) is the Fourier series expan-
sion residuals or residuals series.

The equation of the Manly normalization transform is as 
follows (Stajkowski et al. 2020a, b):

where λ is the Manly normalization parameter.
The Jarque–Bera test equation is as follows (Bai and Ng, 

2005):

where  Ku is skewness and  Sk is kurtosis. For samples with 
values of more than 2000, the value of this test is compared 
with the χ2 distribution with two degrees of freedom, and for 
samples with low values, since the chai distribution yields 
invalid results, the critical values of this test are based on 
Monte Carlo simulation calculations.

(A4)Dif fGWL = G(t) − GWL(t − 1)

(A5)DtrGWL = GWL(t) −
(
GWLtrend line = Const. + �tt

)

(A6)StdGWL = (GWL(t) − (GWLt(t)) )∕N

(A7)
Sf (t) = GWL(t) −

[
GWL +

∑
(�uCos(�) + �uSin(�)) + �(t)

(A8)�u =
2

N

(
N∑
t=1

GWL(t) cos
(
2�fut

))

(A9)�u =
2

N

(
N∑
t=1

GWL(t) sin
(
2�fut

))

(A10)
fu = u∕N and� = 2�fut; u = 1, 2, 3,… , k; t = 1, 2, 3,…N.

(A11)ManlyGWL =

{
(e�GWL(t) − 1)∕�, � ≠ 0

GWL(t), � = 0

}
,

(A12)JB = n

(
S2
K

6
+

(
Ku − 3

)2
24

)
,

By considering n as the number of stages of the time 
series and εt =  et for trend stationary which results 
et = GWLt − GWLt , to examine the time series stationarity 
and applying the KPSS test, the following relationships can 
be employed (Murat et al. 2018):

where  St = Σet, l is the truncation lag of stationary statistic 
at level or trend. As noted, in the case of non-stationarity, it 
is necessary to find its justification.

The non-seasonal Mann–Kendall test is as follows (Jain 
and Kumar 2012):

where  MKStd is the standard of Mann–Kendall statistic,  MK 
is the Mann–Kendall statistic, and σ2(MK) is the variance 
of MK. The MK and σ2(MK) are defined as:

where GWL is the groundwater llevel, g represents the num-
ber of matching groups, sgn is the sign function, N and  NObs,j 
are the number of samples and observations respectively.

The seasonal Mann–Kendall test equations are as follows:

(A13)KPSS =
1

n2

n∑
t=1

S2
t

S2(l)

(A14)S2(l) =
1

n

n∑
t=1

e2
t
+
2

n

l∑
j=1

w(j, l)
1

n

n∑
t=j+1

etet−s

(A15)w(j, l) = 1 − j∕(l + 1),

(A16)MKStd =

⎧
⎪⎨⎪⎩

�
MK − 1

�
𝜎2
�
MK

�−0.5
, MK > 0

0 , MK = 0
�
MK + 1

�
𝜎2
�
MK

�−0.5
, MK < 0

,

(A17)MK =

N−1∑
i=1

N∑
j=i+1

sgn
(
GWLj − GWLi

)

(A18)�2
(
MK

)
=

((
2N3 − 7N2 − 5N

)
−

g∑
j

NObsj

(
NObsj

− 1
)(

2NObsj
+ 5

))
∕18,

(A19)Sk =

Nk1∑
i=1

Nk−1∑
j=i+1

sgn
(
GWLki − GWLkj

)

(A20)SMK
=

�∑
k=1

(
Sk − sgn

(
Sk
))

(A21)

�2
(
SMK

)
= 2

�−1∑
i=1

�∑
j=i+1

Cov.ij +

�∑
k

(
2N3

k
− 7N2

k
− 5Nk

)
∕18
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where ω is the number of seasons in a year and Cov.ij repre-
sents the covariance of statistic test in season i and j.

The Mann–Whitney test is defined as follows (Clarke 
et al. 2011):

In this relationship:  GWLordered sorted by GWL(t), 
Dg(GWLordered)  GWLordered,  Nm1, and  Nm2 are the number 
of members of the original subseries, as  Nm1 +  Nm2 =  Ntotal.
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