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Abstract
In this study, seismic events in the Edirne district (Turkey) and its vicinity have been investigated in order to discriminate 
earthquakes from quarry blasts. A total of 150 seismic events with Md ≤ 3.5 duration magnitude from a seismic activity cata-
log between 2009 and 2014 recorded by the Enez (ENEZ), Erikli (ERIK) and Gelibolu (GELI) broadband stations operated 
by Boğaziçi University, Kandilli Observatory and Earthquake Research Institute Regional Earthquake-Tsunami Monitoring 
Center were used in this study. The maximum S-wave and maximum P-wave amplitude ratio of vertical component velocity 
seismograms, power ratio (Complexity) and total signal duration of the waveform were calculated. Earthquakes and quarry 
blasts were discriminated using the linear discriminate function (LDF) and back propagation feed forward neural networks, 
an artificial neural network (ANN) learning algorithm, taking the determination coefficient and variance account values 
between these parameters into consideration. Eighty-one (54%) of the total 150 seismic events studied were determined 
to be earthquakes, and sixty-nine (46%) of them were determined to be quarry blasts. The LDF and ANNs methods were 
applied to the data in Edirne and its vicinity using a pair of parameters and were compared to each other for the first time. 
The accuracy of the methods are 95% and 99% for LDF and ANNs, respectively.
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Introduction

While seismic recorders are recording seismic events in a 
region, they record not only natural seismic activities but 
also man-made events such as quarry blasts. These events 

exist in seismicity catalogs together. This situation may 
cause some errors for scientific studies in these areas, such 
as in the determination of the b-value in seismic hazard stud-
ies. In order to determine the real seismic activity in a study 
area, seismic catalogs should be cleaned of quarry blasts. 
The use of location, distance and origin time are simply not 
enough to achieve this. Therefore, waveforms should be 
carefully examined (Horasan et al. 2006).

Many different methods exist in the literature on the sub-
ject of the discrimination of natural and man-made seismic 
activity. These include the Pn/Sn and Pn/Lg ratio meth-
ods (Baumgardt and Young 1990), the Lg/Pg and Lg/Rg 
ratio methods (Wüster 1993), the artificial neural networks 
(ANNs) method (Dowla et al. 1990), the linear discriminant 
function (LDF) method (Horasan et al. 2006, 2009; Deniz 
2010; Öğütçü et al. 2010; Kartal 2010; Kekovalı et al. 2010, 
2012; Badawy et al. 2019; Ceydilek and Horasan 2019) and 
short-time Fourier transform (STFT) methods (Yılmaz et al. 
2013), quadratic discriminate function (QDF), diquadratic 
discriminate function (DQDF) and Mahalabonis discrimi-
nate function (MDF) methods (Küyük et al. 2011), QDF 
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methods (Yavuz et al. 2018), spectral seismograms (Korrat 
et al. 2008), declustering-dequarry discriminate methods 
(Kalafat 2010), the Fisher–Shannon discrimination method 
(Telesca et al. 2011), the corner frequency discriminant 
(CFD) method and P- and S- wave corner frequencies 
(Ataeva et al. 2017), and histograms of time versus seismic 
events (Naserieh et al. 2019).

In addition to these methods, natural and artificial seismic 
events have also been distinguished from each other using 
several algorithms of artificial neural networks (ANNs). 
In this study seismic activities occurring during May 2009 
and March 2014 in Edirne (Turkey) and its vicinity were 
examined. The location of the stations and the distribution 
of seismic events are shown in Fig. 1. Most of the quarry 
blasts recorded in the study area are related to mineral and 
construction material extraction. The purpose of this study 
is the discrimination of quarry blasts from earthquakes by 
applying the linear discriminate function (LDF) and artificial 

neural networks (ANNs) methods on digital vertical compo-
nent velocity seismograms recorded at the ERIK, ENEZ and 
GELI seismic stations. The obtained values of accuracy per-
centage were compared to determine the real seismic activ-
ity. This will improve the quality of earthquake catalogs, 
help to better determine their completeness, reduce errors 
in seismic hazard studies by ensuring that quarry sites are 
not identified as fault zones and allow the calculation of 
reliable b-values.

Data and methods

In this study, a total of 150 seismic events with Md ≤ 3.5 
recorded at three stations, ERIK, ENEZ and GELI, were 
investigated between May 2009 and March 2014 in 
the region bounded by 40–41°  N and 25.30–26.80°  E 
(Fig.  1). Data were taken from Boğaziçi University, 

Fig. 1  Location of the stations 
ERIK, ENEZ and GELI and 
seismic events with magni-
tudes of Md ≤ 3.5 in the study 
area between May 2009 and 
March 2014 (RETMC). Faults 
were taken from Şaroğlu et al. 
(1992), Emre et al. (2013) and 
Yaltirak et al. (2012). NAFZ: 
North Anatolian Fault Zone
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Kandilli Observatory and Earthquake Research Institute, 
and the Regional Earthquake–Tsunami Monitoring Center 
(RETMC).

The vertical component velocity seismogram data 
recorded at station ENEZ have the lowest number of data 
points.

The seismic activity distribution versus day and time (in 
GMT) are shown in Fig. 2. The histogram at the right side 
of Fig. 2 shows seismic events after removing quarry blasts. 
Time and location domain discrimination may not be suf-
ficient, hence the vertical component velocity seismogram 
and spectrum were also examined.

The seismogram and spectrum of the natural and artificial 
seismic events at ERIK are seen in Figs. 3 and 4, respec-
tively. The P-wave amplitude of artificial seismic events 
is dominant compared to the amplitude of earthquakes in 
Fig. 3. In this study, we used some parameters such as the 
amplitude ratio of the maximum S-wave and maximum 
P-wave of the vertical component of the velocity seismo-
grams, power ratio (complexity) and total signal duration 
of the waveform, as described in detail by Horasan et al. 
2009. The complexity versus ratio of the maximum P-wave 
amplitude and maximum S-wave amplitude at the vertical 
component velocity seismograms of the selected stations 

allowed the determination of the linear discriminant func-
tion (LDF) using Statistical Package for the Social Sciences 
(SPSS) Analysis Program (SPSS 2005) to discriminate natu-
ral and man-made seismic events.

Fig. 2  Distribution of seismic activity (number of events) occurring 
between May 2009 and March 2104 versus hours (in GMT) in the 
study area (40–41° N and 25.80–26.70° E). a The maximum activity 

is observed at 09:00 and 15.00 in GMT through the day. b Distribu-
tion of seismic events after removing quarry blasts

Fig. 3  The vertical component of velocity seismograms recorded at 
station ERIK. a Earthquake, b quarry blast
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Artificial neural networks (ANNs) method

Back propagation feed forward neural networks (BPNNs) 
learning algorithm

In this study we used the back propagation feed forward 
neural networks (BPNNs) learning algorithm because of its 
advantages, such as reducing backward-propagating error, 
namely from output to input (Çetin et al. 2006) and having 
an easy neural structure at the expense of slowness in the 
learning process (Çayakan 2012). According to the size of 
the errors between the expected output and the real value of 
the output, weights were organized by using BPNNs learn-
ing algorithm in order to obtain the most suitable output val-
ues (Yıldırım 2013). Generally, the members of the network 
topology are shown in Fig. 5 (Gülbağ 2006).

According to the type of the problem, after the learn-
ing algorithm was determined, a network structure that 
included an input layer, a hidden layer and an output layer 
was obtained. Generally, members of the network architec-
ture were determined as inputs, outputs, weights, the sum 
function and the activation function (Rumelhart et al. 1986). 
Inputs were information that entered the cell from other cells 
or out-medias and entered the cell using connections that 
were on the weights (w) (Fig. 5).

In this study the topology of the artificial neural network 
is a feed-forward backpropagation artificial neural network 
(BPNNs) and its learning algorithm is supervised learn-
ing. In the supervised learning algorithm input and output 
values entered together into the computing system. In this 

learning algorithm we used the amplitude peak ratio of the 
S to P-wave and complexity values as input (Fig. 5).

Selection of the number of neurons (Nn)

While deciding the topology of the artificial neural network, 
the selection of the number of neurons (Nn) is an important 
criterion in the ANNs method (Gülbağ 2006). Kermani et al. 
(2005) emphasized that Nn has an important role in neural 
networks. Nn is one of the significant factors for the dis-
crimination of different data groups. If we used fewer neu-
rons than we needed at the hidden layer, it might cause us to 
obtain very few sensible results. Often, when the number of 
neurons is low in hidden layer, it fails to validate the connec-
tion of input and output factors. Similarly, when the number 
of neurons in the hidden layer is high, it causes overfitting 
(Molga 2003). While the structure of the ANNs was being 
obtained, Nn was decided by trial and error (Yıldırım 2013; 
Kaftan et al. 2017).

At the stage of making a decision to determine a suitable 
model, Nn was tried at an interval and incremented. Then, 
the artificial neural network model that had the highest accu-
racy percentage was chosen for the determined ANNs model 
(Gülbağ 2006). In the literature, researchers used different 
intervals using different increments. Gülbağ (2006) obtained 
their ANNs model using increments of 10 neurons between 
0 and 100. Küyük et al. (2009) determined their model using 
increments of 1 neuron between 1 and 20 in the model and 
selected their number of neurons as 5 because its accuracy 
percentage was the highest. Yıldırım (2013) obtained their 
network architecture of ANNs by incrementing the number 
of neurons by 2 between 0 and 22. Kaftan et al. (2017) deter-
mined their model using an increment of 1 between 1 and 6 
in their artificial neural network study.

Fig. 4  Normalized amplitude spectrum of signals recorded at station 
ERIK. a Earthquake, b quarry blast

Fig. 5  a Members of the network topology, a neural network structure 
for seismic events. b Ratio versus complexity. (Modified from Gülbağ 
2006)
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In this study, to define the ANN network we incremented 
the number of neurons by five between 5 and 25. To deter-
mine the best neuron for ANN network we calculated deter-
mination coefficient (R2) values. The highest determination 
coefficient value is 0.99 for the number of neurons equal to 
10 (Table 1). So we selected the best number of neurons as 
10 in this data set (Table 1).

An additional training algorithm used was Leven-
berg–Marquardt, and the activation function used in this 
study was the Hyperbolic Tangent-Sigmoid activation func-
tion. The application of Levenberg–Marquardt to neural 
network training is described in the literature (Hagan and 
Menhaj 1994; Kermani et al. 2005). This algorithm has an 
efficient application in MATLAB software (Charrier et al. 
2007; MATLAB 2011). The network trainlm function can 
train every member of the artificial network (MATLAB 
2011). The Levenberg–Marquardt training algorithm has an 
efficient implementation (Levenberg 1944; Marquardt 1963).

We have to discuss about the training algorithm on a vast 
scale. Gülbağ and Temurtaş (2007) showed the equations of 
the standard back propagation and the Levenberg–Marquardt 
(LM) algorithms. They explained the reasons of using the 
LM method and the attitudes of that method versus the gen-
eralization learning by heart as follows. When the number 
of the data was inadequate, learning by heart could occure 
and in that state it might be difficult for the generalization. 
But according to Gülbağ and Temurtaş (2007) that problem 
might be solved as: While training with the training set at 
the same time they were testing it simultaneously by using 
the test set until an error level determined achieved. When 
the error of the test set reached to an acceptable level, they 
recorded the network.

Another activation function selected, denoted by �(x) and 
defined the output of a neuron in terms of the induced local 
field v. In this study, we used the hyperbolic tangent sigmoid 
function in this network architecture. In fact, this activation 
function assumed a continuous range of values from − 1 to 
+ 1. Therefore, the activation function was an odd function 
of the induced local field as shown in Eq. (1).

which is commonly referred to as the signum function. For 
the corresponding form of a sigmoid function, we may use 
the hyperbolic tangent sigmoid function, defined by

It is a hyperbolic tangent sigmoid activation function to 
assume positive and negative values as prescribed by Eq. (2) 
(Haykin 2009).

Based on the initial investigation, the hyperbolic tangent 
sigmoid was used for all output layers except the first output 
layer. The hyperbolic tangent sigmoid activation function 
can be defined using Eq. (3).

Here: hyperbolic tangent sigmoid activation function
The dynamic variation interval is [− 1 1] and this func-

tion shows variations according to the number of neurons 
and total input (Gradshteyn and Ryzhik 2007).

Preparation of data set

After determining the number of neurons, we started to pre-
pare the data sets that belonged to inputs and outputs. Next, 
the normalization process was applied. Then, a significant 
percentage of the data was selected as the training data and 
the remainder was taken as the testing data. These processes 
were materialized randomly. Kermani et al. (2005) selected 
their data randomly in a similar way. We then obtained the 
new data set. We trained with the training data using the 
BPNNs learning algorithm. When R2 was approximately 
1, the training was stopped and completed. Next, using the 
testing process, the ANNs method was applied. This means 
that “The expected artificial neural network learned the 
learning algorithm from the training data, so it can test its 
information using the test data.” The data had to provide 
that rule. The obtained outputs were then compared with 
the tested outputs. Consequently, the accuracy percentage 
was calculated.

Different researchers prepared their data using different 
percentages for training and test data. Ursino et al. (2001) 
used 50% of their data as training data and 50% of their data 
as testing data. Gülbağ (2006) used 84% of their data for 
training and 16% as testing data. Yıldırım et al. (2011) used 
25% of their data set as training data and 75% of the data set 
as testing data for their study. Kundu et al. (2012) used 51% 
of their data as training data and 49% as testing data in their 

(1)𝜑(x) =

⎧
⎪
⎨
⎪
⎩

1 if x > 0

0 if x = 0

−1 if x > 0

(2)�(x) = tanh (x)

(3)�(x) =
2

1 + e(−2x)
− 1

Table 1  The variation of determination coefficient values (R2) 
obtained using the ANNs method for the pair of ratio versus com-
plexity parameters that belonged to the Edirne study area versus val-
ues of the number of neurons per data set

Data 
Edrine

Deter-
mination 
coeffi-
cient for 
Nn:5

Deter-
mination 
coeffi-
cient for 
Nn:10

Deter-
mination 
coeffi-
cient for 
Nn:15

Deter-
mination 
coeffi-
cient for 
Nn:20

Deter-
mination 
coefficient 
for Nn:25

E_ALL 0.97 0.99 0.98 0.97 0.97
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study. Yıldırım (2013) selected the data randomly and then 
separated them into two parts. Their training data made up 
70% of all data and the remaining part of the data was testing 
data. Kaftan et al. (2017) selected the data arbitrarily and 
then separated them into two parts, with 85% of all data used 
as training data and 15% of the data used as testing data.

In this study the data were randomly selected from all 
data sets belonging to ERIK, ENEZ and GELI. We arranged 
a common data set called E_ALL and used 70% of all data 
as training data and 30% as testing data (Table 2). The all 
data set consists of 235 seismic events that were recorded in 
the ERIK, ENEZ and GELI. We then separated the E_ALL 
data set into two parts. The number of training data points 
was 165, and the number of test data points was 70 for the 
E_ALL data set (Table 4). 

The ANNs method was applied to a pair of parameters 
ratio versus C for E_ALL data set and then accuracy per-
centage was obtained for it (Table 3).

Further, we applied the k-fold cross-validation technique 
to all of the data (James et al. 2017). Suitable results were 
obtained. All results were obtained using the ANNs method 
in MATLAB (MATLAB 2011).

Results and discussion

Before we applied the LDF and ANNs methods to the data, 
we tried to identify earthquake and quarry blasts accord-
ing to the amplitude of the signal. We observed that the 
P-wave amplitude of quarry blasts is dominant compared to 
the amplitude of earthquakes. The frequency content of the 
events is shown in Fig. 4. We observed the spectral modu-
lation on the quarry blast spectrum. These identification 
methods were not sufficient for satisfactory discrimination 
of earthquakes from quarry blasts. For this reason, different 
pairs of parameters, such as the ratio of the amplitude of the 
maximum S-wave to the amplitude of the maximum P-wave, 
the logarithmic value of the amplitude of the maximum 

S-wave (log S), the ratio of power at two time windows of 
the signal (complexity) and the total duration of the signal 
were used.

The classification of natural and artificial seismic events 
was realized using the linear discriminate function (LDF) 
and the artificial neural networks (ANNs) methods. As a 
result, 81 (54%) of the total studied 150 seismic events were 
determined to be earthquakes and 69 (46%) of them were 
determined to be quarry blasts (Fig. 6).

Ratio versus complexity

The amplitude ratio versus complexity values for the LDF 
and the ANNs methods are plotted in Figs. 7 and 10 for 
E_ALL data set. The results of the classification method 
LDF for pairs of criteria 1 (ratio vs C), 2 (ratio vs log S) and 
3 (ratio vs duration) are given in Table 5 for the E_ALL data 
set. In the first criterion in Table 5, 69 earthquakes out of 80 
were classified correctly and 11 earthquakes were misclassi-
fied as quarry blasts, whereas 155 quarry blasts were classi-
fied correctly. Using LDF method we obtained an accuracy 
percentage of 95% for the E_ALL data set.

After using the LDF method, we discriminated earth-
quakes and quarry blasts with the ANNs method for the 
amplitude ratio and complexity parameters. The number of 
neurons versus the determination coefficient (R2) for ratio 
versus Complexity values are given in Table 1. In this table 
determination coefficient values change between 0.97 and 
0.99. The highest value of the determination coefficient (R2) 
is a very important criteria for decision of the Nn for the pair 
of parameters. We selected the best number of neurons as 
10 in this data set (Table 1). This situation indicates that the 
BPNNs learning algorithm is successful for those param-
eters on that structure of the network architecture. The com-
parison of determination coefficient (R2) values that were 
obtained using the ANNs method for the pair of ratio versus 
complexity parameters in Edirne and the values of the num-
ber of neurons which were increased by 5 between 5 and 25 

Table 2  Features of the data set according to the pair of ratio versus complexity parameters using the ANNs method

Data Edrine Number of all data 
set

Number of training 
set

Number of test set Determination coef-
ficient (R2)

Number of neurons 
(Nn)

Accuracy percentage 
(%) (ANNs)

E_ALL 235 165 70 0.99 10 99

Table 3  Number of events in the training set, test set, misclassified earthquakes and misclassified quarry blasts for the pair of ratio versus com-
plexity parameters according to E_ALL data set using the ANNs method

Criterion Data Edrine Number of all 
data

Number of events 
in training set

Number of events 
in test set

Misclassified 
earthquake (E)

Misclassified 
quarry blast (QB)

Accuracy 
percentage (%) 
(ANNs)

Ratio-C E_ALL 235 165 70 1 0 99
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is given in Table 1. The comparison of determination coef-
ficient versus Nn is not sufficient for the ANN model per-
formance. In order to evaluate the performance of the model 
we obtained the variance account value as 99% (Table 2).

We created test and training data set in Table 2. In this 
study, we used 70% of the total data for training set and 30% 
for testing (Tables 3, 4). The comparison of the two methods 
is shown in Table 6.

Ratio versus log S

The amplitude ratio versus log S values for the LDF method 
are plotted in Fig. 8 for the E_ALL data set. The results of 
the classification method between natural and artificial seis-
mic events using the LDF method for criteria pair 2 (ratio vs 
log S) are given in Table 5 for E_ALL data set. In the second 

criterion in Table 5, 66 earthquakes out of 80 were classified 
correctly and 14 earthquake were misclassified as a quarry 
blast, whereas 155 quarry blasts were classified correctly. 
Using the LDF method we obtained an accuracy percentage 
of 94% for E_ALL data set.

Ratio versus duration of the signal

The amplitude ratio versus duration of the signal for the LDF 
method was plotted in Fig. 9 for E_ALL data set. The results 
of the classification method for natural and artificial seismic 
events using the LDF method for criteria pair 3 (ratio vs 
duration) are given in Table 5 for the E_ALL data set. In 
the third criterion in Table 5, 75 earthquakes out of 80 were 
classified correctly and 5 earthquakes were misclassified as 
a quarry blast, whereas 154 quarry blasts were classified 

Fig. 6  Distribution of earth-
quakes (filled red circles) and 
quarries (filled green stars) 
in the study area. Faults were 
taken from Şaroğlu et al. 
(1992), Emre et al. (2013) and 
Yaltırak et al. (2012). NAFZ: 
North Anatolian Fault Zone
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correctly. Using the LDF method we obtained an accuracy 
percentage of 97% for the E_ALL data set (Fig. 10).  

The LDF method is one of the most popular and suc-
cessful techniques in earth science worldwide for the clas-
sification of natural and artificial seismic events. Horasan 
et al. (2009) obtained accuracy percentage values for pairs 
of parameters (Ratio vs log S) of 98.6%, 93.8%, 97.7% and 
95.8% for Gaziosmanpaşa, Çatalca, Gebze-Hereke, and 
Ömerli, respectively. Yılmaz et al. (2013) determined accu-
racy parameters of 96.3%, 89.3%, 100%, 100%, 96.5%, and 
100% for stations KTUT, ESPY, BAYT, PZAR, GUMT, and 
BCA, respectively, in their study. In their Egypt study, Bad-
awy et al. (2019) obtained lower accuracy percentage values 
(91.7%, 83.7% and 83.2%) than those seen in other countries 
using the S-wave/P-wave amplitude peak ratio, complexity 
and spectral ratio. The accuracy percentage of these param-
eters depends on the quantity of data, geological features, 
and local site effects.

Number of neurons versus determination coefficient val-
ues for ratio and complexity are given in Table 2. In this 
table the highest determination coefficient value is 0.99. This 
situation indicates that the BPNNs learning algorithm was 

successful for these parameters on that structure of the net-
work architecture in the area considered in this study.

According to the results of this study, the number of seis-
mic events recorded at all three stations by using LDF and 
ANNs methods will be investigated for whether the accuracy 
percentage is directly proportional. When we compared the 
accuracy percentage values for LDF and ANNs methods, 
both of these methods are successful but the ANNs method 
is more successful than the LDF method (Table 6). Yıldırım 
et al. (2011) used three methods to distinguish natural and 
artificial seismic events in Istanbul and its vicinity. They 
obtained model success rate of 99% for feed-forward back-
propagation neural networks (FFBPNN), 97% for probabilis-
tic neural networks (PNN) and 96% for adaptive neural fuzzy 
inference systems (ANFIS). These ratios are similar to our 
E_ALL data set results. Hence, we conclude that the quarry 
blasts were discriminated very effectively in this study, and 
this will improve seismic hazard studies of the region. While 
this is true as a generic principle, the main seismic hazard in 
the study region is due to the W segment of North Anatolian 
Fault/NE segment of North Aegean Fault.

Fig. 7  Plot shows the distribution of ratio versus complexity for the 
data set including all stations (E_ALL) in the study area. The accu-
racy percentage obtained is 95% for LDF

Table 4  Number of training and test data sets used for modeling classification status and model accuracy

Criterion Data Edrine Number of all 
data

Training set Test set

Number of 
events in train-
ing set

Earthquake (E) Quarry blast 
(QB)

Number of 
events in test 
set

Earthquake (E) Quarry blast 
(QB)

Ratio-C E_ALL 235 165 60 105 70 24 46

Fig. 8  Plot shows the distribution of ratio versus log S for the data set 
including all stations (E_ALL) in the study area. The accuracy per-
centage obtained is 94% for LDF
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set including all stations (E_ALL) in the study area. The accuracy 
percentage obtained is 97% for LDF

Fig. 10  Plot shows the distribution of ratio versus complexity for the 
data set including all stations (E_ALL) in the study area. The accu-
racy percentage obtained is 99% for ANNs

Table 6  Comparison of the accuracy percentage values for the E_
ALL data set according to the LDF and ANNs methods

Criteria Methods Accuracy (%)

1 LDF 95
ANNs 99
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