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Abstract
Modeling of seismic wave propagation in areas with irregular topography is an important topic in the field of seismic 
exploration. As a popular numerical method for seismic modeling, the finite difference method is nontrivial to consider the 
irregular free surface. There have been extensive studies on the time-domain finite difference simulations with irregular 
topography; however, the frequency-domain finite difference simulation considering irregular topography is relatively less 
studied. The average-derivative approach is an optimal numerical simulation scheme in the frequency domain, which can 
produce accurate modeling results at a relatively low computational cost. Nevertheless, this approach can only deal with 
the modeling problems with a flat free surface. To address this issue, we design a new frequency-domain finite difference 
scheme by introducing the polygonal representation of topography into the average-derivative method. The irregular topog-
raphy is represented by line segments with various slopes. An extension of the conventional average-derivative difference 
operator in the local rotated coordinate system is used for formulating the spatial derivatives aligned with the topographic 
line segments. As a result, new average-derivative difference schemes are obtained for irregular topography. In this way, 
the average-derivative optimal method is generalized to the model with irregular topography. Numerical examples show the 
effectiveness of the presented method.

Keywords Irregular topography · Frequency-domain modeling · Rotated coordinate system · Average-derivative difference 
scheme

Introduction

The surface of the earth is not a flat plane. The irregular 
surface could distort the recorded data significantly. It also 
brings new challenge to seismic exploration. Numerical 
simulations with the surface topography describe more 

realistic seismic wave propagation. Thus, it is critically use-
ful to study a numerical simulation method that considers 
the irregular topography.

To incorporate the irregular topography, the numerical 
methods based on the weak form of wave equation are com-
monly used. For example, Komatitsch and Tromp (1999) 
presented seismic wave field simulation with a relief surface 
by utilizing spectral element method. They discussed dis-
turbance caused by the irregular topography. Finite element 
method and finite volume method are mostly used in the 
frequency domain to study seismic wave propagation with 
irregular topography (Jang et al. 2008; Brossier et al. 2008). 
Another important approach is to use the strong form of 
wave equation, such as the finite difference method. Com-
pared with the finite difference method, the finite element 
method requires high-quality unstructured mesh, which is 
difficult for a complicated near surface. Moreover, the finite 
difference method is relatively cheaper in the aspect of com-
putational cost compared to the finite element method.
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Most of the methods for finite difference modeling with 
irregular topography are developed in the time domain, 
while an implementation in the frequency domain is rela-
tively rare. To implement the irregular topography in the fre-
quency domain, an accurate and stable numerical scheme for 
the frequency-domain elastic-wave equation discretization 
is necessary. Chen and Cao (2016) developed an average-
derivative optimal method for modeling frequency-domain 
2D elastic-wave equation. This method has the advantages of 
memory saving and arbitrary directional sampling intervals, 
which can reduce the computational cost of the frequency-
domain elastic-wave modeling. However, only the flat free 
surface is considered in Chen and Cao (2016). The effects of 
the irregular topography are not considered. We generalize 
the frequency-domain average-derivative optimal method to 
the irregular topography case in this study.

Within the framework of the finite difference method, 
several kinds of ways to represent the irregular topogra-
phy have been developed. A straightforward way is to take 
advantage of segments with different slopes to fit various 
topographies. Ilan (1977) applied this approach to match 
topography and studied propagation features caused by the 
irregular free surface. Jih et al. (1988) improved the method 
by taking transition points between different slope segments 
into account. The whole numerical treatment to the irregu-
lar surface is divided into six kinds of cases. In each case, 
they applied center difference approximation (Alterman and 
Karal 1968) or one-side difference approximation (Alterman 
and Rotenberg 1969) as the boundary condition, and they 
used the standard second-order difference scheme for the 
internal points (Kelly et al. 1976). We adopt this method in 
our paper. Another way is to realize topography mapping by 
coordinate transformation (Tessmer et al. 1992; Hestholm 
and Ruud 1994, 1998, 2002; Tessmer and Kosloff 1994; 
Ruud and Hestholm 2001; Lan and Zhang 2011; Zhang et al. 
2012; Wang et al. 2015). This method projects a rectangle 
grid onto a curved grid and implements numerical calcula-
tions for free surface on the curved grid. To avoid intricate 
coordinate transformation, some researchers proposed to use 
the staircase approximation (Robertsson 1996; Ohminato 
and Chouet 1997; Hayashi et al. 2001). The irregular sur-
face is represented by rectangle grids directly in this method. 
The implementation for the irregular free-surface boundary 
condition is an extension of the treatment for horizontal free 
surface. This method is suitable for arbitrary topography. 
However, the scattered noise occurs because of staircase-
shaped discretization, which can be eliminated by an over-
sampled grid.

In our paper, we design a new frequency-domain finite 
difference scheme to implement the polygonal topography. 
This method is a generalization of the conventional average-
derivative method proposed with a flat free surface (Chen 
and Cao 2016). We use a local rotated coordinate method 

to generalize the conventional average-derivative difference 
operators into the rotated coordinate system aligned with the 
irregular free surface. The local rotated coordinate method 
is presented by Jih et al. (1988) in the time domain. We 
classify the implementation of the irregular free surface into 
nine cases. New average-derivative schemes are presented 
for the irregular topography. These new schemes generalize 
the conventional average-derivative method to models with 
irregular topography easily.

In the following section, we present the theory of our 
method. This is followed by derivation of the new numerical 
schemes at the irregular free surface. We analyze the effec-
tiveness through a simple model test. The influences on the 
structure of impedance matrix are also examined. Finally, we 
provide some complex numerical examples to demonstrate 
the feasibility of our new method.

Theory

Modeling with irregular free surface

We consider the first-order elastic-wave equation in fre-
quency domain

where � is the density, � denotes the angular frequency, � 
and � are Lamé parameters, u and w represent components of 
displacements in horizontal and vertical directions, respec-
tively, �xx and �zz are normal stress components, and �xz and 
�zx are shear stress components.

Eliminating the stress components in the first two equa-
tions by inserting the last three expressions of Eq. (1) into 
the first two equations, we obtain the elastic-wave equation 
in terms of displacements

Here, we replace � + 2� by �.
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To perform seismic numerical modeling in the presence 
of topography, we deal with the internal model and the irreg-
ular free surface, respectively. For the internal model, we 
use the conventional average-derivative method to discretize 
Eq. (2) and obtain a 9-point scheme (Chen and Cao 2016).

Except for the free surface, the remaining three bounda-
ries are handled with perfectly matched layer (PML) bound-
ary conditions. To fill into the “finite-difference star” pro-
posed by Pratt (1990), the 9-point scheme in Chen and Cao 
(2016) was simplified into

The  express ions  fo r  ci, d̃i(i = 1, 2,… , 9) and 
dj, c̃j(j = 1, 2, 3, 4) can be found in Chen and Cao (2016).

To obtain new numerical schemes at the irregular free 
surface, we use the local rotated coordinate method pre-
sented by Jih et al. (1988). We develop this approach in the 
frequency domain (see “Appendix 1”). For the convenience 
of subsequent derivations of the new numerical scheme on 
the free surface, we summarize numerical treatments to 
the irregular free surface which are carried out by Jih et al. 
(1988) in time domain. In order to expound the main idea 
of our theory clearly, we use a free surface with a 45° slope 
(Fig. 1). The new scheme derived at this simple polygonal-
shaped free surface can be generalized to more complex 
irregular topographies easily.

(3)⎧
⎪⎪⎪⎨⎪⎪⎪⎩

c1ur−1,s−1 + c2ur,s−1 + c3ur+1,s−1 + c4ur−1,s + c5ur,s + c6ur+1,s + c7ur−1,s+1 + c8ur,s+1

+c9ur+1,s+1 + d1wr−1,s−1 + d2wr+1,s−1 + d3wr−1,s+1 + d4wr+1,s+1 = 0,

d̃1wr−1,s−1 + d̃2wr,s−1 + d̃3wr+1,s−1 + d̃4wr−1,s + d̃5wr,s + d̃6wr+1,s + d̃7wr−1,s+1 + d̃8wr,s+1

+d̃9wr+1,s+1 + c̃1ur−1,s−1 + c̃2ur+1,s−1 + c̃3ur−1,s+1 + c̃4ur+1,s+1 = 0.

Fig. 1  Structure of the irregular free surface

Fig. 2  Simulation points and discrete grid points used for the first 
case. Here, red points are the simulation points, blue points are dis-
crete grid points used by the new average-derivative scheme, and 
points with dashed line on the fiction line are discrete grid points 
used by the conventional average-derivative scheme

The key point of our method is designing new average-
derivative difference schemes aligned with the irregular 
free surface by a local rotated coordinate method. Using 
our new numerical schemes, the elastic-wave modeling for 
irregular topography can be implemented in the frequency 
domain.

The numerical schemes on the slope surface are derived 
by a combination of the average-derivative method and the 
local rotated coordinate method. These numerical schemes 
differ in the number and distribution of the discrete grid 

points involved. Therefore, the guideline on determining 
different cases is the number and distribution of the dis-
crete grid points involved. By checking all the points along 
the slope surface, we have found 9 cases in which the num-
ber and distribution of the discrete grid points involved 
differ from each other.

Here, we derive the new numerical schemes in these 
nine cases, respectively.

(1) Case 1
According to Fig. 2, the first case contains points on the 
left of point 1 and the right of point 2 on the free surface. 
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Point 1 and point 2 are also involved. Based on the con-
ventional average-derivative approach, nine points should 
be used to discrete the elastic-wave equation. However, 
three of them are outside the model according to Fig. 2. 
The numerical expressions for these three points are intro-
duced in “Appendix 1.” The average-derivative difference 
operators are changed. The new average-derivative differ-
ence scheme on the irregular free surface for this case can 
be derived. To fit the “star” proposed by Pratt (1990), we 
can simplify the new numerical scheme into the following 
expressions:

where cij, d̃ij and dij, c̃ij(i = 1, j = 1, 2,… , 10) are the 
coefficients.

Discrete grid points used by our new numerical scheme 
are shown in Fig. 2, which are blue and red points. In order 
to describe the difference between the new and the con-
ventional average-derivative difference scheme, we sim-
plify the coefficients of the new difference scheme. Here, 
we observe that new coefficients consist of the coefficients 
ci, d̃i(i = 1, 2,… , 9) and dj, c̃j(j = 1, 2, 3, 4) of the conven-
tional average-derivative difference scheme. Expressions for 
new coefficients are

(4)
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where Δx and Δz denote spacing intervals.
Here, we have

where cx and cz are the coefficients in Operto et al. (2007); 
Lx and Lz are thickness along x- and z-direction. On the free 
surface, we have Sz = 1.

(2) Case 2
The simulation point in the second case is on the left of the 
flat-to-slope transition point (Fig. 3). According to the 9-point 
scheme, three points are on the fiction line. The numerical 
expressions at these points are given in “Appendix 1.” The 
average-derivative difference operators are changed. We derive 
the new average-derivative scheme. Discrete grid points used 
by our scheme are shown in Fig. 3. They are denoted by blue 
and red points. We can rewrite the new numerical scheme as 
follows:

where
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Fig. 3  Simulation point and discrete grid points used for the second 
case
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and
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(3) Case 3
The simulation point in the third case is the red point in 
Fig. 4. It is on the right of the slope-to-flat transition point. 
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Fig. 4  Simulation point and discrete grid points used for the third 
case



1393Acta Geophysica (2020) 68:1387–1409 

1 3

Three discrete grid points are located on the fiction line 
when using the conventional average-derivative scheme. 
We derive the new average-derivative scheme using the 
numerical expressions at these three points given in 
“Appendix 1.” Discrete grid points used by our scheme are 
shown in Fig. 4 (blue and red points). The new numerical 
scheme for this case can be simplified as follows:

where

and

(15)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c31ur−2,s+1 + c32ur−1,s + c33ur−1,s+1 + c34ur,s
+c35ur,s+1 + c36ur+1,s + c37ur+1,s+1 + c38ur+2,s
+d31wr−2,s+1 + d32wr−1,s + d33wr−1,s+1 + d34wr,s

+d35wr,s+1 + d36wr+1,s + d37wr+1,s+1 + d38wr+2,s = 0,

d̃31wr−2,s+1 + d̃32wr−1,s + d̃33wr−1,s+1 + d̃34wr,s

+d̃35wr,s+1 + d̃36wr+1,s + d̃37wr+1,s+1 + d̃38wr+2,s

+c̃31ur−2,s+1 + c̃32ur−1,s + c̃33ur−1,s+1 + c̃34ur,s
+c̃35ur,s+1 + c̃36ur+1,s + c̃37ur+1,s+1 + c̃38ur+2,s = 0,

(16)

c31 = c1
1

2
(1 − �11)

1

2

�r−2,s

�r−2,s
− d1

1

2

�r−1,s−1

�r−1,s−1

[
�11 + (1 − �11)

(
1 − ��

0

)]
,

c32 = c1

[
(1 − �00) −

1

2
�11

�r,s

�r,s

Δz

2Δx
−

1

2
(1 − �11)

1

2

�r−2,s

�r−2,s

]

+ c4 − d1
1

2

�r−1,s−1

�r−1,s−1
(1 − �11)�

�
0
,

c33 = c7,

c34 = c1�00 + c2 + c5 + d1
1

2

�r−1,s−1

�r−1,s−1
− d2

�r+1,s

�r+1,s

Δz

2Δx
,

c35 = c8,

c36 = c1
1

2
�11

�r,s

�r,s

Δz

2Δx
+ c3 + c6,

c37 = c9,

c38 = d2
�r+1,s

�r+1,s

Δz

2Δx
,

(17)

d31 = −c1
1

2

[
�11 + (1 − �11)

(
1 − ��

0

)]
+ d1

1

2

�r−1,s−1

�r−1,s−1
(1 − �11)

1

2
,

d32 = −c1
1

2
(1 − �11)�

�
0
− c2

Δz

2Δx

+ d1

[
(1 − �00) −

1

2

�r−1,s−1

�r−1,s−1
�11

Δz

2Δx
−

1

2

�r−1,s−1

�r−1,s−1
(1 − �11)

1

2

]
,

d33 = d3,

d34 = c1
1

2
− c3

Δz

2Δx
+ d1�00,

d35 = 0,

d36 = c2
Δz

2Δx
+ d1

1

2

�r−1,s−1

�r−1,s−1
�11

Δz

2Δx
+ d2,

d37 = d4,

d38 = c3
Δz

2Δx
,

(4) Case 4
The simulation point in the fourth case is the flat-to-slope tran-
sition point in Fig. 5. According to the conventional average-
derivative approach, there are two discrete grid points outside 
the model. Based on the numerical expressions at these two 
points given in “Appendix 1”, the new average-derivative 
scheme is derived. Blue and red points in Fig. 5 are the dis-
crete grid points used by our new scheme. We simplify the new 
numerical scheme by

(18)

c̃31 = −d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
[𝜀11 + (1 − 𝜀11)(1 − 𝜀�

0
)] + c̃1

1

2
(1 − 𝜀11)

1

2

𝜆r−2,s

𝜂r−2,s
,

c̃32 = −d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
(1 − 𝜀11)𝜀

�
0
− d̃2

𝜆r,s

𝜂r,s

Δz

2Δx

+ c̃1

[
(1 − 𝜀00) −

1

2
𝜀11

𝜆r,s

𝜂r,s

Δz

2Δx
−

1

2
(1 − 𝜀11)

1

2

𝜆r−2,s

𝜂r−2,s

]
,

c̃33 = c̃3,

c̃34 = d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
− d̃3

𝜆r+1,s

𝜂r+1,s

Δz

2Δx
+ c̃1𝜀00,

c̃35 = 0,

c̃36 = d̃2
𝜆r,s

𝜂r,s

Δz

2Δx
+ c̃1

1

2
𝜀11

𝜆r,s

𝜂r,s

Δz

2Δx
+ c̃2,

c̃37 = c̃4,

c̃38 = d̃3
𝜆r+1,s

𝜂r+1,s

Δz

2Δx
,

(19)

d̃31 = d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
(1 − 𝜀11)

1

2
− c̃1

1

2

[
𝜀11 + (1 − 𝜀11)

(
1 − 𝜀�

0

)]
,

d̃32 = d̃1

[
(1 − 𝜀00) −

1

2

𝜆r−1,s−1

𝜂r−1,s−1
𝜀11

Δz

2Δx
−

1

2

𝜆r−1,s−1

𝜂r−1,s−1
(1 − 𝜀11)

1

2

]

+ d̃4 − c̃1
1

2
(1 − 𝜀11)𝜀

�
0
,

d̃33 = d̃7,

d̃34 = d̃1𝜀00 + d̃2 + d̃5 + c̃1
1

2
− c̃2

Δz

2Δx
,

d̃35 = d̃8,

d̃36 = d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
𝜀11

Δz

2Δx
+ d̃3 + d̃6,

d̃37 = d̃9,

d̃38 = c̃2
Δz

2Δx
.

(20)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c41ur−2,s + c42ur−1,s + c43ur−1,s+1 + c44ur,s + c45ur,s+1
+c46ur+1,s−1 + c47ur+1,s + c48ur+1,s+1 + c49ur+2,s−2 + d41wr−2,s

+d42wr−1,s + d43wr−1,s+1 + d44wr,s + d45wr,s+1 + d46wr+1,s−1

+d47wr+1,s + d48wr+1,s+1 + d49wr+2,s−2 = 0,

d̃41wr−2,s + d̃42wr−1,s + d̃43wr−1,s+1 + d̃44wr,s + d̃45wr,s+1

+d̃46wr+1,s−1 + d̃47wr+1,s + d̃48wr+1,s+1 + d̃49wr+2,s−2 + c̃41ur−2,s
+c̃42ur−1,s + c̃43ur−1,s+1 + c̃44ur,s + c̃45ur,s+1 + c̃46ur+1,s−1
+c̃47ur+1,s + c̃48ur+1,s+1 + c̃49ur+2,s−2 = 0,
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where

(21)

c41 = c2
1

2
(1 − �1)

�r−1,s

�r−1,s

Δz

2Δx
− d1

�r−1,s

�r−1,s

Δz

2Δx
,

c42 = c1 + c4,

c43 = c7,

c44 = c2

[
(1 − �0) −

1

2
(1 − �1)

�r−1,s

�r−1,s

Δz

2Δx

]
+ c5 + d1

�r−1,s

�r−1,s

Δz

2Δx
,

c45 = c8,

c46 = −c2
1

2
�1

1

2

�r+1,s−2

�r+1,s−2
+ c3,

c47 = c2�0 + c6,

c48 = c9,

c49 = c2
1

2
�1

1

2

�r+1,s−2

�r+1,s−2
,

(22)

d41 = −c1
Δz

2Δx
,

d42 = −c2
1

2
+ d1,

d43 = d3,

d44 = c1
Δz

2Δx
,

d45 = 0,

d46 = c2
1

2

(
1 − �1�

�
0

)
+ d2,

d47 = 0,

d48 = d4,

d49 = c2
1

2
�1�

�
0
,

and

(5) Case 5
The simulation point in the fifth case is the slope-to-flat 
transition point in Fig.  6. Four discrete grid points are 
located outside the model when using the 9-point scheme. 
The numerical expressions at these points are introduced in 
“Appendix 1.” The average-derivative difference operators 
are changed. We derive the new average-derivative scheme. 
Discrete grid points are the blue and red points in Fig. 6. We 
simplify the new numerical scheme by

(23)

c̃41 = −d̃1
𝜆r−1,s

𝜂r−1,s

Δz

2Δx
,

c̃42 = −d̃2
1

2

𝜆r,s−1

𝜂r,s−1
+ c̃1,

c̃43 = c̃3,

c̃44 = d̃1
𝜆r−1,s

𝜂r−1,s

Δz

2Δx
,

c̃45 = 0,

c̃46 = d̃2
1

2

𝜆r,s−1

𝜂r,s−1

(
1 − 𝜀1𝜀

�
0

)
+ c̃2,

c̃47 = 0,

c̃48 = c̃4,

c̃49 = d̃2
1

2

𝜆r,s−1

𝜂r,s−1
𝜀1𝜀

�
0
,

(24)

d̃41 = d̃2
1

2

𝜆r,s−1

𝜂r,s−1
(1 − 𝜀1)

Δz

2Δx
− c̃1

Δz

2Δx
,

d̃42 = d̃1 + d̃4,

d̃43 = d̃7,

d̃44 = d̃2

[
(1 − 𝜀0) −

1

2

𝜆r,s−1

𝜂r,s−1
(1 − 𝜀1)

Δz

2Δx

]
+ d̃5 + c̃1

Δz

2Δx
,

d̃45 = d̃8,

d̃46 = −d̃2
1

2

𝜆r,s−1

𝜂r,s−1
𝜀1

1

2
+ d̃3,

d̃47 = d̃2𝜀0 + d̃6,

d̃48 = d̃9,

d̃49 = d̃2
1

2

𝜆r,s−1

𝜂r,s−1
𝜀1

1

2
.

Fig. 5  Simulation point and discrete grid points used for the fourth 
case
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where

(25)
⎧⎪⎨⎪⎩

c51ur−1,s+1 + c52ur,s + c53ur,s+1 + c54ur+1,s + c55ur+1,s+1 + c56ur+2,s
+d51wr−1,s+1 + d52wr,s + d53wr,s+1 + d54wr+1,s + d55wr+1,s+1 + d56wr+2,s = 0,

d̃51wr−1,s+1 + d̃52wr,s + d̃53wr,s+1 + d̃54wr+1,s + d̃55wr+1,s+1 + d̃56wr+2,s

+c̃51ur−1,s+1 + c̃52ur,s + c̃53ur,s+1 + c̃54ur+1,s + c̃55ur+1,s+1 + c̃56ur+2,s = 0,

(26)

c51 = c2
1

2
(1 − �11)

1

2

�r−1,s

�r−1,s
+ c4

(
1 − ��

0

)
+ c7 − d1

1

2

�r−1,s−1

�r−1,s−1
,

c52 = c1

[
1 −

1

2

�r+1,s

�r+1,s

Δz

2Δx

]
+ c4�

�
0
+ c5 − d2

�r+1,s

�r+1,s

Δz

2Δx

+ c2

[
(1 − �00) −

1

2
�11

�r+1,s

�r+1,s

Δz

2Δx
−

1

2
(1 − �11)

1

2

�r−1,s

�r−1,s

]
,

c53 = c8,

c54 = c2�00 + c3 + c6 + d1
1

2

�r−1,s−1

�r−1,s−1
,

c55 = c9,

c56 = c1
1

2

�r+1,s

�r+1,s

Δz

2Δx
+ c2

1

2
�11

�r+1,s

�r+1,s

Δz

2Δx
+ d2

�r+1,s

�r+1,s

Δz

2Δx
,

and

(27)

d51 = −c1
1

2
− c4

1

2
+ d3

− c2
1

2

[
�11 + (1 − �11)

(
1 − ��

0

)]
,

d52 = −c2
1

2
(1 − �11)�

�
0
− c3

Δz

2Δx

+ c4
1

2
+ d1

[
1 −

1

2

�r−1,s−1

�r−1,s−1

Δz

2Δx

]
,

d53 = 0,

d54 = c1
1

2
+ c2

1

2
+ d2,

d55 = d4,

d56 = c3
Δz

2Δx
+ d1

1

2

�r−1,s−1

�r−1,s−1

Δz

2Δx
,

(28)

c̃51 = −d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
− d̃4

1

2

𝜆r−1,s

𝜂r−1,s
+ c̃3

− d̃2
1

2

𝜆r,s−1

𝜂r,s−1

[
𝜀11 + (1 − 𝜀11)

(
1 − 𝜀�

0

)]
,

c̃52 = −d̃2
1

2

𝜆r,s−1

𝜂r,s−1
(1 − 𝜀11)𝜀

�
0
− d̃3

𝜆r+1,s

𝜂r+1,s

Δz

2Δx

+ d̃4
1

2

𝜆r−1,s

𝜂r−1,s
+ c̃1

[
1 −

1

2

𝜆r+1,s

𝜂r+1,s

Δz

2Δx

]
,

c̃53 = 0,

c̃54 = d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
+ d̃2

1

2

𝜆r,s−1

𝜂r,s−1
+ c̃2,

c̃55 = c̃4,

c̃56 = d̃3
𝜆r+1,s

𝜂r+1,s

Δz

2Δx
+ c̃1

1

2

𝜆r+1,s

𝜂r+1,s

Δz

2Δx
,

Fig. 6  Simulation point and discrete grid points used for the fifth case
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(6) Case 6
The simulation point in the sixth case is the point on the 
right of the flat-to-slope transition point in Fig. 7. Accord-
ing to the 9-point scheme, one discrete grid point is located 
on the fiction line. The numerical expression at this point is 
given in “Appendix 1.” Referring to this numerical expres-
sion, we derive the new average-derivative scheme. Discrete 
grid points are the blue and red points in Fig. 7. We simplify 
the new numerical scheme by

(29)

d̃51 = d̃2
1

2

𝜆r,s−1

𝜂r,s−1
(1 − 𝜀11)

1

2
+ d̃4(1 − 𝜀�

0
) + d̃7 − c̃1

1

2
,

d̃52 = d̃1

[
1 −

1

2

𝜆r−1,s−1

𝜂r−1,s−1

Δz

2Δx

]
+ d̃4𝜀

�
0
+ d̃5 − c̃2

Δz

2Δx

+ d̃2

[
(1 − 𝜀00) −

1

2

𝜆r,s−1

𝜂r,s−1
𝜀11

Δz

2Δx
−

1

2

𝜆r,s−1

𝜂r,s−1
(1 − 𝜀11)

1

2

]
,

d̃53 = d̃8,

d̃54 = d̃2𝜀00 + d̃3 + d̃6 + c̃1
1

2
,

d̃55 = d̃9,

d̃56 = d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1

Δz

2Δx
+ d̃2

1

2

𝜆r,s−1

𝜂r,s−1
𝜀11

Δz

2Δx
+ c̃2

Δz

2Δx
.

(30)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c61ur−3,s + c62ur−2,s + c63ur−1,s + c64ur−1,s+1 + c65ur,s−1 + c66ur,s
+c67ur,s+1 + c68ur+1,s−2 + c69ur+1,s−1 + c610ur+1,s + c611ur+1,s+1
+d61wr−3,s + d62wr−2,s + d63wr−1,s + d64wr−1,s+1 + d65wr,s−1 + d66wr,s

+d67wr,s+1 + d68wr+1,s−2 + d69wr+1,s−1 + d610wr+1,s + d611wr+1,s+1 = 0,

d̃61wr−3,s + d̃62wr−2,s + d̃63wr−1,s + d̃64wr−1,s+1 + d̃65wr,s−1 + d̃66wr,s

+d̃67wr,s+1 + d̃68wr+1,s−2 + d̃69wr+1,s−1 + d̃610wr+1,s + d̃611wr+1,s+1

+c̃61ur−3,s + c̃62ur−2,s + c̃63ur−1,s + c̃64ur−1,s+1 + c̃65ur,s−1 + c̃66ur,s
+c̃67ur,s+1 + c̃68ur+1,s−2 + c̃69ur+1,s−1 + c̃610ur+1,s + c̃611ur+1,s+1 = 0,

where

and

(31)

c61 = c1
1

2
(1 − �1)

�r−2,s

�r−2,s

Δz

2Δx
,

c62 = −d1
1

2

�r−1,s−1

�r−1,s−1
,

c63 = c1

[
(1 − �0) −

1

2
(1 − �1)

�r−2,s

�r−2,s

Δz

2Δx

]
+ c4,

c64 = c7,

c65 = −c1
1

2
�1

1

2

�r,s−2

�r,s−2
+ c2 + d1

1

2

�r−1,s−1

�r−1,s−1

(
1 − �1�

�
0

)
,

c66 = c1�0 + c5,

c67 = c8,

c68 = c1
1

2
�1

1

2

�r,s−2

�r,s−2
+ d1

1

2

�r−1,s−1

�r−1,s−1
�1�

�
0
,

c69 = c3,

c610 = c6,

c611 = c9,

(32)

d61 = d1
1

2

�r−1,s−1

�r−1,s−1
(1 − �1)

Δz

2Δx
,

d62 = −c1
1

2
,

d63 = d1

[
(1 − �0) −

1

2

�r−1,s−1

�r−1,s−1
(1 − �1)

Δz

2Δx

]
,

d64 = d3,

d65 = c1
1

2
(1 − �1�

�
0
) − d1

1

2

�r−1,s−1

�r−1,s−1
�1

1

2
,

d66 = d1�0,

d67 = 0,

d68 = c1
1

2
�1�

�
0
+ d1

1

2

�r−1,s−1

�r−1,s−1
�1

1

2
,

d69 = d2,

d610 = 0,

d611 = d4,

Fig. 7  Simulation point and discrete grid points used for the sixth 
case
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(33)

c̃61 = c̃1
1

2
(1 − 𝜀1)

𝜆r−2,s

𝜂r−2,s

Δz

2Δx
,

c̃62 = −d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
,

c̃63 = c̃1

[
(1 − 𝜀0) −

1

2
(1 − 𝜀1)

𝜆r−2,s

𝜂r−2,s

Δz

2Δx

]
,

c̃64 = c̃3,

c̃65 = d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1

(
1 − 𝜀1𝜀

�
0

)
− c̃1

1

2
𝜀1

1

2

𝜆r,s−2

𝜂r,s−2
,

c̃66 = c̃1𝜀0,

c̃67 = 0,

c̃68 = d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
𝜀1𝜀

�
0
+ c̃1

1

2
𝜀1

1

2

𝜆r,s−2

𝜂r,s−2
,

c̃69 = c̃2,

c̃610 = 0,

c̃611 = c̃4,

(7) Case 7
The simulation points in the seventh case are the red points 
under the slope in Fig. 8. If we use the conventional aver-
age-derivative scheme, one discrete grid point is located 
on the fiction line. The numerical expression at this point 
is given in “Appendix 1.” The average-derivative differ-
ence operators are changed. We derive the new average-
derivative scheme. Discrete grid points used by the new 
scheme are shown in Fig. 8 (the blue and red points). We 
simplify the new numerical scheme by

where

(34)

d̃61 = d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
(1 − 𝜀1)

Δz

2Δx
,

d̃62 = −c̃1
1

2
,

d̃63 = d̃1

[
(1 − 𝜀0) −

1

2

𝜆r−1,s−1

𝜂r−1,s−1
(1 − 𝜀1)

Δz

2Δx

]
+ d̃4,

d̃64 = d̃7,

d̃65 = −d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
𝜀1

1

2
+ d̃2 + c̃1

1

2

(
1 − 𝜀1𝜀

�
0

)
,

d̃66 = d̃1𝜀0 + d̃5,

d̃67 = d̃8,

d̃68 = d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
𝜀1

1

2
+ c̃1

1

2
𝜀1𝜀

�
0
,

d̃69 = d̃3,

d̃610 = d̃6,

d̃611 = d̃9.

(35)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c71ur−1,s + c72ur−1,s+1 + c73ur,s−1 + c74ur,s
+c75ur,s+1 + c76ur+1,s−1 + c77ur+1,s + c78ur+1,s+1
+d71wr−1,s + d72wr−1,s+1 + d73wr,s−1 + d74wr,s

+d75wr,s+1 + d76wr+1,s−1 + d77wr+1,s + d78wr+1,s+1 = 0,

d̃71wr−1,s + d̃72wr−1,s+1 + d̃73wr,s−1 + d̃74wr,s

+d̃75wr,s+1 + d̃76wr+1,s−1 + d̃77wr+1,s + d̃78wr+1,s+1

+c̃71ur−1,s + c̃72ur−1,s+1 + c̃73ur,s−1 + c̃74ur,s
+c̃75ur,s+1 + c̃76ur+1,s−1 + c̃77ur+1,s + c̃78ur+1,s+1 = 0,Fig. 8  Simulation points and discrete grid points used for the seventh 

case
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and

(36)

c71 = c1
(
1 − ��

0

)
+ c4 − d1

1

2

�r−1,s−1

�r−1,s−1
,

c72 = c7,

c73 = c1�
�
0
+ c2 + d1

1

2

�r−1,s−1

�r−1,s−1
,

c74 = c5,

c75 = c8,

c76 = c3,

c77 = c6,

c78 = c9,

(37)

d71 = −c1
1

2
+ d1

(
1 − ��

0

)
,

d72 = d3,

d73 = c1
1

2
+ d1�

�
0
,

d74 = 0,

d75 = 0,

d76 = d2,

d77 = 0,

d78 = d4,

(8) Case 8
The simulation point in the eighth case is the point on the 
slope which is next to the flat-to-slope transition point 
(Fig. 9). Three discrete grid points are outside the model 
when using the 9-point scheme. The numerical expressions 
at these points are given in “Appendix 1.” We derive the new 
average-derivative scheme by these numerical expressions. 
Discrete grid points used by the new scheme are shown in 
Fig. 9 (the blue and red points). We simplify the new numer-
ical scheme by

where

(38)

c̃71 = −d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
+ c̃1

(
1 − 𝜀�

0

)
,

c̃72 = c̃3,

c̃73 = d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
+ c̃1𝜀

�
0
,

c̃74 = 0,

c̃75 = 0,

c̃76 = c̃2,

c̃77 = 0,

c̃78 = c̃4,

(39)

d̃71 = d̃1
(
1 − 𝜀�

0

)
+ d̃4 − c̃1

1

2
,

d̃72 = d̃7,

d̃73 = d̃1𝜀
�
0
+ d̃2 + c̃1

1

2
,

d̃74 = d̃5,

d̃75 = d̃8,

d̃76 = d̃3,

d̃77 = d̃6,

d̃78 = d̃9.

(40)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c81ur−3,s+1 + c82ur−2,s+1 + c83ur−1,s+1 + c84ur,s
+c85ur,s+1 + c86ur+1,s−1 + c87ur+1,s + c88ur+1,s+1
+d81wr−3,s+1 + d82wr−2,s+1 + d83wr−1,s+1 + d84wr,s

+d85wr,s+1 + d86wr+1,s−1 + d87wr+1,s + d88wr+1,s+1 = 0,

d̃81wr−3,s+1 + d̃82wr−2,s+1 + d̃83wr−1,s+1 + d̃84wr,s

+d̃85wr,s+1 + d̃86wr+1,s−1 + d̃87wr+1,s + d̃88wr+1,s+1

+c̃81ur−3,s+1 + c̃82ur−2,s+1 + c̃83ur−1,s+1 + c̃84ur,s
+c̃85ur,s+1 + c̃86ur+1,s−1 + c̃87ur+1,s + c̃88ur+1,s+1 = 0,

Fig. 9  Simulation point and discrete grid points used for the eighth 
case
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(41)

c81 = c4
1

2
(1 − �1)

�r−2,s+1

�r−2,s+1

Δz

2Δx
,

c82 = 0,

c83 = c4

[
(1 − �0) −

1

2
(1 − �1)

�r−2,s+1

�r−2,s+1

Δz

2Δx

]
+ c7 − d1

1

2

�r−1,s−1

�r−1,s−1
,

c84 = c1 + c2(1 − ��
0
) − c4

1

2
�1

1

2

�r,s−1

�r,s−1
+ c5,

c85 = c4�0 + c8,

c86 = c2�
�
0
+ c3 + c4

1

2
�1

1

2

�r,s−1

�r,s−1
+ d1

1

2

�r−1,s−1

�r−1,s−1
,

c87 = c6,

c88 = c9,

(42)

d81 = 0,

d82 = −c4
1

2
,

d83 = −c1
1

2
+ d3,

d84 = −c2
1

2
+ c4

1

2

(
1 − �1�

�
0

)
+ d1,

d85 = 0,

d86 = c1
1

2
+ c2

1

2
+ c4

1

2
�1�

�
0
+ d2,

d87 = 0,

d88 = d4,

and

(9) Case 9
The simulation points in the ninth case are points on the 
slope in Fig. 10. There are three discrete grid points outside 
the model when using the 9-point scheme. The numerical 
expressions at these points are introduced in “Appendix 1.” 
With these numerical expressions, we derive the new aver-
age-derivative scheme. The average-derivative difference 
operators are changed. Discrete grid points we used are 
shown in Fig. 10 (the blue and red points). We simplify the 
new numerical scheme by

(43)

c̃81 = 0,

c̃82 = −d̃4
1

2

𝜆r−1,s

𝜂r−1,s
,

c̃83 = −d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
+ c̃3,

c̃84 = −d̃2
1

2

𝜆r,s−1

𝜂r,s−1
+ d̃4

1

2

𝜆r−1,s

𝜂r−1,s

(
1 − 𝜀1𝜀

�
0

)
+ c̃1,

c̃85 = 0,

c̃86 = d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
+ d̃2

1

2

𝜆r,s−1

𝜂r,s−1
+ d̃4

1

2

𝜆r−1,s

𝜂r−1,s
𝜀1𝜀

�
0
+ c̃2,

c̃87 = 0,

c̃88 = c̃4,

(44)

d̃81 = d̃4
1

2

𝜆r−1,s

𝜂r−1,s
(1 − 𝜀1)

Δz

2Δx
,

d̃82 = 0,

d̃83 = d̃4

[
(1 − 𝜀0) −

1

2

𝜆r−1,s

𝜂r−1,s
(1 − 𝜀1)

Δz

2Δx

]
+ d̃7 − c̃1

1

2
,

d̃84 = d̃1 + d̃2
(
1 − 𝜀�

0

)
− d̃4

1

2

𝜆r−1,s

𝜂r−1,s
𝜀1

1

2
+ d̃5,

d̃85 = d̃4𝜀0 + d̃8,

d̃86 = d̃2𝜀
�
0
+ d̃3 + d̃4

1

2

𝜆r−1,s

𝜂r−1,s
𝜀1

1

2
+ c̃1

1

2
,

d̃87 = d̃6,

d̃88 = d̃9.

(45)
⎧⎪⎨⎪⎩

c91ur−1,s+1 + c92ur,s + c93ur,s+1 + c94ur+1,s−1 + c95ur+1,s + c96ur+1,s+1
+d91wr−1,s+1 + d92wr,s + d93wr,s+1 + d94wr+1,s−1 + d95wr+1,s + d96wr+1,s+1 = 0,

d̃91wr−1,s+1 + d̃92wr,s + d̃93wr,s+1 + d̃94wr+1,s−1 + d̃95wr+1,s + d̃96wr+1,s+1

+c̃91ur−1,s+1 + c̃92ur,s + c̃93ur,s+1 + c̃94ur+1,s−1 + c̃95ur+1,s + c̃96ur+1,s+1 = 0,

Fig. 10  Simulation points and discrete grid points used for the ninth 
case
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where

and

(46)

c91 = c4
(
1 − ��

0

)
+ c7 − d1

1

2

�r−1,s−1

�r−1,s−1
,

c92 = c1 + c2
(
1 − ��

0

)
+ c4�

�
0
+ c5,

c93 = c8,

c94 = c2�
�
0
+ c3 + d1

1

2

�r−1,s−1

�r−1,s−1
,

c95 = c6,

c96 = c9,

(47)

d91 = −c1
1

2
− c4

1

2
+ d3,

d92 = −c2
1

2
+ c4

1

2
+ d1,

d93 = 0,

d94 = c1
1

2
+ c2

1

2
+ d2,

d95 = 0,

d96 = d4,

(48)

c̃91 = −d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
− d̃4

1

2

𝜆r−1,s

𝜂r−1,s
+ c̃3,

c̃92 = −d̃2
1

2

𝜆r,s−1

𝜂r,s−1
+ d̃4

1

2

𝜆r−1,s

𝜂r−1,s
+ c̃1,

c̃93 = 0,

c̃94 = d̃1
1

2

𝜆r−1,s−1

𝜂r−1,s−1
+ d̃2

1

2

𝜆r,s−1

𝜂r,s−1
+ c̃2,

c̃95 = 0,

c̃96 = c̃4,

Fig. 11  A 2D homogeneous model with a slope free surface. Inverted 
triangles on the free surface represent the receivers R1 and R2

Fig. 12  Elastic wave field at frequency 19.1 Hz. a Horizontal compo-
nent and b vertical component
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Feasibility analysis

To test the feasibility of our method, we design a model 
with a simple irregular free surface. There is a 45° slope 
on the free surface. The dimensions of the model are 

(49)

d̃91 = d̃4
(
1 − 𝜀�

0

)
+ d̃7 − c̃1

1

2
,

d̃92 = d̃1 + d̃2
(
1 − 𝜀�

0

)
+ d̃4𝜀

�
0
+ d̃5,

d̃93 = d̃8,

d̃94 = d̃2𝜀
�
0
+ d̃3 + c̃1

1

2
,

d̃95 = d̃6,

d̃96 = d̃9.

2.5 km × 2.0 km with the grid spacing of ∆x = ∆z = 2.5 m. 
The two transition points of the free surface are at (0.3 km, 
1.25 km) and (0 km, 1.55 km), respectively. Two flats are 
located at depth 0.3 km and 0 km, respectively (Fig. 11). 
Except for the free surface, the remaining three bounda-
ries are handled with the PML boundary conditions. The 
velocities of the P-wave and S-wave are 3500 m/s, and 
2020.7 m/s, respectively. We use a density of 2000 kg/m3 
and a Poisson ratio of 0.25. Here, we use a point source 
applied to the vertical displacement at (0.4 km, 1.75 km). 
The source function is the Ricker wavelet with a peak fre-
quency of 30 Hz.

Figure 12 shows the frequency-domain seismic wave 
field for the frequency of 19.1 Hz. It involves two compo-
nents of the real part of displacement, namely horizontal 
(Fig. 12a) and vertical (Fig. 12b). The elastic wave field 
for the model with irregular surface can be simulated by 
our method. Figure 13 shows the particle displacement at 
receivers as shown in Fig. 11. The symbols P, S and R in 
Fig. 13 represent the P-wave, S-wave and Rayleigh wave, 
respectively. From Fig. 13a, only the P-wave and Rayleigh 
wave can be recognized. The reason why the S-wave can-
not be recognized at a small offset is that travel times of 
the S-wave and Rayleigh wave are approximate and the 
energy of Rayleigh wave is much stronger than S-wave. At 
a large offset, we can recognize the P-wave, S-wave and 
Rayleigh wave in Fig. 13b. The disturbance in the seis-
mograms calculated by our method and Jih’s time-domain 
method may be caused by artificial diffraction produced 
at the corner. The tiny disturbance has no impact for us to 
obtain the conclusion. The results in Fig. 13 are computed 
by our method and Jih’s time-domain method. These two 
results agree with each other well. The good agreement 
with Jih’s time-domain solution demonstrates the feasibil-
ity of our method.

Figure 14 shows the structure of the impedance matrix 
when using the rigid boundary condition. The rigid bound-
ary condition means that the displacements are zero on the 
fiction line. In order to describe the structure clearly, we 
rebuild a model similar to Fig. 11 except for the size. As 
we know, nonzero entries distribute on the diagonal of the 
impedance matrix when modeling with the flat free surface. 
According to Fig. 14a, entries along the diagonal are still 
nonzero. Figure 14b and c shows the structure in some parts 
in detail. We can see that the shape of the free surface has 
influence on the distribution of nonzero entries. Figure 15a 
is the structure of the matrix when using the free-surface 
boundary condition. Nonzero entries are still along the 
diagonals. Figure 15b and c shows the details of some parts 
of the matrix. Compared to Fig. 14, Fig. 15 shows that the 
matrix structure is affected not only by the shape of topog-
raphies but also by the discretization of the wave equation 
on the free surface.

Fig. 13  Seismograms at different receivers: a the receiver R1 and b 
the receiver R2. Green line and blue line represent the results com-
puted by our frequency-domain method plus Fourier transformation 
and Jih’s time-domain method, respectively
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Numerical examples

We now perform numerical experiments on models with 
a more complex free surface. First, we build a model 
with irregular topography similar to a valley. Figure 16 
shows the model. The dimensions of the model are also 
2.5 km × 2.0 km, and the spatial intervals ∆x and ∆z are 
both 2.5 m. We place four transition points separately at 
(0 km, 0.7 km), (0.3 km, 1 km), (0.3 km, 1.5 km) and (0 km, 
1.8 km). The depths of three flats are 0 km, 0.3 km and 
0 km, respectively. The other three boundaries are still dealt 
with the PML boundary conditions. The P-wave velocity, the 
S-wave velocity, the Poisson ratio and the density are still 
3500 m/s, 2020.7 m/s, 0.25 and 2000 kg/m3, respectively. 
The point source applied to the vertical displacement is at 
(0.4 km, 0.6 km), and the source signal is the Ricker wavelet 
with a peak frequency of 30 Hz.

For the frequency of 19.1 Hz, we show the u (Fig. 17a) 
and w (Fig. 17b) components of the displacements. To vali-
date our method, we extract particle displacement at receiv-
ers shown in Fig. 16. Figures 18a–c shows the results at 
receivers R1–R3, respectively. From Fig. 18, we observe 
that the P-wave, S-wave and Rayleigh wave are simulated 
clearly using our method. They are indicated by arrows in 
Fig. 18. There is a little tiny disturbance in the seismograms 
calculated by our method and Jih’s time-domain method. 
They are caused by the artificial diffraction at corners prob-
ably. The tiny disturbance has no impact for us to obtain the 
conclusion. We also make a comparison between our method 
and Jih’s time-domain method (Fig. 18). According to the 
comparison between the green line and the blue line at all 
receivers, computation result with our method can match the 
result of Jih’s time-domain method very well except for the 
tiny amplitude error at peak position which is caused by dif-
ferent numerical schemes. This test proves that our method 
is also available to a more complex topography.

To be close to the real terrain, we build a more com-
plex free surface with both a valley and a ridge. This model 
is shown in Fig. 19. The size is still 2.5 km × 2.0 km with 
a grid interval of 2.5 m. There are eight transition points, 
and their positions are (0.05 km, 0.4 km), (0 km, 0.45 km), 
(0 km, 0.85 km), (0.05 km, 0.9 km), (0.05 km, 1.5 km), 
(0.1 km, 1.55 km), (0.1 km, 2.05 km) and (0.05 km, 2.1 km), 
respectively. The depths of three kinds of flat surfaces are 
0 km, 0.05 km and 0.1 km, respectively. The P-wave veloc-
ity and the density are still 3500 m/s and 2000 kg/m3. The 
Poisson ratio is 0.25 and the corresponding S-wave veloc-
ity is 2020.7 m/s. The source time function is expressed by 

Fig. 14  Impedance matrix structure with the ridged boundary condi-
tion. a Distribution of the nonzero entries in the whole matrix, b dis-
tribution of the nonzero entries in the red rectangle and c distribution 
of the nonzero entries in the green rectangle

▸
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Ricker wavelet with 30 Hz as the peak frequency. The posi-
tion of the point source applied to the vertical displacement 
is changed to (0.15 km, 0.5 km).

For comparison, we still simulate the wave field at the fre-
quency of 19.1 Hz. Figure 20 shows the horizontal and verti-
cal components of the displacements. To provide more infor-
mation, we extract particle displacement at R1 in Fig. 19. 
The P-wave, S-wave and Rayleigh wave are indicated by 
arrows in Fig. 21. They are still simulated successfully by 
our method for more complicated irregular free surface. 
From Fig. 21, it can be seen that a good agreement between 
the results of the proposed method and Jih’s time-domain 
method is achieved, especially for the phases. Therefore, the 
feasibility of the proposed method is approved in the mod-
eling case of complex irregular topography. The tiny ampli-
tude errors at the peak have no impact for us to demonstrate 
that our method can be applied with complex topographies.

Conclusion

Based on a local rotated coordinate method and an average-
derivative optimal approach, we proposed a new average-
derivative scheme for implementing the irregular topography 
in the frequency domain. This technique specifies the treat-
ment to the polygonal topography. We illustrated the idea of 
our method by a simple model with a 45° slope. The irregular 
free surface is decomposed into nine parts. We generalized 
the conventional average-derivative difference operator to the 
rotated coordinate aligned with the irregular free surface using 
a local rotated coordinate method and derived new average-
derivative difference schemes on irregular topography in the 
frequency domain. Numerical experiments with this simple 
model demonstrate the feasibility of our method. We analyzed 
the factors affecting the structure of impedance matrix. These 
factors include the shape of the free surface and the format 
of discrete equations. We further demonstrated the effective-
ness of our method with more complicated topographies. The 
conventional average-derivative optimal method is an accu-
rate frequency-domain simulation scheme with a relatively low 
computational cost. Previously, it can only be applied to mod-
els with a horizontal free surface. Using our new scheme, the 
average-derivative optimal method can be applied to models 
with an irregular free surface.
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Appendix 1: The local rotated coordinate 
method in frequency domain

According to Fig. 1, the free surface is composed by three 
segments. We deal with the free-surface boundary condition 
at flat, slope and transition points, respectively. Following 
Jih et al. (1988), we derive expressions of the free-surface 
boundary condition in frequency domain for the following 
cases:

1. Flat
The free-surface boundary condition satisfies the stress-

free condition. According to Eq. (1), we have

We rewrite Eq. (50) as

Using one-side approximate approach to discretize 
Eq. (51), we have the expression of the flat free-surface 
boundary condition (Fig. 22):

2. Slope
We represent new x-axis and z-axis by x′ and z′. Similar 

to the flat case, we consider Eq. (50) in the new coordinate 
system (Fig. 23); the expression of Eq. (51) changes to

where u′ and w′ are horizontal and vertical components of 
displacement in the new coordinate system. Choosing grid 
points in Fig. 23 to discretize Eq. (53), we have

where

(50)

{
�xz = �

(
�u

�z
+

�w

�x

)
= 0,

�zz = (� + 2�)
�w

�z
+ �

�u

�x
= 0.

(51)

{
�u

�z
+

�w

�x
= 0,

�
�w

�z
+ �

�u

�x
= 0.

(52)

{
ur,s = ur,s+1 +
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Fig. 16  A 2D homogeneous model with a valley-shaped free surface. 
Receivers R1, R2 and R3 are denoted by reversed triangles

Fig. 17  Elastic wave field at frequency 19.1 Hz. a Horizontal compo-
nent and b vertical component
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Fig. 18  Seismograms at receiv-
ers R1–R3: a receiver R1; b 
receiver R2; c receiver R3. 
Green line and blue line rep-
resent the results computed by 
our frequency-domain method 
plus Fourier transformation 
and Jih’s time-domain method, 
respectively
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Fig. 19  A 2D homogeneous model with a valley-ridge-shaped free 
surface. The reversed triangle denotes the receiver R1

Fig. 20  Elastic wave field at frequency 19.1 Hz. a Horizontal compo-
nent and b vertical component

Fig. 21  Seismograms at receiver R1. Green line and blue line repre-
sent the results computed by our frequency-domain method plus Fou-
rier transformation and Jih’s time-domain method, respectively

Fig. 22  Discrete grid points at the flat free surface

Fig. 23  Discrete grid points at the slope free surface



1407Acta Geophysica (2020) 68:1387–1409 

1 3

where � = 45◦.
We can represent the slope free-surface boundary con-

dition by

Turning back to the x–z system, we have the final 
expression

where

(55)
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where

3. Flat-to-slope transition
The idea of handling transition point is the same as the 
treatment for slope. Figure 24 shows the new coordinate 
system. The free-surface boundary condition in x′–z′ sys-
tem becomes

Using grid points near the free surface in Fig. 24 to 
discretize Eq. (60), we have

where

Finally, we obtain

In the x–z system, we have the equations

where

where
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Fig. 24  Discrete grid points at the flat-to-slope transition point

Fig. 25  Discrete grid points at the slope-to-flat transition point
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4. Slope-to-flat transition
According to the new system in Fig. 25, the expression 

of transition point boundary condition is

Using grid points we select in Fig. 25 to discretize 
Eq. (67), we have

where

The discrete equation of Eq. (68) is

We transform Eq. (70) to the original coordinate system 
and obtain

where

where
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