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Abstract
Flood is becoming an intensive hydro-climatic issue at the Kelantan River basin in Malaysia. Univariate frequency analysis 
would be unreliable due to multidimensional behaviour of flood, which often demands multivariate flow exceedance prob-
abilities. The joint distribution analysis of multiple interacting flood characteristics, i.e. flood peak, volume and duration, is 
very useful for understanding critical hydrologic behaviour at a river basin scale. In this paper, a copula-based methodology 
is incorporated for multivariate flood frequency analysis for the 50-year annual basis flood characteristics of Kelantan River 
basin at Guillemard bridge station in Malaysia. Investigation reveals that the Lognormal (2P), Johnson SB-4P and Gamma-3P 
are selected as marginal distributions for the flood peak flow, volume and duration series. Several bivariate families such as 
mono-parametric, bi-parametric (i.e. mixed version) and rotated version of Archimedean copulas and also the elliptical copula 
are introduced to cover a large dependence pattern of flood characteristics. The dependence parameter of bivariate copulas 
is estimated by the method of moments (MOM) based on the inversion of Kendall’s tau and maximum pseudo-likelihood 
estimator. To analytically validate and recognize most parsimonious copulas, GOF test and Cramer–von Mises distance 
statistics (Sn) with the parametric bootstrap method are employed. The Gaussian copula is identified as the most justifiable 
model for joint modelling of the flood peak–volume and peak–duration combination for MOM-based parameter estimation 
procedure. Similarly, the Frank copula is selected as the best-fitted structure for modelling peak–duration combination based 
on MPL estimators, but the MOM estimator recognized Gaussian copula as most suitable for peak–volume pair. Furthermore, 
the best-fitted copulas are used for obtaining the joint and conditional return periods of the flood characteristics.
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Introduction

Probabilistic assessments of flood episodes for estimating the 
flow exceedance probability or design variable quantiles in 
the light of univariate or multivariate joint distribution frame-
work often facilitate an insightful concern or design criteria 
in the planning and designing of hydraulic or flood defence 
infrastructure projects (i.e. dam spillway, river channel, dikes, 
etc.), urban drainage system or flood hazard mapping (Cun-
nane 1987; Bobee and Rasmussen 1994; Goel et al. 1998; Sen 

1999; Rao and Hameed 2000; Katz et al. 2002; Poulin et al. 
2007 and references therein). According to Rakhecha and Sigh 
(2009), flood signifies an inundation due to the river overflow-
ing their banks in respect of heavy or intense rainfall structure 
or either melting of a large amount of snow. Flood is a mul-
tidimensional stochastics consequence usually characterized 
completely through its trivariate intercorrelated vectors such as 
flood peak discharge flow, volume and duration of flood hydro-
graph (Zhang 2005; Zhang and Singh 2006). Flood frequency 
analysis (FFA) statistically defines through an inter-association 
between flood quantiles with nonexceedance probabilities or 
return period by fitting the probability distribution functions 
or PDFs (Goel et al. 1998; Yue 1999; Yue 2001; Yue and Ras-
mussen 2002). In other words, it is an approach to relate the 
strength of extreme event quantiles to their frequency of occur-
rence in the light of probability distribution framework.

Hydro-meteorological simulations based on the exten-
sion of historical rainfall samples to recognize catchments 

 *	 Shahid Latif 
	 macet.shahid@gmail.com

	 Firuza Mustafa 
	 firuza@um.edu.my

1	 Department of Geography, Faculty of Arts and Social 
Sciences, University of Malaya, 50603 Kuala Lumpur, 
Malaysia

http://crossmark.crossref.org/dialog/?doi=10.1007/s11600-020-00435-y&domain=pdf


822	 Acta Geophysica (2020) 68:821–859

1 3

profile or based on joint simulations in conjunction with 
univariate or multivariate statistical framework over the 
variables of interest are the two distinct ways to address the 
risk assessments for the extreme flood scenario. Numerous 
attempts such as Calver and Lamb (1995), Blazkova and 
Beven (2004) and Lawrence et al. (2014) retrieved flood 
frequency curve through integrating the hydrologic models 
in conjunction with probabilistic rainfall models for demon-
strating catchment’s rainfall–runoff profile. Such incorpo-
ration usually adapted the conventional-based lumped and 
distributed models or either via the continuous or event-
based hydro-climatic simulations. But, all such incorpora-
tions often required longer computational analysis to justify 
the demands of high spatial and temporal resolutions for 
revealing a satisfactory demonstration of flood stimulations 
procedure and thus would attribute for an ineffective char-
acterization of catchments behaviour (Requena et al. 2016).

Earlier efforts frequently incorporated the univariate 
frequency analysis of flood series for estimating univariate 
return periods, i.e. either flood peak or volume as a func-
tion with their nonexceedance probabilities (Cunnane 1987, 
Bobee and Rasmussen 1994). But many studies highlighted 
the unreliability of univariate return period, which would 
be incapable to providing the full screen of flood or inflow 
hydrograph and also underestimation (i.e. low design value 
might increase the risk of failure) or overestimations (i.e. 
increasing the cost of hydraulic construction) of associated 
hydrologic risk of correlated flood characteristics (Yue et al. 
1999; Yue and Wang 2004). For example, flood episodes 
with peak discharge value of 100-year return period would be 
less damaging than the same flood events describing through 
the joint concurrency of flood peak–volume/or peak–dura-
tions/or volume–durations. Actually, the potential damage 
could likely be a function of several associated flood vari-
ables and ignorance of spatial dependency among its multiple 
vectors might be attributed for underestimation of uncertainty 
distributed over the estimated design quantiles and thus often 
demands more flood variables (Graler et al. 2013), in par-
ticular, from the prospects of hydraulic designing procedures 
where accountability of multivariate design parameters could 
be a feasible desire based on their multivariate exceedance 
probabilities (Salvadori 2004; Reddy and Ganguli 2012a).

The necessity of estimating design hydrograph or multi-
variate return periods instead of just estimating the design 
quantiles derived from the single variable flood episodes 
motivated numerous literature towards the incorporation 
of joint distribution analysis among multiple flood char-
acteristics, i.e. between peak–volume, or peak–duration, 
etc., through introducing a distinguished variety of tradi-
tional bivariate or few trivariate probability distribution 
functions, i.e. Krstanovic and Singh (1987), Escalante 
and Raynal (1998), Yue (1999), Yue (2000, 2001), Yue 
and Wang (2004), Nadarajah and Shiau (2005), Escalante 

and Raynal (2008) and references therein. But such dis-
tribution-based flood modelling approach or FFA often 
surrounded with several statistical constraints and limita-
tions such as (1) each flood vector must assume to have 
Gaussian or normal distributions or either transformed to 
have normal distributions; (2) if the number of variables is 
increased, then mathematical formulation becomes more 
complex and complicated; (3) statistical parameter of uni-
variate marginal structure is often employed to model their 
joint dependence structure; (4) limited space is available 
to justify joint dependence structure, etc., (Zhang 2005; 
Zhang and Singh 2006; Schmidt et al. 2007; Song and 
Singh 2010). Besides this, conventional multivariate 
models often attribute for the heavy dependency of flood 
exceedance on the right tail which might result for com-
plexity during the demonstrations of observed samples; 
thus, it could be demanding for the separate modelling of 
margins from their joint dependence structure for secur-
ing their joint association significantly (Zhang and Singh 
2006; Reddy and Ganguli 2012a).

Therefore, after encountering the above limitations it 
motivated firstly, the De Michele and Salvadori (2003) 
firstly incorporated copulas function, for establishing the 
joint dependence structure of storm intensity and dura-
tion series. The copula function is recognized as a highly 
flexible multivariate tool which segregated the model-
ling of individual univariate flood vectors and their joint 
dependence structure separately into two distinct stages 
and thus attributes the higher flexibility in the selection 
of best-fitted marginal distributions and their joint struc-
ture to capture a wider extent of mutual concurrency and 
preservation in their joint association (Saklar 1959; De 
Michele and Salvadori 2003; Salvadori 2004; Salvadori 
and De Michele 2004; Nelsen 2006). Genest and Favre 
(2007) provided an extended review of the application of 
copulas in the field of engineering and sciences. A series 
of literature incorporated copulas function ,for example, 
for flood samples (i.e. Salvadori and De Michele 2004; De 
Michele et al. 2005; Grimaldi and Serinaldi 2006; Pou-
lin et al. 2007; Genest et al. 2007; Fan and Zheng 2016; 
and references therein), for rainfall characteristics (i.e. 
Salvadori and De Michele 2006), for drought modelling 
(i.e. Shiau 2006). Besides their extended applicability in 
extreme event modelling, copula-based joint distributions 
are significantly applied in the field of groundwater model-
ling (i.e. Reddy and Ganguli, 2012b) and also modelling 
of hydro-climatic samples (i.e. Cong and Brady 2011), etc. 
For the essential mathematical terminologies and theorems 
associated with copula function, readers are advised to fol-
low the literature such as Saklar (1959) and Nelsen (2006), 
also ‘International Association of Hydrological Sciences 
(or IAHS)’ for extended details and lists of their applica-
bility in the field of hydro-climatological observations.
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The Kelantan River basin is one of the largest basins of 
Malaysia, which are known to be flood-prone. From the 
past few decades, it is often subjecting to the most severe 
monsoonal flooding and perceiving for increasing in terms 
of their frequency and magnitude (DID 2000, 2003, 2004; 
MMD 2007; Adnan and Atkinson 2011). Few studies, 
such as Chan (1997) and DID (2000, 2003, 2004), report 
the expectation of the occurrence of catastrophic flooding 
has increased from once in every 50–15 years from 2004 in 
Kelantan. For example, intense and prolonged precipitation 
in the year 2002 caused flooding of a total area of 1640 km2 
and affected the population of 714,287 (Adnan and Atkin-
son 2011). Similarly, in the early month of December 2014, 
much heavy precipitation occurred for many of days trig-
gered the flood event in several parts of the east coast of the 
Kelantan river basin and it was the worst flood ever recorded 
in history and affected more than 200,000 people (Adnan 
and Atkinson 2011; Rahman et al. 2018). The maximum 
length and breadth of this catchment area are 150 km and 
140 km, respectively, and it is about 248 km long and drains 
an area of 13,100 km2, occupying more than 85% of the 
state of Kelantan. The basin has an annual rainfall of about 
2500 mm much of which occurs during the north-east mon-
soon (or wet season) between mid-October and mid-January. 
Few studies are performed over this river basin; for exam-
ple, according to Hussain and Ismail (2013) investigation, 
Guillemard Bridge, Lebir and Galas stations have highest 
in flood frequency rather than Nenggiri station and also 
the value of damaged property got increased according to 
the frequency of flood happening. Also, Abdulkareem and 
Sulaiman (2015) investigated the variability of precipitation 
in flood source area of Kelantan river basin through the trend 
analysis using the annual maximum series of 24-h precipita-
tion data and annual maximum flood data and revealed that 
no statistically significant trend was detected in the annual 
maximum series of 24-h precipitation between for the period 
1984–2014 while the AMF series were significant at 5% 
level at the targeted locations. Similarly, Nashwan et al. 
(2018) revealed that the downstream area of the Kelantan 
River basin is the highest risk of devastating flood events. 
Besides this, a lot of attention has been also pointed out in 
this region in the context of the impact of land-use changes 
which may affect the catchments response; for example, Has-
san (2004) report revealed the substantial land-use changes 
in this region which might influence the rate of evapotranspi-
ration and infiltrations (Wooldridge et al. 2001). Wan (1996) 
and Jamaliah (2007) literature also pointed the existence of 
rapid land-use changes from the year 1970 to 2000s, mainly 
due to deforestation and conversion from natural land into 
agriculture for oil palm and rubber.

The cause of frequent failure of hydrologic or flood 
defence infrastructure in Malaysia due to the impact of 
moderately severe of flood episodes might be attributed 

due to the lack of complete flood hydrograph or in other 
words, where only flood peak discharge samples often tar-
geted in deriving flood frequency curve during the struc-
tural development. For example, according to Gaál et al. 
(2015) in the designing of retention basins and spillways of 
reservoirs or any other flood defence hydraulic structures 
where the storage is involved, in such circumstances the 
estimation of hydrograph volume must be required along 
with peak discharge, in order to calculate the impact of 
inflow on the storage. Therefore, multivariate designs and 
their associated return periods could be a comprehensive 
way of tackling such extreme issues through a defensive 
risk-based decision-making in this river basin.

In this study, the multivariate flood frequency analysis 
is performed for the Kelantan River basin at Guillemard 
bridge station in Malaysia, in order to overcome the limi-
tations associated with univariate analysis, by introduc-
ing the bivariate copula distribution framework for partial 
series of flood characteristics, i.e. flood peak discharge 
flow (P), volume (V) and duration (D) series. At-site 
event-based or block (annual) maxima-based methodol-
ogy is adopted for the 50-year (1961–2016) continuously 
distributed stream flow characteristics of this river basin. 
Evaluating the performance of parametric family func-
tions for constructing univariate marginal distribution of 
flood characteristics, comparing two types of parameter 
estimation procedure, i.e. method of moment (MOM) and 
maximum pseudo-likelihood (MPL) estimations proce-
dure, for fitting a distinguished variety of bivariate cop-
ula families such as the Archimedean copulas, elliptical 
copulas also, rotated version of Archimedean and mixed 
version of Archimedean copulas family which are intro-
duced and tested to analyse and statistically evaluate the 
bivariate joint probability of the flood variables occur-
rence, i.e. between flood peak–volume and peak–duration 
series and also their associated joint and conditional return 
periods estimations are the main research concern which 
is addressed in this literature.

As a prerequisite, brief details on the theoretical aspect 
of copula functions, procedure for the estimations of copula 
dependence parameters, performance measure of copulas via 
the goodness-of-fit test statistics to selecting most parsimo-
nious copulas for establishing joint relationship among flood 
characteristics as well as mathematical approach towards 
the return periods of flood characteristics are discussed 
in the next sections. In the third section, the copula-based 
methodology is applied to a case study to establish a joint 
distribution, conditional distributional distribution and their 
associated return periods of the flood attribute pairs (i.e. 
P–V and P–D). The fourth section provides the result and 
discussions, and the fifth section provides the research con-
clusion. Figure 1 illustrates the flow diagram indicating the 
steps of the analysis.
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Theoretical research framework

Concept of copula function

The ideas of the copula method have been developed by 
Saklar (1959). According to Nelsen (2006), copula func-
tion connects multivariate probability distributions to 
their univariate marginal functions. According to Sklar’s 
theorem (Nelsen 2006), if (X, Y) be the bivariate ran-
dom variables with continuous marginal distributions 
u = FX(x) = P(X ≤ x) and v = FY (y) = P(Y ≤ y) , then it 
can be characterized uniquely by its associated dependence 
function called Copula or C which can be defined on the unit 
square and can be expressed as:

where C = any type of bivariate copulas under considera-
tion; FX(x) = FY (y) = cumulative distribution functions of 
random variables ‘X’ and ‘Y’; HX,Y (x, y) = bivariate joint 

(1)HX,Y (x, y) = C
[
FX(x),FY (y)

]
= C(u, v)

distribution which can be expressed using bivariate copula 
function C

[
FX(x),FY (y)

]
 , as revealed from Eq. (1). Accord-

ing to Shiau (2006) and Zhang and Singh (2006), the copula 
C must be unique if FX(x) and FY (y) are continuous, which 
can capture the wider extent of dependencies among random 
variables. Conversely, if FX(x) , FY (y) and the copula func-
tions C

[
x, y

]
 are given, then Eq. (1) must define the bivari-

ate joint distribution functions with its marginal distribu-
tions FX(x) and FY (y). Similarly, if fX(x) and fY (y) are the 
probability density function of variables X and Y, then the 
joint probability density of the two random variables can be 
expressed as:

where c is the density function of bivariate copula C, which 
can be defined as:

(2)fX,Y (x, y) = c
(
FX(x),FY (y)

)
fX(x)fY (y)

(3)c(u, v) =
�2c(u, v)

�u�v
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Fig. 1   Flow diagram of the copula-based bivariate joint analysis of flood characteristics
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 in which u = FX(x) and v = FY (y).
For the extended mathematical details about copula func-

tions, readers are advised to follow Genest and Rivest (1993) 
and Nelsen (2006).

In this study, we introduced the Archimedean copula fam-
ilies (i.e. Clayton, Gumbel, Frank, Joe), mixed version of 
two-parameter Archimedean copulas such as BB1 (i.e. Clay-
ton–Gumbel copula) (i.e. Constantino et al. 2008), BB6 (i.e. 
Joe–Gumbel copula) (i.e. Manner 2010), BB7 (i.e. Joe–Clay-
ton copula) (i.e. Li et al. 2016) and BB8 (i.e. Joe–Frank 
copula) (i.e. Tang et al. 2015), one elliptical copula family 
(i.e. Gaussian copula) (i.e. Zhang et al. 2016), one rotated 
version of Archimedean copula family (rotated Clayton by 
90° of rotation for capturing negative dependence as well) 
(i.e. Manner 2007). The rotated Clayton copula is introduced 
to cover negative dependence structure and can’t be used for 
modelling positively correlated random pair. Actually, the 
bivariate Clayton copula is only capable of capturing posi-
tive dependency (i.e. 0 ≤ 𝜃 < ∞ ); this means by consider-
ing the rotation (i.e. by 90°), it becomes possible to capture 
negative dependency for the same random variables (i.e. 

−∞ < 𝜃 ≤ 0 ). The consideration of the Joe copula would 
be a good decision in case of higher positive correlation 
exhibited between random variables (McNeil et al. 2015) 
which often plays an important role, especially for highlight-
ing the upper tail dependence structure in extreme value 
analysis (Alina 2018). For the Clayton and Gumbel fam-
ily, the Kendall’s tau  ≥ 0 and is only significant to capture 
the positive dependency while the Frank family exhibited 
higher versatility due to its capability in accommodating 
the entire range of dependencies (i.e. τθ ∈ [1, − 1]) and is the 
only member that justified radial symmetry as well (i.e. sym-
metric to  u + v = 1) (De Michele and Salvadori 2003; Favre 
et al. 2004; Nelsen 2006). Table 1 represents the summary 
description of the bivariate Archimedean copula functions 
incorporated in this study.

Mathematically, the copula function (i.e. [C: 
[0,1]2 ⟶ [0,1]]) approximates the bivariate Archimedean 
class copula, if it justifies the representation as given below:

(4)C(u, v) = �−1(�(u) + �(v)) for u, v ∈, [0, 1]

Table 1   Mathematical expressions for bivariate Archimedean copula families and their associated properties

� is the copula dependence parameter of mono-parametric (or 1 parameter) copulas; � and � jointly represents the dependence parameter for bi-
parametric(or 2 parameter) Archimedean copulas like BB1, BB6, BB7 & BB8

Copula 
family

Bivariate copula C�(u, v) Parameter 
range (�)

Generating func-
tion (or generator) 
�(t)

Relation of Kendall’s � and �
(
��
)

Clayton [
max

{
u−� + v−� − 1;0

}]−1∕� 0 ≤ 𝜃 < ∞ 1

�

(
t−� − 1

)
�

�+2

Frank −1

�
ln
(
1 +

(e−�u−1)(e−�v−1)
(e−�−1)

)
−∞ < 𝜃 < ∞ − ln

(
e−�t−1

e−�−1

)
1 + 4

(
D1(− ln �)−1

ln �

)

where Dk(x) is the Debye func-
tion, for any positive integer k, 

DK(x) =
k

xk

x∫
0

tk
/
(et − 1)dt (Zhang 

and Singh 2006; Wang et al. 2009)
Gumbel–

Hougaard exp

{
−
[
(− ln (u))� + (− ln (v))�

] 1

�

}
1 ≤ 𝜃 < ∞ (− ln t)� �−1

�

Joe
1 −

[
(1 − u)� + (1 − v)� − (1 − u)�(1 − v)�

]1∕� 1 ≤ 𝜃 < ∞ − ln
(
1 − (1 − t)�

)

BB1 (
1 +

[(
u−� − 1

)�
+
(
v−� − 1

)�]1∕�
)−1∕�

0 < 𝜃 < ∞;

1 ≤ 𝛿 < ∞

BB6
1 −

(
1 − exp−

[((
− ln (1 − u)�

))�
+
((

− ln
(
1 − (1 − v)�

))�)]1∕�
)1∕� 1 ≤ 𝜃 < ∞;

1 ≤ 𝛿 < ∞

BB7

1 −

[
1 −

((
1 − u�

)−�
+
(
1 − v�

)−�
− 1

)−1∕�
]1∕� 1 ≤ 𝜃 < ∞;

0 ≤ 𝛿 < ∞

(
1 − (1 − t)�

)−�
− 1

BB8
1

�

(
1 −

[
1 −

1

1−(1−�)�

(
1 − (1 − �u)�(1 − �v)�

)] 1

�

)
1 ≤ 𝜃 < ∞;

0 ≤ 𝛿 ≤ 1
− ln

[
1−(1−�t)�

1−(1−�)�

]
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where (∅(.) and ∅ − 1) signify the generator function of 
the specified Archimedean copulas and their inverse such 
that the generator (φ: I ⟶ R+) signifies for the positive, 
convex and decreasing function and could be approximated 
for (∅(1) = 0 and ∅(1) = ∞) (Nelsen 2006). The elliptical 
family-based Gaussian copula is also introduced for testing 
their adequacy in the establishment of bivariate distribution 
of flood characteristics and can capture both the positive 
and negative dependencies (Favre et al. 2004). The Gaussian 
copula is an implicit copula which can be expressed as an 
integral over the density of X and can be expressed math-
ematically as given below (Zhang et al. 2016):

The Gaussian copula shows almost no dependence in the 
tails of distribution which is mostly distributed around centre 
(Zhang et al. 2016; Alina 2018).

Estimating copula dependence parameter

Several methods are often motivated such as the method of 
moment based rank-based nonparametric measures, i.e. Ken-
dall’s tau (�) or Spearman’s rho (�) (i.e. Genest and Rivest 
1993; Reddy and Ganguli 2012a), exact maximum likelihood 
or EML (i.e. Zhang et al. 2016), inference functions for mar-
ginal or IFM (i.e. Joe 1997), canonical maximum likelihood 
or CML (Genest et al. 1995), maximum pseudo-likelihood 
estimations (MPL) (Genest et al. 1995). In this experiment, 
both the MOM estimator based on the inversion of Kendall’s 
tau (�) and MPL estimators are applied separately for estimat-
ing copula dependence parameter.

MOM estimators based on inversion of Kendall’s tau (�) is 
quite popular and highly flexible for the Archimedean fami-
lies of copula which often follows the definition of empirical 
copula. This method is based on the relationship between the 
copula parameter ‘ � ’ and sample rank correlation coefficient 
and if the corresponded between them exhibited then the 
copula parameter can be estimated by putting the empirical 
values of the rank correlation into the relation as given below 
(Nelsen 2006):

According to Nelsen (2006) and Veronika and Halmova 
(2014), the mathematical relationship between Kendall’s tau 
(�) , copula function and generator function can be expressed 
as;

(5)

C�(u, v) =

−�−1(u)

∫
−∞

−�−1(v)

∫
−∞

1

2�
(
1 − �2

)1∕2 exp
[
−
s2 − 2�st + t2

2
(
1 − �2

)
]
dsdt

(6)𝜃̂ = f (𝜏)

(7)� = 4∫[0,1]2
C(u, v)dC(u, v) − 1

and

where �(⋅) = is the generator function of Archimedean 
copula family and ��(t) = is the first derivative of the gen-
erator function. Functional relationship of Kendall’s tau (�) 
with copula parameter for various Archimedean families of 
copula, which are incorporated in this demonstration, is pre-
sented in Table 1.

Schweizer and Wolff (1981) explored that the two stand-
ard nonparametric correlation measuring statistics, i.e. 
Kendall’s correlation and Spearman’s correlation, can be 
expressed in terms of copula function. Mathematically, the 
Kendall’s tau (�) statistics can be estimated by using the 
following equation:

where sign = 1; if 
[(
xi − xj

)(
yi − yj

)
> 0

]
 and sign = − 1; if [(

xi − xj
)(
yi − yj

)
< 0

]
 , for i = j = 1,2, …, n.

The mathematical range of Kendall’s tau (�) is [− 1,1]; 
for example, � = 1 represents for concordant and � = −1 
for discordant and zero represents no concordance will be 
exhibited between random pairs. Therefore, determina-
tion of Kendall’s tau (�) from the given bivariate random 
observations is firstly required to estimate unknown copula 
dependence parameters. MOM estimators can only be used 
for mono-parametric copulas functions, i.e. having single 
dependence parameter can’t be used for deriving more than 
one copula parameters.

The MPL estimators are a modified version of traditional 
maximum likelihood method where the rank-based empiri-
cal distributions are used for estimating copula parameters 
independently from their univariate marginal distribution 
functions and can be applied for both one- and multi-param-
eter copula functions (i.e. De Michele et al. 2005; Klein 
et al. 2010; Kojadinovic and Yan 2010; Reddy and Ganguli 
2012a). Based on maximizing the pseudo-log-likelihood 
function, one can easily estimate the copula parameter as 
follows:

where � is the copula parameter; l(�) is the pseudo-log-like-
lihood function; F1

(
Xi,1

)
= F1

(
Xi,2

)
 is the empirical CDFs.

(8)� = 1 + 4

1

∫
0

�(t)

��(t)
dt

(9)
(
n

2

)−1 ∑
i⊲j

sign
[(
xi − xj

)(
yi − yj

)]

(10)l(�) =

n∑
i=1

log
[
c�
{
F1

(
Xi,1

)
,F1

(
Xi,2

)}]
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Goodness‑of‑fit test for bivariate copulas

In this demonstration, Cramer–von Mises test statistics is 
employed to evaluate adequacy of hypothesized copula fitted 
to bivariate flood characteristics which is often considered 
as one of the most powerful models for compatibility testing 
(Genest and Rémillard 2008; Genest et al. 2009). Accord-
ing to Genest et al. (2009), this test is based on parametric 
bootstrapping procedure and makes use of the Cramer–von 
Mises statistic Sn, which can be computed as follows:

where Cn = empirical copula estimated using n obser-
vational flood attribute pairs and C� = parametric copula 
derived under the null hypothesis. In this experiment, the 
p-values for each copula are estimated using the paramet-
ric bootstrapping procedure (i.e. followed by Genest and 
Rémillard (2008)) which can be mathematically formulated 
as given below:

where N = number of simulations.
This fitness statistics actually involve testing of null hypoth-

esis H0 against the alternate hypothesis Ha as given below. 
Null hypothesis ( H0) = C ∈ C0{where,C0 = C�;� ∈ O).
Alternate hypothesis ( Ha) = C ∉ C0.where O is the open 
subset of ℜq for some integer value q. The acceptance or 
rejection of the considered copulas is based on estimated p 
values. If the estimated p value is larger than a significance 
level (�) , then the null hypothesis must be accepted, resulting 
that copula must be considered as satisfactory performance; 
otherwise, it will be liable for rejections. Therefore, from 
Eq. (11), it must be concluded that minimum value of Sn 
test value indicates minimum gap or distance between an 
empirical and derived parametric copula; in other words, it 
indicates the most justifiable copula for establishing bivariate 
joint relationship between flood variables.

Return periods of the flood characteristics 
and conditional distribution

Hydrology and hydraulic applications mostly interested in 
the evaluation of the mean inter-arrival period between two 
design events which usually are defined in a year called the 
return period (Shiau 2003; Salvadori 2004). In particular, 
the design quantiles define a higher return period that often 
seems a feasible practice in the hydraulic structure designs 

(11)

Sn = n∫[0,1]2

{
cn(u, v) − C�(u, v)

}2
dCn(u, v)

=

n∑
i=1

{
cn
(
Ui,n,Vi,n

)
− C�

(
Ui,n,Vi,n

)}2

(12)p =
1

N

N∑
i=1

1
(
Sn,t ≥ Sn

)

(Requena et  al. 2016). Concurrence probability usually 
defines the probability of any extreme happening (i.e. flood 
episodes), which either characterizes through univariate (say 
flood peak discharge or ‘P’) or multivariate variables (say 
flood peak and volume series ‘P’, ‘V’…) exceeding certain 
a threshold level say ‘p’ (or ‘p’, ‘v’… for the multivariate 
structure) (Yue and Rasmussen 2002; Shiau 2003; Salvadori 
2004). Yue and Rasmussen (2002) and Salvadori and De 
Michele (2004) thoroughly discussed the basic concept of 
return periods. Mathematically, univariate return period of 
the targeted flood characteristics that occurs once in a year 
can be defined from the univariate cumulative distribution 
function or CDF of the variable (say ‘X’) as given below:

where μ is the mean inter-arrival time between two consecu-
tive episodes and that could be equal to unity (i.e. μ = 1) for 
annual maxima-based flood modelling (Yue and Rasmussen 
2002).

Derivation of return periods from bivariate joint 
distribution of flood attribute pairs

The notation of return period under univariate concept 
(Eq. 13) might be useful only if the concentration of single 
hydrologic or flood attribute will justify the requirements of 
the design process, and in other words, it will also indicate 
the existence of no significant inter-association exhibited 
between multiple relevant vectors (Veronika and Halmova 
2014). But for justifying much practical and effective risk 
analysis, accountability of multiple potential vectors for 
characterizing flood events based on joint probability density 
function or JPDF and joint cumulative distribution func-
tions or JCDF could be the essential demands for hydrolo-
gist and water practitioner. Estimating multivariate design 
variable quantiles under different notations of return such 
as based on joint probability distribution functions, condi-
tional distribution analysis or either based on the Kendall’s 
distribution (or survival functions) is often an essential con-
cern in the hydrologic risk assessments (Salvadori 2004; 
Graler et al. 2013). In multidimensional risk framework, 
return periods can be derived from the exceedance prob-
abilities of flood attributes pair, such as joint return period 
derived from the joint exceedance probabilities. Actually, 
each separate approach of return periods has their own sig-
nificance, and that will be solely based on the nature of the 
undertaking problem, which cannot be interchanged and is 
also impossible to decide for the most consistent ways (Seri-
naldi 2015). Selection of return periods is depending upon 

(13)
TUnivariate =

�

total no. of flood per year

=
1

P(X ≥ x)
=

1

(1 − F(x))
=

1

1 − CDF(y)
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the importance of undertaken structure as well as its con-
sequences of failure where their appropriate selection often 
attributed an impact over the strength of design variables 
quantiles. Shiau (2003), Salvadori (2004), Salvadori and De 
Michele (2004, Salvadori and De Michele 2007), and Seri-
naldi (2015) pointed an extended mathematical framework 
towards the deriving of different notations of return periods 
under copula-based methodology.

The joint probability distributions for annual flood anal-
ysis can describe the following two situation such that in 
the first condition both the flood variables (say, P ≥ p AND 
V ≥ v) simultaneously exceed certain threshold during a 
flood event and their associated return period called AND 
joint period and it can be written in the form of:

Equation represents the joint return period of flood vari-
able P ≥ p and V ≥ v where both variables simultaneously 
exceed threshold value. H(p, v) is the joint cumulative dis-
tribution functions between flood variables (i.e. P and V) 
and that can be expressed using bivariate copula function 
C(F(p), F(v)).

In the second situation, the probability of either the first 
or second flood variable (say, P ≥ p OR V ≥ v ) exceeds 
given their threshold and thus their associated return period 
called OR joint return period which can be expressed as:

Equation represents the OR joint return period of flood 
variable, i.e. P ≥ p OR V ≥ v for the bivariate events where 
either of the variables exceeds threshold value. Using the 
above two equations, it could be possible to derive the OR 
and AND joint return periods between flood peak flow–vol-
ume and peak flow–duration series.

Derivation of return periods from conditional distribution 
of flood attribute pairs

In most of the hydrologic design requirements, it would be 
demanding to define events through highlighting the sig-
nificance or priority of one design variables over another 
design vectors, and thus, from this prospect several stud-
ies pointed out the necessity of conditional distribu-
tional framework for defining the concept of conditional 
return periods such as Salvadori and De Michele (2004), 
Shiau (2006), Zhang and Singh (2006), Zhang and Singh 

(14)

TAND
p,v

=
1

P(P ≥ p AND V ≥ v)
=

1

(1 − F(p) − F(v) + H(p, v)

=
1

(1 − F(p) − F(v) + C(F(p),F(v))

(15)

TOR
P,V

=
1

P(P ≥ p OR V ≥ v)
=

1

(1 − H(p, v))
=

1

(1 − C(F(p),F(v))

(2007a), Salvadori and De Michele (2010), Reddy and 
Ganguli (2012a, 2013), Veronika and Halmova (2014), 
Zhang et al. (2016) and Tosunglou and Kisi (2016). The 
conditional return period relies on a conditional probabil-
ity relationship between flood characteristics given that 
some condition is fulfilled such as the conditional return 
period of flood peak series given various percentile values 
of flood volume or vice versa or in other words where the 
flood peak ‘P’ exceeds a threshold ‘p’ given that the vol-
ume ‘V’ series exceeds a threshold ‘v’. For example, prob-
ability of flood peak conditional to volume (or duration) or 
either the flood volume conditional to peak (or duration) or 
either flood duration conditional to flood peak (or volume) 
information would be benefited from the hydraulic design 
prospects. Therefore, using the bivariate copula functions, 
the conditional return periods between flood characteris-
tics (say, P and V) can be obtained from the conditional 
probability distribution function as:

and

where HP,V (p, v) is the joint CDF of flood vector P and V 
which can be estimated using the bivariate copula functions 
C(F(p),F(v) ) with F(p) and F(v) being the marginal distri-
bution of flood peak and volume series. Actually, Eq. (16) 
represents the conditional distribution function of flood peak 
‘ P ’ given volume ‘ V ≤ v ’. Thus, using Eq. (17), it could be 
possible to obtain return periods for various possible occur-
rences of flood characteristics (i.e. return period of volume 
condition to peak or either between volume–duration and 
peak–duration series).

Similarly, the conditional distribution of flood peak ‘P’ 
given ‘ V ≥ v ’ or vice versa can be obtained using the fol-
lowing equations:

and

(16)
H�

P�V
(p�v) = H(p�V ≤ v) =

P(P ≤ p,V ≤ v)

P(V ≤ v)

=
HP,V (p, v)

F(v)
=

C(F(p),F(v))

F(v)

(17)

T(P�V)(p�v) = T(p�V≤v) =
1

1 − H
�

P�V
(p�v)

=
F(v)

F(v) − C(F(p),F(v))

(18)

H�
P�V

(p�v) = H(p�V ≥ v) =
P(P ≤ p,V ≥ v)

P(V ≥ v)

=
F(p) − HP,V (p, v)

1 − F(v)
=

F(p) − C(F(p),F(v))

1 − F(v)

(19)

T(P�V)(p�v) = T(p�V≥v) =
1 − F(v)

1 − F(v) − F(p) + C(F(p),F(v))
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Therefore, by using the copula-based methodologies for 
estimating the joint and conditional distribution of the event-
based or block (annual) maxima-based mutually correlated 
flood characteristics, the joint and conditional return peri-
ods are computed which can be an essential requirement for 
the Kelantan River basin for tackling several water-related 
queries.

Application

Details of study area

Monsoonal f lood happening seems to be increased 
in the Kelantan River basin in Malaysia from the last 
few decades in terms of frequency as well as magni-
tude, according to the report of Drainage and Irriga-
tion Department, Malaysia (DID 2000, 2003, 2004) 
and Malaysia Meteorological Department (MMD 
2007). The geographical location of this river basin is 
Lat 4◦ 30′ N to 6◦15′ N and Long 101◦ E to 102◦ 45′ E , and  
it is the longest river of Kelantan state, which originates 
from the Tahan mountain range to the South China Sea in 
the north-eastern part of Peninsular Malaysia. The river 
is about 248 km long with a drain area of 13,100 km2 
occupying more than 85% of the state of Kelantan. The 
estimated runoff is about 500 m3 s−1, and the variations 
in annual precipitations for this region are in between 
0 mm (dry period) and 1750 mm (wet or north-eastern 
monsoonal period) (DID 2000). The major land use of 
this area is agriculture (i.e. paddy, rubber and oil palm) for 
midstream and downstream and forest for upstream (i.e. 
near to Gua Musang). Few studies over this region such 

as Chan (1997), Jamaliah (2007) and Adnan and Atkinson 
(2011) pointed that such extreme hydrologic consequences 
are mainly due to rapid human intervention from natural 
to land-use activities in the form of deforestations or land 
clearance either for promoting the agricultural activities 
through palm oil and rubber plantations or due to log-
ging activities. In this literature, copula-based method-
ology is adopted for the 50 years (1961–2016) of daily 
basis streamflow discharge records for the Kelantan River 
basin which are collected and provided by the Drainage 
and Irrigation Department (DID), Malaysia, at the Guil-
lemard Bridge gauge stations, at the downstream of Kelan-
tan River near the Kuala Kari region.

Delineation of trivariate flood characteristics

Flood probability construction via the partial data series 
only focuses the extreme hydrograph portion, i.e. either 
high flow (for flood episodes) or low flow (for drought 
events), instead of visualizing the entire hydrograph (Cor-
reia 1987; Hosking et al. 1985; Rao and Hameed 2000). 
Annual (maximum) series (AM) also called block (annual) 
maxima and peak over threshold (or POT) are the two 
frequently modelling techniques widely accepted in the 
extreme probability simulations (Hosking et  al. 1985; 
Madsen et al. 1997). The annual maximum flood peak dis-
charge, volume and duration value of the flood episodes 
are retrieved from daily basis stream flow data. The char-
acterizations of flood peak flow values are based on their 
maximum streamflow discharge records at an annual scale 
which means for each year there will be only one flood 
episode at the targeted site (Fig. 2) (Yue 2000; Yue and 
Rasmussen 2002; Xu et al. 2015). Similarly, corresponding 

Fig. 2   A typical hydrograph showing flood characteristic for the ith flood episodes
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to each flood peak value of the annual basis flood events, 
volume and duration series are derived from the stream-
flow hydrograph and using the algorithm reported by the 
literature such as Yue et al. (1999), Yue (2000) and Yue 
and Rasmussen (2002). Actually, flood duration (D) can 
be estimated by recognizing the time of rise and fall of 
the flood hydrograph as illustrated in Fig. 2 (i.e. points at 
Qis and Qie) using Eq. (22). Flood peak discharge often 
attains their maximum value but not mandatory for hydro-
graph volume and duration series (Sraj et al. 2014; Xu 
et al. 2015). Mathematically, we are required to derive 
triplet flood characteristics for each of the ith years using 
the following equations:

where Qij = jth days streamflow magnitude for the ith year 
and Qis&Qie = streamflow magnitude for the start date ‘ SDi ’ 
and end date ‘ EDi ’ of the flood runoff. Once the flood char-
acteristics are obtained from daily stream flow data using 
equations, it can be used for copula-based flood frequency 

(20)
Pi = max

{
Qij, j = SDi + SDi + 1,… ,EDi

}

= Annual flood peak series

(21)

Volume = Vi = V total
i

− VBaseflow
i

=

ED∑
j=SDi

Qij −

(
1 + Di

)(
Qis + Qie

)
2

(22)Duration = Di = EDi − SDi

analysis. Table 2 represents the descriptive statistics of tri-
plet flood characteristics extracted from the daily streamflow 
discharge value at an annual scale (i.e. partial data series). 
Each univariate flood vector exhibited positively skewed 
distributions in which the duration series exhibited quite 
higher degree of unsymmetrical behaviour; Fig. 3a shows 
histogram distribution plot of flood characteristics. Figure 3b 
represents time series visualization of flood peak, volume 
and duration series.  

Estimating marginal probability distribution 
of flood characteristics

Empirical univariate nonexceedance probabilities

The empirical nonexceedance probabilities or cumulative 
distribution, i.e. P(K ≤ k), for observed values of flood char-
acteristics is derived from the commonly used Gringorten-
based position-plotting formula (Gringorten 1963; Cunnane 
1978; Zhang and Singh 2006; Karmakar and Simonovic 
2008), which is usually compared with CDF of the fitted 
distributions for pointing the gaps and deviations between 
empirical and fitted samples and which can be mathemati-
cally formulated as:

where N = length of the sample (i.e. the total number of flood 
observations) and k = kth smallest observations in the data 
set arranged in ascending order.

Fitting univariate marginal distribution of flood 
characteristics

Selecting the most justifiable and parsimonious univari-
ate probability distribution functions for defining flood 
marginal density is often a mandatory prerequisite desire 
before introducing random vectors into multivariate cop-
ula framework (Reddy and Ganguli 2013; Tosunoglu and 
Kisi 2016). In this study, the flood characteristics that 
are targeted are flood peak discharge flow, volume and 
its durations for the partial series of data called block 
(annual) maxima-based flood distribution analysis. Para-
metric distribution-based modelling is often based on the 
assumption that the undertaken samples must be following 
some specific distributions or having their predefined PDF. 
Actually, in hydrologic data modelling, no universally 
accepted distributions are assigned from any literature 
or in favour of any probability distribution functions to 
model any extreme series (Adamowaski 1985, 1989; Sil-
verman 1986; Dooge 1986; Yue et al. 1999; Santhosh and 

(23)
Empirical Cumulative frequency

= P(K ≤ k) = (k − 0.44)∕(N + 0.12)

Table 2   Summary statistics of the flood event characteristics

Statistics Peak Volume Durations

nbr.val 5.00E+01 5.00E+01 5.00E+01
nbr.null 0.00E+00 0.00E+00 0.00E+00
nbr.na 0.00E+00 0.00E+00 0.00E+00
Min 9.16E+02 3.18E+03 7.00E+00
Max 2.06E+04 7.47E+04 6.40E+01
Range 1.97E+04 7.16E+04 5.70E+01
Sum 3.04E+05 9.56E+05 9.52E+02
Median 4.96E+03 1.60E+04 1.60E+01
Mean 6.08E+03 1.91E+04 1.90E+01
SE.mean 6.56E+02 2.07E+03 1.53E+00
CI.mean.0.95 1.32E+03 4.16E+03 3.08E+00
Var 2.15E+07 2.14E+08 1.18E+02
Std.dev 4.64E+03 1.46E+04 1.09E+01
Coef.var 7.63E−01 7.65E−01 5.70E−01
Skewness 1.46E+00 1.54E+00 2.14E+00
Skew.2SE 2.17E+00 2.29E+00 3.19E+00
Kurtosis 1.69E+00 2.63E+00 5.89E+00
Kurt.2SE 1.28E+00 1.99E+00 4.45E+00
Normtest.W 8.40E−01 8.50E−01 7.84E−01
Normtest.p 8.42E−06 1.54E−05 3.78E−07
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Srinivas 2013). Several models often would fit the data 
equally well, but each would give different estimates of a 
given quantile, especially in the tails of the distribution, 
which is solely based on the goodness-of-fit procedure 

to visualize the compatibility of the fitted distributions 
(Karmakar and Simonovic 2008). An interactive set of 
1-dimensional parametric functions with varying numbers 
of the unknown statistical parameter (i.e. 1 parameter, 2 

Fig. 3   Visualizing the block (annual) maxima-based flood characteristics of the Kelantan River Basin at Guillemard Bridge station between the 
years 1960 and 2016 in the context of a histogram plot and b time series plot of peak, volume and duration series
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parameters, 3 parameters and 4 parameters) are introduced 
as a candidate function in modelling univariate marginals 
of the flood characteristics. Table 3 lists the mathematical 
expressions (i.e. PDF) of distinct varieties of univariate 
parametric models and their associated vector of unknown 
statistical parameters or model parameters which are tar-
geted for modelling marginal distribution of flood charac-
teristics. The vector of the unknown statistical parameter 
of the fitted distributions for each flood characteristic is 
estimated based on the maximum likelihood estimation 
(MLE) (i.e. Owen 2008), method of moments (MOM) 
(i.e. Bain and Engelhardt 1991; Rao and Hameed 2000), 
least square method (LS) and L statistics-based method of 
L-moments (i.e. Hosking and Walis 1987). All the univari-
ate distribution fitting procedures and their parameter esti-
mation are carried out using Easyfit software (Mathwave 
Technologies 2004, 2017).

Result and discussions

Test for stationarity within time series of flood 
characteristics

The individual flood characteristics need to be stationary or 
time independency behaviour before introducing into the uni-
variate or multivariate copula distribution framework. Before 
modelling the joint dependency between floods using bivari-
ate copula functions, it is mandatory to investigate whether 
the individual time series associated with each flood char-
acteristic exhibits no serial correlations or stationary. For 
this, Ljung and box (1978)-based hypothesis testing also 
called Q-statistics is undertaken for investigating whether 
the individual series are time independent and no serial cor-
relation (Cong and Brady 2011). Statistically, the Q-statistics 

Table 3   Mathematical expressions for density functions and vector of unknown statistical parameters of different univariate probability distribu-
tion functions

Parametric mar-
ginal distribution 
functions

Probability density function (PDF) Remarks

Exponential (1P) 
and 2(P)

f (x) = �e−�x and f (x) = �e−�(x−�) 𝜆 > 0—continuous inverse scale parameter; �—continuous loca-
tion parameter

Domain: y < x < +∞

Frechet (2P) and 
(3P) f (x) =

�

�

(
�

x−�

)�+1

e(�∕x−�)
�

and f (x) =
�

�

(
�

x

)�+1

e
−
(

�

x

)�
𝛼 > 0(shape), 𝛽 > 0(scale), 𝛾 > 0(location) , such that, � ≡ 0 

yield 2-parameter Frechet functions
Domain: y < x < +∞

Gamma (2P) and 
(3P)

f (x) =
(x−�)�−1

��� (�)
e

−(x−�)

� and f (x) =
x�−1

��� (�)
e

−x

�
𝛼 > 0, 𝛽 > 0, 𝛾 > 0—shape, scale and locations parameter such 

that � ≡ 0 yield 2-parameter gamma structure
GEV (3P)

f (x) =
1

�
e−(1+kz)

−1∕k(1+kz)−1−1∕k for k ≠ 0

1

�
e(−1−e

(−z)) for k = 0

k, �,� signifies for shape, scale and their location parameter, 
such that, 𝜎 > 0 and z ≡ (x−�)

�
Domain: 1 + k(x − 𝜇)∕𝜎 for k ≠ 0& −∞ < x < +∞ for k = 0

Gen. Gamma 
(3P)

f (x) =
k(x)k�−1

�k�� (�)
e−(x∕�)

k Domain: y ≤ x⟨+∞;k⟩0 and 𝛼 > 0(shape), 𝛽 > 0(scale), 𝛾 > 0(location)

Gumble max 
(2P)

f (x) =
1

�
e(−z−e

−z)
{
z =

x−�

�

}
Domain: −∞ < x < +∞

𝜇 and 𝜎 > 0 be the scale and location parameter
Inv. Gaussian 

(2P) f (x) =
√

�

2�x3
e
−

�(x−�)2

2�2 (x)
𝜆 > 0,𝜇 > 0(continuous parameter,

�(location parameter) for 𝛾 < x < +∞

Johnson SB (4P)
f (x) =

�

�
√
2�z(1−z)

e
−0.5

�
�+� ln

z

1−z

�2 Domain: � ≤ x ≤ � + �

𝛾 , 𝛿 > 0(shape);𝜆 > 0(scale);𝜉(location parameter)

Log-Gamma 
(2P) f (x) =

(ln x)�−1

x��� (�)
e
−
(

ln x

�

)
Domain: 0 < x < +∞

𝛼 > 0, 𝛽 > 0(shape parameter)

Log-Logistic 
(3P) and (2P) f (x) =

�

�

(
x−�

�

)�−1(
1 +

(
x−�

�

)�)−2

and

f (x) =
�

�

(
x

�

)�−1(
1 +

(
x

�

)�)−2

Domain: 𝛾 < x < +∞

𝛼 > 0(shape);𝛽 > 0(scale)& 𝛾 > 0(location)

Lognormal (3P) 
and (2P) f (x) =

e
−0.5

�
ln (x−�)−�

�

�2

(x−�)�
√
2�

and f (x) =
e
−0.5

�
ln (x)−�

�

�2

(x)�
√
2�

𝛾 < x < +∞ ; 𝜎 > 0(shape parameter);

�(location parameter);�(scale parameter)

Weibull (2P) and 
(3p) f (x) =

�

�

(
x−�

�

)�−1

e
−
(

x−�

�

)�

and f (x) =
�

�

(
x

�

)�−1

e
−
(

x

�

)� Domain: 𝛾 ≤ x < +∞

𝛼 > 0(shape), 𝛽 > 0(scale) and 𝛾(location parameter)



833Acta Geophysica (2020) 68:821–859	

1 3

usually follows a Chi-square distribution with ‘h’ degree of 
freedom under the null hypothesis H0 (Ljung and Box 1978; 
Daneshkhan et al. 2016). Thus, Q-statistics for the sample 
size ‘n’ with ‘t’ is the total no. of lags being tested with sam-
ple autocorrelations at the specific lag, i.e. 𝜌̂t , as given below:

where null hypothesis (H0) = zero autocorrelation or inde-
pendent distributions and alternative hypothesis (Ha) = exist-
ence of serial correlation (or autocorrelation). The estimated 
Q-statistics and their associated p value for different lag 
sizes (i.e. 30, 20, 15, 10 and 5) are listed in Table 4 which 
points for almost negligible or zero first-order autocorre-
lations as their estimated statistics are below their critical 
value for each of the univariate series by accepting the null 
hypothesis (H0) at 5% or 0.05 significance level against their 
alternative hypothesis (Ha) (Table 4). Figure 4a, b illustrates 
the graphical visualizations for investigating the existence 
of serial correlation within flood characteristics in the con-
text of autocorrelation plot and sample autocorrelation plots. 
The nonparametric rank-based Mann–Kendall or M–K test is 
also incorporated for visualizing the monotonic trend within 
the historical series of flood characteristics under the null 
hypothesis H0 against their alternative hypothesis Ha (Mann 
1945; Kendall 1975), and their estimated values are listed in 
Table 5. The test is incorporated under two-tailed hypothesis 
attempts of the null hypothesis H0 (i.e. zero trend with flood 
characteristics) against alternative hypothesis Ha which can 
be mathematically expressed as:

(24)Q = n(n + 2)

h∑
t=1

𝜌̂2
t
∕n − t

(25)S =

n−1∑
i=1

n∑
j=1+1

sgn
(
Tj − Ti

)

where Tj and Ti represent the annual value in year ‘j’ and 
‘i’, respectively. Test statistics reveals the acceptance of 
null hypothesis (H0) which points the existence of zero 
monotonic trend at the 5% or 0.05 level of significance level 
within flood series. In conclusion, no significant trends are 
detected for the flood characteristics; therefore, detrend or 
prewhitening procedure is not adopted (i.e. Razawi and 
Vogel 2018) before introducing the flood samples into uni-
variate probability distribution framework.

Dependence measures of flood characteristics

The Pearson’s linear correlation (r) and two nonparametric 
dependence measures also called the rank-based correlations 
statistics such as Kendall’s tau (t) and Spearman’s rho (ρ) 
are used to measure the strength of dependency between 
flood characteristics and their estimated values are listed 
in Table 6. Actually, the Pearson coefficient only captures 
the linear dependencies and therefore might be incompat-
ible for heavy-tailed distribution series (Tosunoglu and Kisi 
2016). According to Favre et al. (2004), the Pearson cor-
relation coefficient is not invariant to monotonic transfor-
mations to Kendall’s and Spearman’s correlation measures. 
Also, it can be strongly affected by outliers. On the other 
hand, the nonparametric measures of dependence called 
the Kendall’s tau and Spearman’s correlation measures are 
invariant under monotonic nonlinear transformations, with-
out any assumption of underlying distribution structure, and 
thus frequently used as effective dependence measures for 

(26)sgn
�
Tj − Ti

�
=

⎧⎪⎨⎪⎩

1, if Tj > Ti
0, if Tj = Ti
−1, if Tj < Ti

Table 4   The Q-statistics and their corresponding p value for peak flow, volume and duration series

Flood vectors Box–Ljung test Lag size (30) Lag size(20) Lag size(15) Lag size(10) Lag size(5)

Peak flow X-squared (Q-statistics) 18.869 14.88 13.338 9.7188 4.89
df 30 20 15 10 5
p value 0.9427 0.7828 0.5762 0.4655 0.4295

Volume X-squared (Q-statistics) 14.724 11.981 10.683 7.4968 0.49837
df 30 20 15 10 5
p value 0.9912 0.9167 0.7747 0.6779 0.9922

Duration X-squared (Q-statistics) 23.343 15.702 13.958 6.1707 3.035
df 30 20 15 10 5
p value 0.8009 0.7349 0.5287 0.8007 0.6946

Note Critical value (at 5% level of 
significance)

43.77 31.41 25 18.31 11.07
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the nonlinear modelling in multivariate statistics. Both the 
Kendall’s tau and Spearman’s are calculated using ranking 
of random series; also both exhibited high resistance to out-
liers (Klein et al. 2011). From Table 6, it can be observed 
that flood peak and volume pair exhibited strong positive 
correlation. But the correlation structure between flood 

peak–duration pair and flood volume–duration pair is very 
weak where both are having negative dependence structure 
or negatively correlated.

Several graphical tools such as scatter plot, chi plots (i.e. 
Fisher and Switzer 2001) and Kendall’s plots (i.e. Genest 
and Boies 2003) of the pair-wise flood characteristics are 

Fig. 4   a Autocorrelation plot and b sample autocorrelation plot of flood characteristics (P, V and D)
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also presented for analysing the degree of inter-association 
and strength of dependency between flood attribute pairs, 
as illustrated in Figs. 5, 6 and 7. Chi-plot is actually a scat-
ter plot of the pairs (�i�i) , where it uses the data ranks, and 
�i values is a measure of the distance of bivariate random 
observations (say pivi) from the centre of the data sets within 
the range of [− 1, 1]. Thus, for positively or negatively cor-
related random pairs, their values will tend to positive or 
negative. Also, the control limits �i are another measuring 

Table 5   Mann–Kendall (or M–K) test for identifying the existence of 
monotonic trend within time series of flood variables

M–K Test Peak Volume Duration

z 0.066919 0.058556 − 0.40259
p value 0.9466 0.9533 0.6872
S 9 8 − 4.9000e+01
varS 1.429167e+04 1.429067e+04 1.42150e+04
τ 7.346939e−03 6.533279e−03 − 4.08422e−02

Table 6   Correlation coefficient 
between flood peak flow–
volume, volume–duration and 
peak flow–duration series

Dependence measure Peak–volume (P–V) Volume–duration (V–D) Peak–duration (P–D)

Pearson’s correlation (r) 0.7387784 − 0.1079511 − 0.0061526
Kendall’s correlation (τ) 0.60759499 − 0.0225141 − 0.0741828
Spearman’s correlation (ρ) 0.79425677 − 0.0343127 − 0.094851

Fig. 5   Scatter plot of the multivariate flood characteristics
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Fig. 6   Graphical interpretation of strength of dependence of pair-wise flood characteristics using Chi-plot between P–V, P–D and V–D

Fig. 7   Kendall’s plot (or K-plot) of the pair-wise flood characteristics such as between P–V (shows high and positive correlation structure), P–D 
(shows negatively correlated random pairs with weak dependency exhibited), V–D (negatively correlated random pairs)
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factor in chi-plot that are placed at � = ±cp∕
√
n (Fisher and 

Switzer 2001). Therefore, in case of stronger dependency the 
random pairs must be outside the control limit of chi-plot 
otherwise inside the control limit region which can be indi-
cated for independence between random pairs. On the other 
hand, the Kendall’s plot is analogous to quantile–quantile 
(Q–Q) plot such that deviation of random pairs from the 
main diagonal of K-plot is the indication of inter-dependence 
otherwise it could be revealed for independence when the 
pot tends to be linear (Genest and Boies 2003; Genest and 
Favre 2007). The scatter plot between flood peak–volume 
pair of Fig. 5 clearly indicates the existence of positive and 
strong dependency because the increased density of points 
is located near the diagonal region (i.e. close to 45° angle). 
From Fig. 5, it reveals the existence of weak dependency 
between flood volume–duration and flood peak–duration 
pairs. Based on ranked chi-plot for flood peak–volume 
series, it indicated the evidence of strong dependency 
between these random pairs because a strong deviation from 
the control limit is observed for these random pairs. Between 
flood peak–duration and volume–duration pairs, very weak 
dependency is observed because most of the data samples 
are within the region of control limit. Similarly, based on 
kendall’s plot, it also indicates strong positive dependency 
between flood peak–volume pair because the data pairs 
are much deviated from the main diagonal, but the flood 
peak–volume and volume–duration random pairs are much 

closer to main diagonal, thus indicating negative and weak 
dependencies between these flood attribute pairs.

Modelling of univariate flood marginal distributions

From Tables 4 and 5, it is already revealed that no significant 
trends are detected for the flood characteristics; therefore, 
the prewhitening procedure is not adopted (i.e. Razawi and 
Vogel 2018) before introducing the flood samples into uni-
variate probability distribution framework.

A distinct variety of parametric probability distribu-
tion families (i.e. 1 parameter, 2 parameters, 3 parameters 
& 4 parameters) are introduced as a candidate model for 
demonstrating the univariate marginal distribution of each 
individual flood characteristic, and their PDFs are listed in 
Table 3. The vector of the unknown statistical parameters 
is estimated using maximum likelihood estimation (MLE), 
method of moments (MOM), least square method (LS) and 
method of L-moments, and the estimated parameter val-
ues of different univariate functions are listed in Table 7. 
Different analytical-based goodness-of-fit measures such 
as Kolmogorov–Smirnov (or K–S) (i.e. Conover 1999; 
Xu et  al. 2015; Kong et  al. 2015) and Anderson–Dar-
ling (or A–D) (i.e. Anderson and Darling 1954; Scholz 
and Stephens 1987; Farrel and Stewart 2006) distance 
criteria statistics, information criteria statistics such as 
Akaike Information criteria (or AIC) (i.e. Akaike 1974), 
Schwartz’s Bayesian Information criteria (or BIC) (i.e. 

Table 7   Estimated parameters of marginal distribution of flood characteristics

Parametric Functions Flood peak (P) Flood volume (V) Flood durations (D)

Exponential (1P) l = 1.6453E−4 l = 5.2295E−5 l = 0.05252
Exponential (2P) l = 1.9373E−4, g = 916.3 l = 6.2735E−5, g = 3182.3 l = 0.08306, g = 7.0
Frechet (2P) a = 1.576, b = 3207.5 a = 1.5703, b = 10017.0 a = 2.6001, b = 13.304
Frechet (3P) a = 3.1238, b = 7764.6, g = − 4076.2 a = 2.8923, b = 22571.0, g = − 11,129.0 a = 3.6283, b = 20.616, g = − 6.7647
Gamma (2P) a = 1.7166, b = 3540.6 a = 1.71, b = 11,183.0 a = 3.0786, b = 6.1845
Gamma (3P) a = 1.2106, b = 4290, g = 884.47 a = 1.0848, b = 14,723.0, g = 3150.8 a = 1.4696, b = 8.3319, g = 6.7958
GEV (3P) k = 0.22596, s = 2683.6, m = 3765.6 k = 0.20446, s = 8736.0, m = 11890.0 k = 0.20682, s = 6.0766, m = 13.987
Log-Gamma (2P) a = 129.15, b = 0.06544 a = 164.32, b = 0.05839 a = 35.165, b = 0.08037
Log-Logistic (2P) a = 2.2801, b = 4541.7 a = 2.2731, b = 14,202.0 a = 3.6928, b = 16.426
Log-Logistic (3P) a = 2.0775, b = 4217.5, g = 423.18 a = 1.8662, b = 12,305.0, g = 2091.6 a = 2.3027, b = 10.393, g = 5.654
Log-Pearson (3P) a = 663.54, b = − 0.02887, g = 27.608 a = 1787.0, b = − 0.01771, g = 41.234 a = 14.523, b = 0.12506, g = 1.0099
Gumbel max (2P) s = 3617.0, m = 3990.2 s = 11402.0, m = 12,541.0 s = 8.4608, m = 14.156
Lognormal (2P) s = 0.7362, m = 8.4513 s = 0.74093, m = 9.5943 s = 0.47178, m = 2.826
Lognormal (3P) s = 0.75437, m = 8.4267, g = 85.951 s = 0.8237, m = 9.4858, g = 1115.2 s = 0.69194, m = 2.413, g = 4.8982
Weibull (2P) a = 1.599, b = 6398.7 a = 1.5993, b = 20008.0 a = 2.5437, b = 20.375
Weibull (3P) a = 1.1175, b = 5389.8, g = 899.42 a = 1.0689, b = 16,369.0, g = 3155.6 a = 1.1951, b = 12.878, g = 6.9279
Inv. Gaussian (2P) l = 10,434.0, m = 6078.0 l = 32,699.0, m = 19,122.0 l = 58.617, m = 19.04
Johnson SB (4P) g = 1.5161, d = 0.74495

l = 27,319.0, x = 1304.2
g = 2.2027, d = 1.0357, 

l = 1.3052E+5, x = 961.8
g = 2.5314, d = 0.92215, 

l = 118.81, x = 8.2791
Gen. gamma (3P) k = 1.054, a = 1.8127, b = 3540.6 k = 1.0521, a = 1.8019, b = 11,183.0 k = 1.0877, a = 3.4664, b = 6.1845
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Table 8   Performance of different univariate models for fitting mar-
ginal distribution for flood characteristics (a) based on K–S and A–D 
test distance statistics, (b) based on information criteria statistics such 

as AIC, BIC and HQC, (c) based on error indices statistics such as 
MSE and RMSE

Functions Peak Volume Durations

p value KSn (d-max) ADn (d-max) p value KSn (d-max) ADn (d-max) p value KSn (d-max) ADn 
(d-max)

(a)
Fretch (2P) 0.32428 0.13147 1.0751 0.28744 0.1359 1.1173 0.36268 0.1272 0.58456
Fretch (3P) 0.99732 0.05351 0.21153 0.96141 0.06828 0.3033 0.68038 0.09849 0.36878
Gev (3P) 0.99655 0.05451 0.21667 0.99931 0.04897 0.24945 0.82259 0.086 0.35244
Log-gamma (2P) 0.97557 0.06486 0.22646 0.95247 0.07004 0.26683 0.85726 0.08255 0.3451
Log-logistic (2P) 0.96909 0.06655 0.24216 0.88242 0.07982 0.32827 0.73162 0.09416 0.49615
Log-logistic (3P) 0.9968 0.05421 0.23129 0.9471 0.07101 0.36216 0.6921 0.09751 0.38531
Gumbel (2P) 0.4966 0.11417 0.90135 0.62555 0.10307 0.74771 0.51472 0.11255 1.0798
Gamma (2P) 0.81376 0.08684 0.44712 0.94562 0.07126 0.34627 0.54764 0.10968 1.1617
Gamma (3P) 0.8802 0.08007 0.26953 0.98701 0.06089 0.21109 0.89254 0.07865 0.37708
Exponential (1P) 0.03558 0.19698 2.3258 0.0784 0.17643 2.1603 0.0000381 0.32306 6.9597
Exponential (2P) 0.45829 0.11768 2.3535 0.9265 0.07425 2.094 0.25721 0.13985 1.661
Lognormal (2P) 0.9977 0.05293 0.19412 0.98539 0.06157 0.2338 0.60127 0.10511 0.4602
Lognormal (3P) 0.99466 0.05638 0.20029 0.93057 0.07365 0.28195 0.79396 0.08867 0.33032
Weibull (2P) 0.81311 0.0869 0.73212 0.89172 0.07875 0.63575 0.23928 0.14235 1.5472
Weibull (3P) 0.86868 0.08134 0.28905 0.99653 0.05454 0.194 0.88156 0.07992 0.45987
Inv.Gaussian (2P) 0.98175 0.06293 0.38095 0.81919 0.08633 0.48954 0.87056 0.08114 0.60496
Gen. gamma (3P) 0.66896 0.09944 0.45939 0.89941 0.07782 0.36811 0.28097 0.13672 0.91168
Johnson SB 0.84788 0.84788 14.822 0.99811 0.05222 0.17314 0.56249 0.1084 11.874

Functions Peak Volume Duration

AIC BIC HQIC AIC BIC HQIC AIC BIC HQIC

(b)
Fretch (2P) − 284.118 − 280.294 − 282.66 − 274.569 − 270.745 − 273.11 − 307.04 − 303.22 − 305.588
Fretch (3P) − 371.057 − 365.32 − 368.87 − 353.796 − 348.06 − 351.61 − 331.1 − 325.361 − 328.912
Gev (3P) − 374.335 − 368.599 − 372.15 − 268.985 − 263.249 − 266.8 − 336.32 − 330.583 − 334.135
Log-gamma (2P) − 370.146 − 366.322 − 368.69 − 359.914 − 356.09 − 358.46 − 340.53 − 336.709 − 339.077
Log-logistic (2P) − 360.392 − 356.568 − 358.94 − 294.927 − 291.103 − 293.47 − 321.32 − 317.493 − 319.861
Log-logistic (3P) − 371.549 − 365.813 − 369.36 − 350.302 − 344.566 − 348.12 − 330.41 − 324.673 − 328.225
Gumbel (2P) − 294.924 − 291.1 − 291.43 − 308.477 − 304.653 − 307.02 − 293.6 − 289.775 − 292.143
Gamma (2P) − 335.861 − 332.037 − 334.4 − 360.025 − 356.201 − 358.57 − 260.55 − 256.722 − 259.089
Gamma (3P) − 216.301 − 210.565 − 214.12 − 210.107 − 204.371 − 207.92 − 343.62 − 337.88 − 341.438
Exponential (1P) − 242.501 − 240.589 − 164.07 − 248.425 − 246.513 − 247.7 − 179.33 − 177.416 − 178.6
Exponential (2P) − 249.916 − 246.092 − 248.46 − 345.901 − 342.076 − 344.44 − 280.58 − 276.758 − 279.126
Lognormal (2P) − 379.344 − 375.52 − 377.89 − 371.028 − 367.204 − 369.57 − 327.46 − 323.633 − 326.001
Lognormal (3p) − 285.412 − 279.676 − 283.23 − 352.906 − 347.17 − 350.72 − 340.76 − 335.026 − 338.578
Weibull (2P) − 329.681 − 325.857 − 328.23 − 342.868 − 339.044 − 341.41 − 292.91 − 289.085 − 291.453
Weibull (3P) − 200.361 − 194.625 − 200.9 − 376.477 − 370.741 − 374.29 − 200.15 − 194.418 − 197.97
Inv.Gaussian (2P) − 362.489 − 358.665 − 361.03 − 344.722 − 340.898 − 343.27 − 325.76 − 321.938 − 324.306
Gen. gamma (3P) − 321.553 − 315.817 − 319.37 − 338.918 − 333.182 − 336.73 − 290.95 − 285.21 − 291.856
Johnson SB (4P) − 340.899 − 333.251 − 337.99 − 381.821 − 374.173 − 378.91 − 223.65 − 216.006 − 220.742

Functions Peak Volume Duration

MSE RMSE MSE RMSE MSE RMSE

(c)
Fretch (2P) 0.00314 0.05607 0.00380 0.06168 0.00199 0.04458
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Schwarz 1978) and Hannan–Quinn Information criteria 
(HQIC) (i.e. Hannan and Quinn 1979) and error indices 
statistics such as mean square error (or MSE) and root 
mean square error (or RMSE) (i.e. Singh and Demissie 
2004; Moriasi et al. 2007) are incorporated for selecting 
the possible marginal structure of peak flow, volume and 
duration series based on the comparative assessments 
between their empirical cumulative and theoretical prob-
abilities. The empirical nonexceedance probabilities are 
estimated from the Gringorten-based position-plotting 
formula using Eq.  (23). Performance of different uni-
variate models for fitting marginal distribution for flood 
characteristics is listed in Table 8a–c. It reveals that the 
performance of Lognormal (2P) distribution is much sat-
isfactory for flood peak flow samples in comparison with 
other candidate functions such as the K–S value and A–D 
test statistics ( KSn (d-max) = 0.05293 with p value 0.9977) 
and ( ADn (d-max) = 0.19412) where the D-critical value 
for K–S and A–D test for sample size 50 is 0.1884 and 
2.5018 at 5% significance level. Similarly, the performance 
of Johnson SB-4P and Gamma-3P is much consistent for 
representing flood volume and duration series such as K–S 
value and A–D test value for Johnson SB-4P distribution 
( KSn (d-max) = 0.0522 with p value 0.99811) and ( ADn 
(d-max) = 0.17314), and for Gamma-3P distribution it is 
( KSn (d-max) = 0.07865 with p value 0.89254) and ( ADn 

(d-max) = 0.37708). Statistically, if the estimated K–S and 
A–D values are below their critical level at the signifi-
cance level ‘α’, then it often indicated better model perfor-
mance with the observed flood characteristics. Information 
criteria-based statistics are also incorporated to find out 
the acceptability of the distribution functions which are 
pointed on the basis of K–S and A–D test and which indi-
cates that the AIC, BIC and HQIC values are at minimum 
for Lognormal (2P) (i.e. AIC = − 379.344, BIC = − 375.52, 
HQC = − 377.89) for representing flood peak flow value, 
Johnson SB-4P distribution (i.e. AIC = − 381.821, 
BIC = − 374.173, HQC = − 378.91) for representing 
flood volume samples and Gamma-3P distribution (i.e. 
AIC = − 343.62, BIC = − 337.886, HQIC = − 259.089) 
for representing flood duration series. Minimum the AIC, 
BIC and HQIC value always indicates for the most suitable 
model. Error indices statistics such as based on RMSE 
and MSE measures are also in support of the distribution 
function selected from distance criteria statistics and infor-
mation criteria statistics such as Lognormal (2P) distribu-
tion (MSE = 0.00046, RMSE = 0.02163) for flood peak, 
Johnson SB-4P (MSE = 0.0004112, RMSE = 0.02163) for 
volume and Gamma-3P distribution (MSE = 0.000918804, 
0.030312) for representing duration samples. Overall, 
after summarizing all the analytical testing measures, it 
is pointing towards the Lognormal (2P) distributions for 

Bold letter such as Lognormal (2P), Johnson SB-4P and Gamma-3P is recognized as best-fitted probability functions for defining marginals of 
flood characteristics P, V and D because it exhibited minimum test statistics values
K–S test Kolmogorov–Smirnov test, A–D test Anderson–Darling test, AIC Akaike Information Criteria, BIC Bayesian information criteria, 
HQIC Hannan-Quinn information criteria, RMSE root mean square error, MSE mean square error

Table 8   (continued)

Functions Peak Volume Duration

MSE RMSE MSE RMSE MSE RMSE

Fretch (3P) 0.00053 0.02304 0.00075 0.02737 0.00118 0.03436
Gev (3P) 0.00049 0.02229 0.00409 0.06394 0.00106 0.03261
Log-gamma (2P) 0.00056 0.02372 0.00069 0.02627 0.0010172 0.031894
Log-logistic (2P) 0.00068 0.02615 0.00253 0.05032 0.00149 0.03865
Log-logistic (3P) 0.00053 0.02293 0.00081 0.02835 0.001197 0.034594
Gumbel (2P) 0.00263 0.05136 0.00193 0.04394 0.0026007 0.05099
Gamma (2P)  0.00111 0.03341 0.00068 0.02624 0.005037 0.070973
Gamma (3P)* (for D) 0.01173 0.10882 0.01327 0.11520 0.000918 0.030312
Exponential (1P) 0.00075 0.08672 0.00668 0.08174 0.02661 0.16312
Exponential (2P) 0.00623 0.07890 0.00091 0.03022 0.003374 0.058087
Lognormal (2P) * (for P) 0.00046 0.02163 0.00055 0.02351 0.001321 0.03635
Lognormal (3P) 0.00294 0.05425 0.00076 0.02762 0.000973 0.031191
Weibull (2P) 0.00126 0.03555 0.00097 0.03115 0.002637 0.05135
Weibull (3P) 0.01612 0.12699 0.00048 0.02182 0.01619 0.12726
Inv.Gaussian (2P) 0.00066 0.02561 0.00094 0.03059 0.00137 0.03697
Gen. gamma (3P) 0.00014 0.03780 0.00101 0.03177 0.00248 0.04977
Johnson SB (4P) * (for V) 0.00093 0.03053 0.00041 0.02028 0.00972 0.09861
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Fig. 8   Fitted marginal distribution and their probability density functions (PDFs), cumulative distribution functions (CDFs), plot for flood char-
acteristics a flood peak flow, b volume and c duration series
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flood peak discharge flow, Johnson SB-4P for volume and 
Gamma-3P for modelling flood duration series. The prob-
ability density or PDFs plot and cumulative distribution 
or CDFs plot of the best-fitted marginal distribution of the 
flood characteristics are illustrated in Fig. 8a–c.  

Modelling of joint dependence structure using 
bivariate copulas

In this demonstration, several bivariate copula families 
such as one elliptical family, i.e. Gaussian copula, mono-
parametric and mixed version of bi-parametric Archimedean 
families, i.e. Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7 
and BB8 copulas, also rotated versions Archimedean copula 
families, i.e. rotated Gumbel by 90 degrees, are incorpo-
rated, and then, most appropriate copulas are selected for 
bivariate joint distribution analysis of flood characteristics. 
The rotated Archimedean copulas are included to cover 
negative dependence as well. In the modelling of flood 
peak–volume series, the rotated Clayton copula can’t be used 
because of positively dependent random variables between 
these random pairs which is only applicable to capture nega-
tive flood correlation structure (i.e. kendall’s tau < 0). Simi-
larly, the Gumbel–Hougaard, Clayton, Joe, BB1, BB6, BB7, 
BB8 copulas can’t be used for negatively dependent data 
(i.e. Kendall’s tau < 0) such as between P–D, which is only 
applicable for positively correlated random variables such 
as between flood pair, P–V.

The vector of unknown statistical or dependence param-
eters of copula families fitted to observed flood attribute 
pairs is estimated using method of moment-like (MOM) 
estimators based on the inversion of Kendall’s tau and maxi-
mum pseudo-likelihood (MPL) estimators using Eqs. (6)–(9) 
for MOM estimator and based on Eq. (10) for MPL-based 
copula parameter estimation. The MOM estimators can’t be 
used for the estimation of bi-parametric copulas (i.e. hav-
ing more than one dependence parameter) such as BB1, 
BB6, BB7 and BB8 copula, but MPL estimator can be used 

for estimating one parameter or more than one parameter 
copula. The estimated copula parameters fitted to P–V and 
P-D random pairs using both MPL and MOM estimators are 
listed in Tables 9a, b and 10a, b.  

To analytically validate and identify the most justifiable 
copula for describing joint distribution for both the estima-
tors (i.e. MOM and MPL), it is investigated by means of 
Cramer–von Mises distance statistics with parametric boot-
strap method which is employed using Eqs. (11) and (12). 
For this purpose, the test statistics ‘Sn’ and its associated p 
value have been computed from 1000 and 500 simulated 
random samples by means of parametric bootstrap proce-
dure as given in Tables 9a, b (for MPL-based estimation 
procedure) and 10a, b (for MOM-based copulas estimation 
procedure). Table 9a, b shows the result based on MPL-
based copula simulations; it reveals that the Gaussian cop-
ula exhibited minimum ‘Sn’ statistics (i.e. ‘Sn’ = 0.013444) 
and the highest p value (i.e. p value = 0.9356 for N = 1000 
bootstrap samples and p value = 0.9411 for N = 500 random 
bootstrap samples) for flood peak–volume pair, as com-
pared to another copula function. From the same table, it 
reveals that the frank copula is identified as the most suit-
able bivariate model for capturing joint structure of flood 
peak–duration (i.e. ‘Sn’ = 0.031215, p value = 0.4001 for 
N = 1000 bootstrap samples and p value = 0.3762 for N = 500 
bootstrap samples). Similarly, Table 10a, b shows the esti-
mations based on MOM estimators, the Gaussian copula 
recognized as most suitable for constructing joint distribu-
tion of flood peak–volume and peak–duration samples (i.e. 
‘Sn’ = 0.01579, p value = 0.9156 for N = 1000 bootstrap sam-
ples and p value = 0.9012 for N = 500 bootstrap samples), for 
P–V random pairs, (i.e. ‘Sn’ = 0.030559, p value = 0.4101 
for N = 1000 bootstrap samples and p value = 0.3982 for 
N = 500 bootstrap samples), for P–D random pairs. Also, 
the Kendall’s tau τ values estimated from the derived copu-
las fitted to flood attribute pairs are also listed in Tables 9 
and 10 for each copula function. Besides the analytical fit-
ness measures, graphical visual inspections are also carried 

Fig. 8   (continued)
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out based on scatter plot (Fig. 9a, b) of the 1000 sample 
observations which are simulated from the joint distribu-
tion using copula functions which are recognized as most 
consistent (i.e. based on analytically goodness-of-fit meas-
ure) for both MPL- and MOM-based copula dependence 
parameter estimation procedures. The Kendall’s τ values of 
the simulated samples are also shown in Fig. 9a, b. Similarly, 

Fig. 10a, b illustrates the chi-plot and K-plot of the set of 
1000 random samples drawn from the best-fitted bivariate 
copulas derived from MOM and MPL estimators for P–V 
and P–D combinations. From the comparison of scatter plots 
of simulated data (green colour) with overlapped observed 
flood characteristics (red colour), it can be revealed that the 
Gaussian copula performed satisfactorily for capturing the 

Table 9   Estimating copula dependence parameters based on the maximum pseudo-likelihood (MPL) estimator and their corresponding good-
ness-of-fit statistics via parametric bootstrap technique for (a) flood peak flow and volume and (b) peak flow and duration

NA denotes that SE values are not available for this copula function. Also, rotated Clayton copula can’t be used for positively dependent random 
variables, which is only applicable to capture negative flood correlation structure. Bold letter indicated via * denotes that the Gaussian copula 
exhibiting minimum Sn value, which means the performance of Gaussian copula for P–V is much consistent than the other copula functions. 
(� ∗) in the last column of above table indicated the estimated kendall’s tau value from derived copulas fitted to observed random series]
Bold letter indicated via * denotes that the performance of Frank copula is most satisfactory that other copulas  for the flood pair P-D. NA 
denotes that for Gumbel–Hougaard, Clayton, Joe, BB1, BB6, BB7, BB8 copulas can’t be used for negatively dependent data [i.e. only positively 
correlated random variables can be simulated (i.e. Kendall’s tau > 0)]

(a) For (P–V) samples via MPL estimator N = 1000 (No. of bootstrap 
sampling)

N = 500 (No. of bootstrap 
sampling)

Kendall’s tau (� ∗) 
estimated from fitted 
copula

Copula family Parameter estimates 𝜃̂ Standard error SE Maximized 
log-likelihood

Sn (p value) Sn Sn (p value) Sn

Gaussian* 0.8333772 0.052 26.98 0.013444 0.9356 0.013443 0.9411 0.6271915
Clayton 2.600312 0.716 26.57 0.035144 0.1923 0.035144 0.1806 0.5652469
Gumbel–Hou-

gaard (GH)
2.311711 0.331 22.21 0.027751 0.2063 0.027751 0.2605 0.56742

Frank 7.878869 1.829 23.98 0.02383 0.464 0.02383 0.4361 0.5980901
Joe 2.553838 0.372 16.26 0.083346 0.0004995 0.083346 0.002498 0.4572527
Rotated Clayton 

(90°)
NA NA NA NA NA NA NA NA

BB1 PAR1 = THETA = 1.44, 
PAR2 = DELTA = 1.49

NA 27.99 0.016513 0.6988 0.016513 0.6768 0.6098018

BB6 PAR1 = THETA = 1.001, 
PAR2 = DELTA = 2.310108

NA 22.21 0.02777 0.1513 0.02777 0.1707 0.5673704

BB7 PAR1 = THETA = 1.756445, 
PAR2 = DELTA = 2.4499998

NA 27.77 0.0189 0.49 0.0189 0.4721 0.5955592

BB8 PAR1 = THETA = 6, 
PAR2 = DELTA = 0.734783

NA 21.98 0.036858 0.08541 0.036858 0.09281 0.5510257

(b) For (P–D) samples N = 1000 (No. of boot-
strap sampling)

N = 500 (No. of boot-
strap sampling)

Kendall’s tau (� ∗) 
estimated from 
fitted copula

Copula family Parameter esti-
mates 𝜃̂

Standard error SE Maximized 
log-likeli-
hood

Sn (p value) Sn Sn (p value)

Gaussian − 0.1276312 0.052 0.3041 0.032132 0.486 0.032132 0.48 − 0.08147478
Clayton NA NA NA NA NA NA NA NA
Gumbel–Hou-

gaard (GH)
NA NA NA NA NA NA NA NA

Frank* − 0.6942 0.777 0.262 0.031215 0.4001 0.031215 0.3762 − 0.07676464
Rotated Clayton 

(90°)
− 0.3116 NA 1.134 0.049363 0.2672 0.049363 0.2864 − 0.1347984

Joe NA NA NA NA NA NA NA NA
BB1 NA NA NA NA NA NA NA NA
BB6 NA NA NA NA NA NA NA NA
BB7 NA NA NA NA NA NA NA NA
BB8 NA NA NA NA NA NA NA NA
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observed dependence of flood variables for P–V and P–D 
series in case of MOM-based estimators since the simulated 
data are adequately overlapped with the natural dependence 
of observed flood characteristics. Similarly, for MPL estima-
tors, the performance of Gaussian copula (for P–V samples) 
and Frank copula (for P–D samples) is much satisfactorily 
and in support of analytical fitness test result.

Joint and conditional distributions and their 
associated return periods

The univariate return period of the flood characteristics 
is derived from best-fitted univariate probability distribu-
tion functions (i.e. Lognormal (2P) for flood peak, Johnson 

Table 10   Dependence parameter estimates of copulas function based 
on the Inverse of Kendall’s tau [method of moment (or MOM)] and 
their corresponding goodness-of-fit statistics based on the parametric 

bootstrap technique for (a) flood peak flow and volume and (b) peak 
flow and duration pairs

The bold letter indicated via * represents that Gaussian copula poses the minimum value of Sn statistics and thus most consistent bivariate func-
tions than other copulas for the flood pair P-V. NA denotes that the parameters of the two parameters BB1, BB6, BB7 and BB8 copula can’t be 
estimated via MOM estimators hence, standard error values and Sn statistics are not available. Rotated Clayton copula can’t be used for positively 
dependence random series. Also, ( � ∗ ) represented the value of Kendall’s tau estimated from the fitted copulas with the flood characteristics
The bold letter indicated via * represents that Gaussian copula poses the minimum value of Sn statistics for the flood pair P-D as compared with 
the other bivariate copula functions; NA denotes that all such copulas cannot be used for negative dependence modelling between the random 
variables, only applicable for positively correlated flood characteristics

(a) For (P–V) samples N = 1000 (No. of bootstrap 
sampling)

N = 500 (No. of boot-
strap sampling)

Kendall’s tau 
(� ∗) estimated 
from fitted 
copula

Verification via 
iTau (calculated 
value), calibra-
tion of fitted 
copula parameter

Copula family Parameter 
estimates 𝜃̂

Standard error 
SE

Sn (p value) Sn Sn (p value) Sn

Gaussian* 0.8159716 0.054 0.01579 0.9156 0.015797 0.9012 0.6075949 0.8159716
Clayton 3.097 0.774 0.027508 0.2073 0.027508 0.1727 0.6067123 3.096775
Gumbel–Hou-

gaard (GH)
2.548387 0.387 0.019973 0.6199 0.019973 0.5818 0.6075949 2.848388

Frank 8.135964 1.009 0.022772 0.4461 0.022772 0.508 0.607595 8.135964
Joe 3.921185 NA 0.036051 0.03447 0.036051 0.02495 0.607595 3.921185
Rotated Clayton 

(90°)
NA NA NA NA NA NA NA NA

BB1 NA NA NA NA NA NA NA NA
BB6 NA NA NA NA NA NA NA NA
BB7 NA NA NA NA NA NA NA NA
BB8 NA NA NA NA NA NA NA NA

(b) For (P–D) samples N = 1000 (No. of boot-
strap sampling)

N = 500 (No. of bootstrap 
sampling)

Verification via 
iTau (calculated 
value), calibra-
tion of fitted 
copula parameter

Copula family Parameter 
estimates 𝜃̂

Standard error 
SE

Kendall’s tau 
(� ∗) estimated 
from fitted 
copula

Sn (p value) Sn (p value)

Gaussian* − 0.1163 0.178 − 0.0742068 0.030559 0.4101 0.030559 0.3982 − 0.1162625
Frank − 0.6706 0.003 − 0.0741785 0.030644 0.3881 0.030644 0.4401 − 0.6706383
Rotated Clayton − 0.1602536, 

par2 = 0
NA − 0.0741827 0.031419 0.537 0.031419 0.488 − 0.1602536

Clayton NA NA NA NA NA NA NA NA
Gumbel–Hou-

gaard (GH)
NA NA NA NA NA NA NA NA

Joe NA NA NA NA NA NA NA NA
BB1 NA NA NA NA NA NA NA NA
BB6 NA NA NA NA NA NA NA NA
BB7 NA NA NA NA NA NA NA NA
BB8 NA NA NA NA NA NA NA NA
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SB-4P for flood volume and Gamma-3P for flood duration 
series) using Eq. (13) and represented in Fig. 11.

Univariate return periods would attribute for underes-
timations or overestimations of hydrologic risk. This 
approach would be useful when only one flood character-
istic is significant in design criteria, but in practical the 
considerations of multiple design variables are required 
for revealing effective risk practices. The best-fitted copu-
las which are identified in the previous section for both 
MOM and MPL estimators are employed for establishing 

joint distribution relationship, and their associated bivari-
ate joint return between f lood peak–volume and 
peak–duration pairs for both the ‘OR’ and ‘AND’ joint 
cases is estimated using Eqs. (14) and (15). Figures 12 and 
13 represent the joint probability density function (JPDF) 
and joint cumulative distribution function (JCDF) plots 
(i.e. three-dimensional scatter plot, surface plot and con-
tour plot) of flood peak–volume pairs using best-fitted 
Gaussian copula whose parameter is estimated using 
MOM and MPL estimator. Similarly, Figs.  14 and 15 

Fig. 9   Scatter plot for comparing observed (red colour) flood peak–
volume and peak–duration series with the set of 1000 sample obser-
vations simulated (green colour) from best-fitted bivariate copula 

functions for both MPL- and MOM-based dependence parameter 
estimation procedures
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represent the JPDFs and JCDFs of peak–duration pair 
using the Gaussian copula (i.e. best-fitted based on MOM 
estimator) and the Frank copula (best-fitted copula based 
on MPL estimator). The joint return periods of the flood 
characteristics, such as between flood peak–volume pair, 

and peak–duration pair for both OR and AND joint return 
cases, are estimated using Eqs. (14) and (15). It should be 
noted that for a given return period (or joint probability 
distribution), there may exhibit various possible combina-
tions among flood characteristic combinations. Figure 16a, 

Fig. 10   Chi-plots and K-plots of the set of 1000 random sample 
drawn from best-fitted copulas using MOM and MPL-based depend-
ence parameter estimation procedure fitted to a flood peak and vol-

ume (based on Gaussian copula) and b flood peak flow and duration 
series (Gaussian copula via MOM estimator and Frank copula via 
MPL estimator)
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b represents the scatter plot for comparing observed (in 
red colour) flood peak–volume and peak–duration combi-
nations with the set of 1000 sample observations simulated 
(in green colour) from the joint distribution of the best-
fitted bivariate copula functions and their marginal distri-
butions for both MPL- and MOM-based parametric esti-
mators. Figure 17 illustrates the OR and AND joint return 
periods derived from the best-fitted Gaussian copula for 
flood peak–volume series whose parameter is estimated 
via MOM and MPL estimators. Similarly, Fig. 18 illus-
trates the OR and AND joint return periods for flood 
peak–duration combination using the Gaussian (based on 
MOM estimator) and Frank copula (based on MPL estima-
tor). Actually, in most of the engineering-based water 
related issues, a flood episode may be considered as dan-
gerous if its peak discharge flow value is larger either its 
volume or durations is also large. In other words, perform-
ing the flood risk by considering only the single variable 
return periods would be problematic which often demands 
the joint occurrence of multiple flood characteristics. 
Therefore, Tables 11 and 12 show the estimated values of 
joint return period for both the OR and AND joint cases 
for few combinations between flood peak–volume and 

peak–duration. From the estimated return periods, it is 
revealed that the OR joint return period is smaller than 
AND joint return periods for every possible combination 
of flood characteristic, i.e. TOR < TAND. For example, if a 
f lood  ep i sode  cha rac te r i zed  by  peak  f low, 
P = 8089.2353 m3s−1, volume, V = 13185.141 m3, the OR 
joint return period is TOR

PV
 = 1.765498249 years and the 

AND return period is TAND
PV

 = 4.521252343 years. Simi-
larly, for P = 17,019.5015 m3 s−1 and V = 53,420.634, the 
OR- joint return period is TOR

PV
 = 17.614561 years and the 

AND joint return period is TAND
PV

 = 50.919642  years 
(Table  11b). Similarly, if a flood episode with peak, 
P = 12639.4182  m3  s−1, duration, D = 14.262899, the 
TOR
PD

 = 1.54  years and TAND
PD

 = 21.60  years and so on 
(Table 12a). Similar results are observed for joint return 
periods between flood peak–duration combinations which 
also reveals that the AND joint return is higher than OR 
joint return periods (i.e. TOR

PD
 < TAND

PD
 ). It is also revealed 

that univariate return periods are derived from either the 
flood peak series, TP or volume series, TV > TOR

PV
 but pro-

duces low return periods than TAND
PV

 , i.e. both (TP and 
TV) > TAND

(PV)
 (Table 11a, b). Similarly, Table 12a, b, shows 

between the flood peak–duration pairs, both (TP and 

Fig. 11   Univariate return period of the flood characteristics during 
the period of 1961–2016 (Kelantan river basin at Guillemard Bridge 
gauge station in Malaysia) derived from the Lognormal (2P) distri-

bution for flood peak flow series, Johnson SB-4P for volume and 
Gamma-3P for duration series. Note: Brown circle in the Joint CDF 
contour plot represents observed flood peak and volume samples
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TD) > TOR
PD

 and (TP and TD) < TAND
PD

 . Overall, based on the 
above results and the mathematical inequalities exhibited 
between univariate and bivariate joint return periods or 
between OR and AND joint return periods, it is concluded 
that for an effective risk-based flood risk analysis, it could 

be an essential concern and more practical to the hydrolo-
gist and water practitioner to take the accountability of 
both the cases of joint return periods, i.e. OR and AND 
joint cases, including the univariate return periods. In 
other words, considering just only the OR joint or AND 

Fig. 12   Joint probability density function (JPDF) and joint cumula-
tive distribution function (JCDF) of flood peak and volume pair using 
Gaussian copula derived from MOM estimator with Lognormal (2P) 

and Johnson SB-4P as a best-fitted marginal distribution to P and V. 
Note: Brown circle in the Joint CDF contour plot represents observed 
flood peak and volume samples
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joint return periods in the flood risk analysis might be 
problematic and might result for the underestimation or 
overestimation of hydrologic risk.        

Similarly, the bivariate conditional return periods of the 
flood peak given various percentile values of flood volume or 

duration, i.e. 
(
T(p�V≤v) and T(V�P≤p)

)
or

(
T(p�D≤d) and T(D�P≤p)

)
 

are estimated by using Eqs. (17) and (19), and their esti-
mated values are listed in Tables  11 and 12. For exam-
ple, if a flood episode is characterized with peak value, 

Fig. 13   Joint probability density function (JPDF) and joint cumu-
lative distribution function (JCDF) of flood peak and volume series 
using best-fitted Gaussian copula derived from MPL estimators with 

Lognormal (2P) and Johnson SB-4P as a best-fitted marginal to P 
and V. Note: Brown circle in Joint CDF contour plot represents the 
observed flood peak and duration samples
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P = 8089.2353 m3 s−1, and volume, V = 13,185.141 m3, then 
the conditional return periods T(P∕V ≤ v) = 58.33509 years 
and T(V∕P ≤ p) = 2.28404 years. From Table 11a, b it is also 
revealed that both the T(P∕V ≤ v) and T(V∕P ≤ p) condi-
tional return periods are higher than the TOR

PV
 , i.e. ((T(P∕V ≤ v) 

and T(V∕P ≤ p)) > TOR
PV

 ). The same mathematical inequality 
existed of return periods exhibited for flood pairs P–D, i.e. 
T(P∕D ≤ d) > TOR

PD
 and T(D∕P ≤ p) > TOR

PD
 . But for the same 

flood pair, T(P∕D ≤ d) < TAND
PD

 and T(D∕P ≤ p) < TAND
PD

 . 
From Table 11, it is also revealed that T(P∕V ≤ v) produced 
higher return periods than the return period derived from flood 
peak, TP, and also, T(V∕P ≤ p) is higher than volume, TV, 
series. Therefore, accounting both the case of joint return peri-
ods and the conditional return periods is an essential concern 
for tackling several water-related queries.

Fig. 14   MOM-based Joint probability density function (JPDF) and 
joint cumulative distribution function (JCDF) of flood peak and dura-
tion series using best-fitted Gaussian copula with Lognormal (2P) and 

Gamma-3P as a best-fitted marginal to P and D series. Note: Brown 
circle in Joint CDF contour plot represents the observed flood peak 
and duration samples
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Research conclusions

Joint probability distribution analysis of multiple interact-
ing flood is very useful for understanding critical hydro-
logic behaviour of flood episodes at a river basin scale, for 
tackling several water resources’ planning, managements 
or either flood defence infrastructure designing projects. 
In actual, univariate flood frequency analysis or return 
periods would be problematic due to multidimensional 

characteristics of flood episodes and might be attributed for 
underestimation or overestimation of hydrologic risk. There-
fore, estimating multivariate design quantiles under different 
notations of return periods, i.e. based on conditional distri-
bution and joint distributions, could be an effective attempt 
for assessing the hydrologic risk. The Kelantan River basin 
in Malaysia is often subjecting to the most severe monsoonal 
flooding and perceiving for increasing in terms of their fre-
quency and magnitude.

Fig. 15   MPL-based Joint probability density function (JPDF) and 
joint cumulative distribution function (JCDF) of flood peak and dura-
tion series using best-fitted Frank copula with Lognormal (2P) and 

Gamma-3P as a best-fitted marginal to P (peak) and D (duration) 
series. Note. Brown circle in Joint CDF contour plot represents the 
observed flood peak and duration samples
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In this study, copula-based methodology is incorporated 
for establishing bivariate frequency analysis of flood char-
acteristics, i.e. flood peak discharge flow (P), volume (V) 
and duration (D) of flood hydrograph, and applied for a case 
study of the Kelantan River basin at Guillemard bridge gauge 
station in Malaysia. At-site event-based or block (annual) 
maxima-based methodology is adopted for the 50-year 
(1961–2016) continuously distributed streamflow character-
istics of this river basin. Based on the correlation measuring 
statistics, from both the analytical approach (i.e. Pearson, 
Kendall’s tau and Spearman rho correlation coefficient) and 

graphical visual inspection (i.e. based on rank-based scatter 
plot, K-plot and Chi-plot), it is found that flood peak–flow 
flood volume pair exhibited higher and positive dependence 
structure, but both flood volume–duration and peak–dura-
tion pairs are found to be negatively correlated random pairs 
with very weak correlation and thus considered for flood 
frequency analysis. A distinguished variety of probability 
distribution functions (i.e. 1 parameter, 2 parameters, 3 
parameters and 4 parameters) are tested under parametric 
approach, for defining the univariate marginal distribution 
of each individual flood characteristic. The vector of the 

Fig. 16   Scatter plot for comparing observed flood peak–volume, 
peak–duration and volume–duration series with the set of 1000 sam-
ple observations simulated from joint distribution using best-fitted 

copula functions and their marginal distributions for both MPL- and 
MOM-based dependence parameter estimation procedures a peak–
volume and, b peak–duration pairs
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Fig. 17   OR and AND joint 
return period derived from 
both MPL- and MOM-based 
bivariate joint distributions of 
the best-fitted copula functions, 
i.e. Gaussian copula for flood 
peak (variable = a) and volume 
(variable = b) series

OR-joint return 
period for MPL 
estimator

AND-joint return period
for MPL based parameter 
estimation procedure

OR-joint return period
for MOM estimator
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unknown statistical parameter of the fitted distributions is 
estimated based on maximum likelihood estimation (MLE), 
method of moments (MOM), least square method (LS) and 
L statistics-based method of L-moments. Based on fitness 
test statistics, best-fitted marginal distributions for each flood 
characteristic are introduced for copula dependence model-
ling. A distinguished variety of bivariate copula families 
such as the mono-parametric (or 1 parameter), Archimedean 
copulas (i.e. Clayton, Frank, Gumbel, Joe), mixed form of 
bi-parametric (i.e. 2 parameters) Archimedean copulas (i.e. 
BBI based on mixing between Clayton and Gumbel copula, 
BB6 mixing between Joe and Gumbel copula, BB7 mixing 
between Joe and Clayton copula, and BB8 mixing between 
Joe and Frank copula), elliptical family copula (i.e. Gauss-
ian), and also rotated version of Archimedean copula (i.e. 
rotated Clayton by 90° of rotation) have been introduced and 
tested to model the bivariate joint probability distribution of 
flood variables occurrence, i.e. between flood peak–volume, 
and peak–duration pairs. The parameter of copulas function 
is estimated using the method of moment (MOM) based on 
inversion of Kendall’s tau (�) and maximum pseudo-likeli-
hood (MPL) estimators. The performance of each fitted cop-
ula is tested using both graphical and analytical approaches 
(i.e. based on Cramer–von Mises test statistics), and thus, 
best-fitted copulas are used for defining the joint and condi-
tional return periods of flood characteristics.

From the present demonstrations, the following specific 
research conclusions are drawn, as given below:

•	 Based on the Q-statistics and their estimated p value for 
different lag sizes, it is concluded that the time series of 
each individual flood characteristic exhibited almost neg-
ligible or zero first-order autocorrelations. Also, based on 
nonparametric rank-based Mann–Kendall or M–K test, 
it reveals the acceptance of null hypothesis (H0) which 

further points the existence of zero monotonic trends at 
the 5% or 0.05 level of significance within each flood 
series. In conclusion, no significant trends are detected 
for the flood characteristics.

•	 Based on parametric distribution fitting procedure for 
defining univariate flood marginals, it is pointing towards 
the Lognormal (2P) distributions for flood peak discharge 
flow, Johnson SB-4P for volume and Gamma-3P for 
modelling flood duration series.

•	 On performing the standard GOF test for each derived 
copula based on MOM and MPL estimators for each 
flood attribute pair, it is found that the Gaussian copula 
is the most parsimonious or best-fitted copula for flood 
peak–volume and peak–duration series using MOM-
based parametric copula estimations. On the other hand, 
the Gaussian copula is recognized as best-fitted for defin-
ing flood peak–volume dependence structure and the 
frank copula is the most justifiable for both flood peak–
duration pairs. The best-fitted copulas are employed for 
estimating the joint and conditional probability distri-
butions, and their associated return periods for various 
possible combinations of flood characteristics (i.e. P–V 
and P–D combinations) are retrieved.

•	 Overall, copula function is found to be an effective way 
for establishing joint dependency simulation as well as 
preserving dependence structure of multiple flood char-
acteristics, also revealing an effectiveness in retrieving 
both the conditional and joint return periods of the flood 
characteristics and thus could provide a better under-
standing of critical hydrologic behaviour at a river basin 
scale for assessing multivariate hydrologic risk.

•	 The present study investigated the adequacy of copula-
based methodologies under the parametric setting for 
establishing the bivariate joint dependence structure of 
the flood characteristics, i.e. between flood peak–vol-

AND-joint return period
for MOM estimator

Fig. 17   (continued)
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Fig. 18   OR and AND joint 
return period derived from 
both MPL- and MOM-based 
bivariate joint distributions of 
the best-fitted copula functions, 
i.e. Gaussian copula via MOM 
estimator and Frank copula via 
MPL estimator) for flood peak 
(axis variable = a) and duration 
(axis variable = b) series

OR-joint return period
for MPL estimator

AND-joint return period
for MPL estimator

OR-joint return period
for MOM estimator
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ume and flood peak–duration series. But no one could 
deny from the facts that the more comprehensive flood 
risk analysis can be achieved through accounting all 
the trivariate random vectors simultaneously instead of 
just the pair-wise joint analysis (i.e. Reddy and Ganguli 
2013; Fan and Zheng 2016; Daneshkhan et al. 2016). 
Also, according to Graler et al. (2013) and Renard and 
Lang (2007), multiple relevant vectors of the speci-
fied hydrologic episodes could likely depend upon the 

potential damage where the ignorance of spatial depend-
ency among these uncertain flood characteristics may 
responsible for the underestimation of uncertainty. On 
the other hand, the multivariate FFA either with or with-
out copulas has been applied frequently with parametric 
distributions where the parametric functions are often 
employed to modelled their marginals and the parametric 
copula function for the joint dependence structure. But, 
the parametric functions always imposed an assumption 

AND-joint return period for MOM 
estimator

Fig. 18   (continued)

Table 11   Joint and conditional return period for the flood pairs P–V (a) using Gaussian copula via the MOM estimator (b) using Gaussian 
copula via the MPL estimator

P V TP TV OR return period AND return 
period

T(P∕V≤v) T(P∕V≥v) T(V∕P≤p) T(V∕P≥p)

(a)
8089.2353 13,185.141 4.37177 1.789 1.765498249 4.521252343 58.33509 2.5267 2.28404 1.0341913
13,002.924 34,279.336 12.1050 7.298 6.272564178 16.61251954 38.5015 2.27608 11.9429 1.3723
7086.1589 44,015.568 3.488 14.092 3.436903244 15.00366134 4.22291 1.06465 165.52573 4.3007995
15,011.3722 43,029.274 17.627 13.171 10.23909076 28.58361499 42.4963 2.170068 23.043161 1.6215485
37,562.7721 43,439.063 427.350 13.546 13.52882137 445.6862253 9620.75019 32.900055 13.938419 1.0429058
10,195.7231 47,777.959 6.888 18.284 6.449169084 22.32079831 9.4183711 1.220724 86.444828 3.24031
12,131.9342 30,708.24 10.213 5.752 5.097759141 13.22832215 37.02280787 2.299743 9.1811456 1.295185
17,745.1725 43,338.874 28.457 13.453 11.80852775 40.34627106 89.3973 2.998938 19.474 1.417768
6316.0124 39,637.633 2.923 10.460 2.880260163 11.05593695 3.594725 1.05694 127.73792 3.7815
(b)
7392.7301 26,155.411 3.739 4.248 3.06361 5.670598 8.39867 1.334688727 12.41253947 1.516261286
11,354.2573 40,038.679 8.742 10.748 6.866647 16.184238 17.2453769 1.505781479 28.33849245 1.851153112
9240.6956 25,793.39 5.624 4.147 3.564997 7.225181 19.2635315 1.742063419 8.005439649 1.284637202
18,014.5378 55,731.996 29.779 32.299 20.673153 61.850248 55.6538407 1.914883668 65.33433532 2.076931317
17,019.5015 53,420.634 25.144 27.292 17.614561 50.919642 47.8540464 1.865695677 56.48008763 2.025074156
12,479.5852 71,122.448 10.936 109.051 10.866282 116.520212 11.9581986 1.068490348 1545.701074 10.65460822
28,439.1291 65,676.413 140.252 69.300 57.362111 242.313219 328.183117 3.496579749 96.3660487 1.727693251
14,672.097 73,626.882 16.5672 135.685 16.358702 151.504661 18.4642567 1.116589351 1221.036381 9.144821336
13,465.7503 58,472.781 13.225 39.603 12.373302 49.898128 17.541202 1.259927732 177.4544419 3.772797457
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that the random samples are coming from the known 
populations whose PDF are predefined, but, in actual, 
no universal rules and studies are imposed to model any 
hydrologic vectors through any fixed or predefined dis-
tribution functions, which would follow different distri-
butions and desire to model separately (i.e. Adamowski 
1989; Silverman 1986; Kim and Heo 2002; Karmakar 
and Simonovic 2008). Therefore, in the past few dec-
ades, an attempt via kernel density estimators (KDE) is 
recognized as a much flexible and stable nonparamet-
ric data smoothing procedure and thus implemented in 
conjuction with parametric copula function under the 
semiparametric settings (i.e. Karmakar and Simonovic 
2009; Reddy and Ganguli 2012a). Also, if the targeted 
copulas and univariate marginal distributions belong to 
some specific parametric families, it might be problem-
atic, if the underlying assumption is violated. Therefore, 
in such circumstances, the nonparametric copula distri-
bution framework can ameliorate these modelling issues 
and can be able to produce a significant outcome without 
assuming a particular form for the univariate marginal or 
multivariate copula distributions. All the above raised 
issues can be considered as a future research purpose.
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