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Abstract
The recorded seismic signals are attenuated and spatially correlated due to their propagation through an elastic earth and the 
sedimentary rule of strata. This attenuation phenomenon is quantified by means of the earth quality factor (Q) or the attenua-
tion factor (1∕Q). Nowadays, the related Q-compensation and multi-trace inversion for the seismic data are two challenging 
problems when used for enhancing the temporal resolution and preserving the spatial continuity. Separately estimating Q 
and reflectivity are difficult and produce the uncertainty or ill-condition problems. To overcome these limitations, we have 
developed a multi-trace nonstationary sparse inversion with structural constraint. Using prior dipping-angle information and 
reflectivity sparsity property, the proposed method simultaneously estimates equivalent-Q and reflectivity with structural 
constraint. Constructed by the source wavelet and different scanned equivalent-Q, a series of time-varying (nonstationary) 
wavelet matrices are provided for the forward-modeling schemes and the corresponding inversions. When the Q-model is 
infinitely close to the true attenuation mechanism, the corresponding inverted reflectivity is comparatively sparse and quan-
tified as maximum sparsity or minimum sparse representation. A sparse representation function, such as l0.1-norm, is used 
for sparsity measurement of the inverted reflectivity corresponding to each scanned Q. Through optimizing these sparse 
representation values, a suitable equivalent-Q, as well as the corresponding inverted reflectivity with structural preservation 
and Q-attenuation, is determined. The synthetic and field examples both confirmed a substantial improvement on seismic 
records, especially for Q-estimation, structure preservation and Q-compensation.

Keywords Structural constraint · Nonstationary · Multi-trace sparse inversion · Q-estimation · Q-compensation

Introduction

Seismic wave propagation in strata is actually a filtering 
process accompanied with amplitude attenuation, phase 
distortion and frequency reduction (Yang and Zhu 2018). 
The seismic signals received by geophones are the convo-
lution results of the structure reflectivity and the attenu-
ated wavelet in the time domain. However, owing to the 
inherent band-limited nature of the source wavelet and the 

absorption attenuation of the formation pore fluid, the seis-
mic signals become band-limited and lose some essential 
geologic details. One objective of exploration geophysics 
is to reveal the subsurface structural features and the physi-
cal properties by using broadband seismic signals. Various 
inversion methods have been successfully used for a long 
time in broadening seismic bandwidth (e.g., van der Baan 
and Pham 2008; Gholami 2014; Yuan et al. 2017; Li et al. 
2018). The inversion can estimate the broadband reflectiv-
ity or impendence from the band-limited seismogram (e.g., 
Oldenburget al. 1983; Zhang and Castagna 2011) and further 
bridge the recorded seismic data and the stratigraphic struc-
ture. Nevertheless, the traditional unconstrained inversion 
frequently exposes a serious ill-conditioned problem, that is, 
multi-solution or non-uniqueness. It is mainly attributed to 
data uncertainty and inherent flaw of the under-determined 
inverse problem (e.g., Yang et al. 2018; Yang et al. 2019; Li 
et al. 2019a). More abundant seismic information, such as 
sparse assumption of signals, spatial continuity, the intrin-
sic quality factor (Q) from the reflected seismic data and 
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correlations with other multi-scale geophysical data, is also 
essential for a unique solution. In the 1960s, Tikhonov regu-
larization method (Tikhonov 1962) was proposed to mitigate 
the ill-conditioned problem in the unconstrained traditional 
inversion. The regularization can not only suppress noise and 
stabilize different inverse problems (e.g., Gholami and Hos-
seini 2013; Tian et al. 2016; Ma et al. 2019a, b; Li et al. 
2019b), but also integrate prior geological information and 
further excavate the characteristics of seismic signals.

The conventional inversion is mostly an independent 
single-trace operation which generates a high-resolution 
data profile or volume through trace-by-trace. Although 
the trace-by-trace processing is operationally convenient 
for low computational burden, the inverted results usually 
suffer from poor spatial continuity and mask some key geo-
logic features in imaging. It is an indisputable fact that the 
ignored correlation among traces destroys the spatial stabil-
ity of the inverted reflectivity or impedance (Wang et al. 
2013). The single-trace theory holds that the received signals 
by a geophone are only related to the seismic response at 
the same location and independent of other traces. There-
fore, this technology is intrinsically subjected to spatial 
low-wavenumber matching and instability. According to 
the sedimentary rule of strata, the subsurface medium is 
dominantly determined by the layered structure and the seis-
mic reflected events generally show excellent spatial coher-
ence (Wang et al. 2018). Seismic profile or volume should 
remain strong spatial continuity and less difference along the 
structural direction, especially among the adjacent traces. 
Consequently, these trace-by-trace technologies expose with 
spatially discontinuous problem while improving the verti-
cal temporal resolution (e.g., Zhang et al. 2013; Yuan et al. 
2015).

There has been much recent research (e.g., Kazemi and 
Sacchi 2014; Pereg et al. 2017; Ji et al. 2019) on the subject 
of multi-trace inversion for addressing the spatial instability 
of the trace-by-trace technology (Yuan et al. 2015). Lavielle 
(1991) proposed a multi-trace inversion method by using 
the lateral coherence as prior information. By combining 
with adaptive FX filtering, Wang et al. (2006) developed a 
structure-preserving sparse inversion method to improve the 
coherence of multi-trace data. Auken (2005) applied multi-
trace lateral constraint to maintain the lateral continuity 
of resistivity data. Inspired by Auken’s study, Hamid and 
Pidlisecky (2015, 2016, 2017) used the lateral l2-norm regu-
larization in multi-trace seismic impedance inversion and 
extended their research to multi-trace structural l2-norm reg-
ularization for highlighting richer structural details. Cheng 
et al. (2018) first designed a series of one inclined-layer 
reflectivity models with different dips and quantitatively 
illustrated the structural constraint inversions are superior 
to the lateral constraint and trace-by-trace inversions.

Although the above-mentioned stationary multi-trace inver-
sion provides spatially continuous reflectivity or impedance, it 
cannot restore the amplitude attenuation and phase distortion 
related to earth’s Q-effects. To compensate for Q-attenuation, 
an alternative to the stationary technology is to employ a non-
stationary inversion scheme (van der Baan 2008). As well, the 
inverse-Q filtering can be applied simultaneously with inver-
sion (nonstationary inversion) (e.g., Margrave et al. 2011; 
Oliveira and Lupinacci 2013; Chai et al. 2014; Yuan et al. 
2017) where the Q-structure is given or estimated as prior 
information. A kind of semi-blind nonstationary inversion 
(e.g., Gholami 2015; Aghamiry and Gholami 2017, 2018; Ma 
et al. 2018) was broadly developed to estimate both Q-models 
and reflectivity simultaneously in various forms. Gholami 
(2015) pointed out that the Q-related attenuation diminishes 
the sparsity of the earth impulse response and hence deter-
mined Q-model by optimization (minimization) over the spar-
sity value of the inverted reflectivity. This makes it possible to 
estimate the original reflectivity from the attenuated seismic 
records without prior Q-information.

In summary, the reflectivity inversion aims to extract the 
reflectivity closest to the original earth impulse response from 
seismic data as much as possible. The reflectivity should be 
relatively sparse and spatially continuous when Q- and wave-
let-filtering effects are both eliminated. Therefore, we proposed 
a multi-trace nonstationary inversion, by considering Q-effects 
and using mixed-norm regularization in this paper. Using the 
sparse representation function represented as l0.1-norm, a suita-
ble Q-model, as well as the corresponding inverted reflectivity, 
is simultaneously estimated from attenuated seismic data. The 
vital superiority of our method can excavate the latent infor-
mation from seismic data fully and drive the nonstationary 
inverted result to be sparse and structurally preserved without 
requiring the prior Q-information.

Theory

Generally, the seismic trace is simulated as the convolution 
of a seismic wavelet and a reflectivity series (Robinson and 
Treitel 1980) and equivalently expressed as a matrix–vector 
product form

 where sjand rjare the j-th trace seismic record and reflectiv-
ity, respectively,

(1)�j = �� j,
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 is a Toeplitz matrix for seismic wavelet w = [w1, w2,…
,wL]Twhose length is L. We define the length of vectors sj 
and rj as N, which is commonly larger than L. Thus, the 
size of the wavelet matrix W is N × N. To further simplify 
the forward-modeling, the wavelet is provided as a station-
ary form. Equation (1) illustrates the traditional convolution 
model in matrix form and can be extended for the multi-trace 
seismic records as

 in which d = vec(s1, s2,…, sM), m = vec(r1, r2,…, rM), 
G = kron(I, W), I is an identity matrix, vec means rearrang-
ing all vectors sjor rjinto a tall vector in seismic trace order, 
and kron represents a Kronecker product operator that could 
reformulate the matrix–matrix multiplication for two any 
size matrices into a relevant giant matrix. Therefore, the 
length of vectors d and m is M × N and the size of the matrix 
G is (M × N) × (M × N). Apparently, G is a huge block diago-
nal matrix because of the function of identity matrix I.

Supposing that the observed multi-trace seismic data 
are dobs, the error sum square E between the observed and 
synthetic seismic data is

 where ||·||2 denotes the l2-norm of a vector. Direct reflectiv-
ity estimation from Eq. (4) will present seriously ill-condi-
tioned. One popular consensus is that the reflectivity is a 
kind of sparse signal, which maps the underground structure 
and can be represented by a linear combination of a few 
eigenvectors. Therefore, the purpose of seismic inversion 
is to deduce the sparse and structurally related reflectivity 
or impedance from seismic records. To achieve this goal, a 
regularization method (Cheng et al. 2018), which combines 
a temporal lp-norm (0 < p < 1) and a spatial (lateral or struc-
tural) l2-norm, is proposed to constrain the data misfit term. 
The objective function (Eq. (4)) is redefined as

 where λ1 and λ2 are regularization parameters which adjust 
the proportional weights of data misfit, spatial and sparse 
constraints, ||·||p denotes the lp-norm (0 < p < 1) of a vector. 
Matrix C is a spatial (lateral, vertical or structural) smooth 
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filter, which not only improves the spatial matching degree 
among traces, but also may weaken or directly destroy data 
misfit, spatial matching and sparsity if neglected or inac-
curate. Generally speaking, the temporal lp-norm (0 < p < 1) 
and structural l2-norm regularizations force the inversion 
to approach a temporally sparse and structurally smooth 
solution. By calculating the first-order vertical and lateral 
matrices of dataset, the formation dipping-angle matrix θ 
can be extracted as

 where Cx(Cz) represents the first-order lateral (vertical) dif-
ference matrix which can act as a lateral or vertical filter in 
Eq. (5), arctan is the arctangent symbol, and the symbol 
“./” represents the element-wise division. Equation (6) is 
essentially a gradient method for dipping-angle estimation 
from seismic data. In this paper, when considering matrix 
C as a structural filter, we calculate the structural difference 
operator matrix Cparl as

 where Qcos (Qsin) is a matrix each element of which is a 
cosine(sine) value of the dipping angle of the correspond-
ing position of matrix θ. However, the inversion based on 
Eq. (5) mainly focuses on the stationary case which ignores 
the inherent nonstationary characteristics of seismic sig-
nals. To solve the nonstationary problem, the quality fac-
tor (Q) associated with attenuation is typically incorporated 
into seismic wavelet to keep it time-varying. Depending on 
1D acoustic theory and frequency-independence constant 
Q-model, the traditional nonstationary forward model (e.g., 
Bickel and Natarajan 1985; Margrave et al. 2011; van der 
Baan 2012) is modified from the traditional form (Eq. (3)) 
and written as

 where Q represents the equivalent quality factor (Q). 
Because of the Q-attenuation, G(Q) is no longer stationary, 
but accompanies with amplitude attenuation, phase distor-
tion and frequency reduction. The larger is the Q-value, the 
smaller the corresponding seismic attenuation will be. Obvi-
ously, when Q approaches infinity, that is, the attenuation 
tends to zero. Meanwhile, Eq. (8) will degenerate into the 
traditional stationary convolution model for infinity Q-value. 
Based on Eq. (5), we combined quality factor (Q) and pro-
posed a nonstationary inversion scheme as following

In image restoration, it has been shown that the image 
gradients of the natural image can be better modeled with 
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0.5 ≤ p ≤ 0.8 (Krishnan and Fergus 2009; Zuo et al. 2013). 
Referring to the p-selection in image restoration, we control 
p-value between 0.5 and 0.8 in Eq. (9), such as 0.7, for all 
synthetic and field examples in this paper. Minimization of 
Eq. (9) aims to eliminate the wavelet- and Q-filtering effect 
simultaneously, and to seek an adequate sparse and spatially 
correlated solution which is more satisfied with the geo-
logical characteristics. Unfortunately, directly minimizing 
Eq. (9) is severely ill-posed and computationally infeasible 
while the reflectivity and attenuation mechanism, especially, 
Q-model are both uncertain. If the attenuation mechanism 
and the source wavelet are known or estimated, we can 
extract the reflectivity by minimizing Eq. (9) as

 where T is the transpose of a matrix, U = Diag (|mi|p−2), 
Diag is the symbol of the diagonal matrix. In general, the 
repeated weighted iterative algorithm (Chartrand and Yin 
2008) can solve Eq. (10) for the optimal m. Assuming that 
mk−1 is the (k − 1)th iterative result, the repeated weighted 
matrix Uk−1 for the next (kth) iteration is defined as

Thus, Eq. (10) is rewritten again as

 where Uk−1(k ≥ 1) is essentially the weight of each iteration. 
Set the initial iterative reflectivity model m0 and the maxi-
mum iterative number kmax. The iteration process starts from 
k = 1 until the maximum iteration number kmax is reached. 

(10)� =
[
�(Q)T�(Q) + �1�

T� + �2�
]−1

�T�obs,

(11)�k−1 = Diag

(|||m
k−1
i

|||
p−2

)
,

(12)�k =
[
�(Q)T�(Q) + �1�

T� + �2�
k−1

]−1
�T�obs,

Note that when k = 1, the corresponding U0 represents the 
initial repeated weighted matrix for the iteration and could 
be constructed by m0. For nonstationary sparse inversion, 
Gholami (2015) pointed out that once the Q-model is deter-
mined to be infinitely approximated to the true Q-structure, 
the corresponding inverted result will remain relatively 
sparse. This makes it possible to estimate Q-model and 
reflectivity simultaneously. Without prior Q-information, 
a scanning-Q strategy (e.g., Gholami 2015; Aghamiry and 
Gholami 2017, 2018; Ma et al. 2018) was proposed for Q- 
and reflectivity-estimation by using nonstationary sparse 
inversion. In this paper, we set the scanning-Q range as 
[Qmin ≤ Q1, Q2, …, Qn ≤ Qmax] for Eq. (9), and the corre-
sponding attenuated wavelet matrix and inverted reflectivity 
are [G(Q1), G(Q2),…,G(Qn)] and [m(Q1), m(Q2),…,m(Qn)]. 
Based on the sparse assumption of the reflectivity, a sparse 
l0.1-norm function

 is ordinarily used to measure the sparsity of the inverted 
reflectivity corresponding each scanned Q. By using 
Eq. (13), we can obtain the sparsest inverted reflectivity (the 
maximum sparsity or the minimum l0.1-norm value) and the 
corresponding Q-model. Compared with previous studies, 
our proposed method combines sparse constraint, structural 
constraint and Q-attenuation effect. By using scanning-Q 
inversion strategy, we can estimate Q, as well as the cor-
responding inverted reflectivity with Q-compensation and 
structural preservation.

Examples

In this section, the synthetic attenuated and field examples 
are presented to illustrate the accuracy, structure-preserva-
tion, Q-estimation and Q-compensation capability of the 
proposed multi-trace nonstationary inversion. We also com-
pare the influence of structural regularization, lateral regu-
larization and without structural and lateral regularization 
(that is, only sparse constraint) for Q-estimation and sparse 
inversion. Moreover, the initial model m0 = GTdobs and the 
maximum iteration number of 10 are used for the repeated 
weighted iterative algorithm.

Synthetic attenuated data example

To compare and analyze the effectiveness of the proposed 
multi-trace nonstationary sparse inversion with structural 
constraint, we design a reflectivity model shown in Fig. 1a. 
The size of this model is 401(traces) × 186(sampling points) 
with a 2 ms sampling interval. The initial (source) wavelet 
is Ricker wavelet with a 30 Hz main frequency, 61 sampling 

(13)l0.1(�) = ‖�‖0.1,

Fig. 1  The synthetic attenuated data and the inverted results: a the 
true reflectivity, b the noisy synthetic attenuated data convoluted by 
the attenuated wavelet and the true reflectivity and added 5% random 
noise, c the stationary inverted reflectivity constrained by the struc-
tural l2-norm and the temporal lp-norm (0 < p < 1), d case 1: the l0.1-
norm curve with an optimal equivalent Q = 25, e case 1: the nonsta-
tionary inverted reflectivity corresponding to the optimal Q = 25, f 
case 1: the inverse-Q filtering result convoluted by the inverted reflec-
tivity (e) and the initial wavelet, g case 2: the l0.1-norm curve with 
an optimal equivalent Q = 35, h case 2: the nonstationary inverted 
reflectivity corresponding to the optimal Q = 35, i case 2: the inverse-
Q filtering result convoluted by the inverted reflectivity (h) and the 
initial wavelet, j case 3: the l0.1-norm curve with an optimal equiva-
lent Q = 30, k case 3: the nonstationary inverted reflectivity corre-
sponding to the optimal Q = 30, l case 3: the inverse-Q filtering result 
convoluted by the inverted reflectivity (k) and the initial wavelet, m 
the nonstationary inverted reflectivity constrained by the temporal lp-
norm (0 < p < 1) with a correct equivalent Q = 30, n the nonstationary 
inverted reflectivity constrained by the lateral l2-norm and the tempo-
ral lp-norm (0 < p < 1) with a correct equivalent Q = 30. Case 1, case 
2 and case 3 represent inversion constrained by the temporal lp-norm 
(0 < p < 1), the lateral l2-norm and temporal lp-norm (0 < p < 1) and 
the structural l2-norm and temporal lp-norm (0 < p < 1), respectively

◂
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points and a 2 ms sampling interval. We set an equivalent-
Q as 30 to construct attenuated wavelet matrix and then 
synthesize attenuated data. The noisy attenuated seismic 
data (Fig. 1b) are generated by dividing the clean attenu-
ated seismic profile into five sub-profiles with time ranges of 
0–92 ms, 94–184 ms, 186–276 ms and 278–370 ms, respec-
tively, and adding 5% random noise (i.e., noise energy to 
signal energy of each seismic sub-profile is 5%) to each 
divided sub-profile separately. Figure 1c shows the station-
ary inverted reflectivity from noisy synthetic attenuated data 
with the temporal lp-norm (0 < p < 1) and structural l2-norm 
constraints. Obviously, the energies of the bottom reflec-
tion events are extremely weak for ignoring Q-compensation 
when inverting. To further explore the Q-compensation and 
structural constraint on nonstationary sparse inversion, we 
design three nonstationary inversion cases with the temporal 
lp-norm (0 < p < 1) constraint (i.e., C = 0 in Eq. (9) which 
degenerates to trace-by-trace inversion), the lateral l2-norm 
(C = Cx in Eq. (9)) and temporal lp-norm (0 < p < 1) con-
straints, and the structural l2-norm (C = Cparl in Eq. (9)) and 
temporal lp-norm(0 < p < 1) constraints, respectively, and 
mark them as case 1, case 2 and case 3 for distinguishing. 
Moreover, we set p = 0.7, and the scanning-Q range to be 
10 to 100 with an interval of 5. Regularization parameters 
λ1 and λ2 are used to control the weights between spatial 
(lateral or structural) and sparse constraint. When choosing 
regularization parameters for inversion, we should consider 
computational efficiency. Firstly, we set spatial regulariza-
tion parameter λ1 = 0 and try to test several sparse constraint 
parameter λ2, such as 0.5, 0.05, 0.005 and 0.0005. By com-
paring the sparsity of inverted profiles and l0.1-norm curves 
of inverted reflectivity corresponding to each scanned equiv-
alent-Q, we determine an appropriate λ2 = 0.005 when the 
l0.1-norm curve appears a stable concave (minimum) point. 
Secondly, fix the determined sparse regularization param-
eter λ2 = 0.005 and try to test several λ1, such as 0.5, 0.05, 
0.005 and 0.0005. By comparing the sparsity of inverted 
profiles and l0.1-norm curves of inverted reflectivity corre-
sponding to each scanned equivalent-Q, the corresponding 
λ1 both represented as a lateral or structural regularization 
parameter is determined as 0.05 when the l0.1-norm curve 
shows a stable concave (minimum) point. The regularization 
parameters selected in the above way can not only ensure 
the sparsity and the spatial correlation of inverted reflec-
tivity, but also help to estimate a stable equivalent-Q from 
the attenuated seismic data. In particular, when only con-
sidering the temporal lp-norm (0 < p < 1) regularization, the 
spatial regularization parameter λ1 is assigned as 0. After 
successfully setting the relevant parameters, Eq. (9) can be 
solved by repeated weighted iteration for eliminating the 
wavelet- and Q-filtering effect step-by-step. We use an l0.1-
norm to measure the sparsity of inverted result correspond-
ing to different scanned Q and determine the optimal Q and 

the corresponding inverted reflectivity by minimization over 
these sparsity values.

For the noisy attenuated synthetic data, these three kinds 
of nonstationary sparse inversion methods are used for 
simultaneous Q- and reflectivity-estimation. The l0.1-norm 
curves (Fig. 1d, g, j) for the three cases all present strong 
concavity, and the corresponding Q-values of concave or 
minimum points are 25, 35 and 30, respectively. The equiv-
alent-Q estimated by the l0.1-norm curve is comparatively 
stable and less different from the correct value 30. We pick 
the Q-values at the concave (minimum) points of l0.1-norm 
curves and the corresponding inverted reflectivity as the 
final estimated (inverted) results. Here, one notable problem 
is that the shapes of bottom reflection events (the positions 
indicated by the red arrows) on all inverted profiles are not 
well recognized and recovered because of the strong interfer-
ences among these thin layers of the bottom. Compared with 
the conventional stationary inverted result (Fig. 1c), the non-
stationary inversion (Fig. 1e, h. k) can adequately compen-
sate for Q-attenuation. If the lateral and structural l2-norm 
constraints are both ignored, the nonstationary inversion will 
only obtain a poor spatial continuity and low signal-to-noise 
ratio result (as shown in Fig. 1e) from synthetic seismic data. 
When the lateral l2-norm is used as a spatial regularization, 
the nonstationary sparse inverted result (as shown in Fig. 1h) 
has been significantly improved inthe lateral continuity 
and the signal-to-noise ratio. The red dashed rectangles in 
Fig. 1h indicate that the lateral constraint is still difficult 
to remain the continuity in complex structures. However, 
the continuity of complex or large dipping-angle structures 
can be effectively recovered (the red dashed rectangles 
shown in Fig. 1k) when the nonstationary inversion is with 
the structural l2-norm and the temporal lp-norm (0 < p < 1) 
constraints (i.e., our proposed method). Constrained by the 
structural l2-norm and the temporal lp-norm (0 < p < 1), the 
stationary (shown in Fig. 1c) and nonstationary (shown in 
Fig. 1k) inverted results are both structurally continuous and 
temporally sparse. However, due to Q-related compensation, 
the energy of the inverted reflectivity in Fig. 1k becomes 
stronger than that in Fig. 1c, especially in the deep. For fur-
ther Q-compensation exploration, the inverse-Q filtering 
results are convoluted by the initial (source) wavelet and 
the nonstationary inverted reflectivity for the three cases and 
shown in Fig. 1f, i, l. Compared with the original attenuated 
data, the proposed method dramatically recovers the lost 
energy for Q-attenuation, especially with enormous potential 
to compensate for deep reflection energy. The processing of 
synthetic attenuated data presents that our proposed method 
can not only estimate accurate equivalent Q-model, but also 
invert a structurally continuous and temporally sparse reflec-
tivity profile with Q-compensation.

Through l0.1-norm sparse representation function 
expressed in Eq. (13), our method case 3 estimates a more 
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accurate equivalent-Q value of 30 than case 1 (estimated 
equivalent-Q = 25) and case 2 (estimated equivalent-Q = 35). 
To explore the influence of the slight deviation of Q on the 
inversion, we provide another two inverted profiles (Fig. 1m, 
n) with the correct equivalent-Q value of 30, which are 
generated from the attenuated seismic data of Fig. 1b with 
the lp-norm (0 < p < 1) constraint and the structural l2- and 
lp-norm (0 < p < 1) constraints, respectively. Figure 1m 
shows the inverted reflectivity constrained by the lp-norm 
(0 < p < 1) when equivalent-Q is 30. The inverted profile is 
sufficiently compensated for the Q-attenuation (especially at 
the deep), but with poor spatial continuity. Figure 1n is the 
inverted profile with the structural l2- and lp-norm (0 < p < 1) 
constraints when equivalent-Q is 30. It is obviously observed 
that the inverted profile (Fig. 1n) is not only adequately com-
pensated for Q-attenuation (especially the deep reflection), 
but also more laterally continuous than that in Fig. 1m. How-
ever, the red dotted rectangles in Fig. 1n show that lateral 
constraint do not ensure the restoration of structural continu-
ity. By comparing Fig. 1e, m or Fig. 1h, n, it is interesting 
to note that Q-model with slight deviation will not destroy 
the quality of nonstationary inverted results. Therefore, the 
estimated equivalent-Q values of 25, 30 or 35 are reasonable 
for the nonstationary inversion here.

Field data example

After the successful application in synthetic attenuated 
example, the proposed method is expanded to 2D field 
seismic data for Q- and reflectivity-estimation. The size of 
the field data is 201 (traces) × 201 (sampling points) with 
a 2 ms-sampling interval. The first vertical (temporal) 50 
points of seismic data (the red rectangle shown in Fig. 2a) 
are extracted to estimate the initial (source) Ricker wavelet. 
According to the spectrum analysis, the main frequency of 
these window data is determined to be approximately 36 Hz 
(shown in Fig. 2b).We assign the initial Ricker wavelet with 
the same main frequency of 36 Hz as these window data, 81 
sampling points and a 2-mssampling interval. We set p = 0.7, 
and the scanning-Q range to be 20–100 with an interval of 
5 in Eq. (9). Referring to the selection strategy of regu-
larization parameters in the synthetic example, we decide 
λ1 = 0.005 and λ2 = 0.005. Through the above way, three 
parameters, p, λ1 andλ2, are determined for inversion. Obvi-
ously, the more stable the concave point of l0.1-norm curve 
is, the stronger the robustness of the combination of p, λ1 
and λ2 is. Here, we still compare three nonstationary inver-
sion cases with the temporal lp-norm (0 < p < 1) constraint 
(C = 0 in Eq. (9)), the lateral l2-norm (C = Cx in Eq. (9)) and 
temporal lp-norm(0 < p < 1) constraints, and the structural l2-
norm (C = Cparl in Eq. (9)) and temporal lp-norm (0 < p < 1) 
constraints, respectively, and mark them as case 1, case 2 
and case 3 for distinguishing.

By optimizing the l0.1-norm of the inverted results cor-
responding to different scanned Q values (shown in Fig. 2d, 
g, j), we can estimate the equivalent-Q values to be 40, 45 
and 45 for case 1, case 2 and case 3, respectively. The final 
inverse-Q filtering results (Fig. 2f, i, l) are obtained by con-
volution of the initial (source) wavelet and the nonstation-
ary inverted reflectivity (Fig. 2e, h, k). Compared with the 
original profile of Fig. 2a, all three kinds of nonstationary 
processing greatly enhance the seismic energy after Q-com-
pensation (shown in Fig. 2f, i, l). However, when omitted the 
lateral and structural l2-norm constraints, the inverted reflec-
tivity and the subsequent inverse-Q filtering profiles are sub-
jected to spatial instability which appear as the noodle-like 
trails among traces (shown in Fig. 2e, f). Compared with 
case 1, the lateral l2-norm constraint is powerfully helpful in 
improving the spatial correlation of inverted result (Fig. 2h), 
especially the lateral continuity. However, for the relatively 
complex structures, such as the areas marked by red circles 
in Fig. 2h, the lateral constraint hardly provides an accurate 
characterization along these complex or large dipping-angle 
structures. When the lateral l2-norm constraint is replaced by 
the structural l2-norm constraint in the nonstationary sparse 
inversion, the structural details are better recovered and more 
following geological sedimentary rule than that of case 1 and 
case 2 (pointed out by the red circles in Fig. 2k). It is mainly 
rooted in the role of the structural l2-norm constraint on the 
structure preservation and the good wavenumber matching 
among different traces. Constrained by the temporal lp-norm 
(0 < p < 1) and the structural l2-norm, the stationary (Fig. 2c) 
and nonstationary (Fig. 2k) inverted reflectivity profiles are 
both temporally sparse and structurally continuous. Related 
Q-estimation and compensation, the energy of Fig. 2k is 
stronger than that of Fig. 2c. Moreover, due to the smooth 
filtering of the lateral and structural l2-norm in the objec-
tive function, the inverted reflectivity profiles of Fig. 2h, 
k remain highly laterally and structurally continuous, but 
are visually less sparse than that of in Fig. 2e, especially in 
red dashed circles. Although accompanied with an accept-
able reduction in sparsity, the proposed method improves 
the seismic energy by Q-estimation and compensation and 
fulfills the purpose of structure preservation.

For the field example, the initial Ricker wavelet is esti-
mated by a window data extracted from the top of attenu-
ated seismic data. To further explore the influence of the 
window on the final inverted result, seismic data with dif-
ferent window lengths are used to estimate the initial Ricker 
wavelet for inversion. Here, we consider the temporal lp-
norm (0 < p < 1) and structural l2-norm constraints for the 
nonstationary inversion. Table 1 shows the window length 
and the corresponding main frequency of the initial Ricker 
wavelet estimated from these window data. Along with the 
increase in window length, the main frequency of the esti-
mated Ricker initial wavelet rapidly becomes lower because 
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of the cumulative Q-attenuation amount growth. Using the 
scanning-Q inversion strategy, the estimated equivalent-Q 
of the whole seismic profile are 45, 50 and 55 when pro-
vided the initial Ricker wavelet with a 36 Hz, 33 Hz and 
31 Hz main frequency, respectively. Evidently, the difference 
between the initial Ricker wavelets results in the estimated-
Q variation. Figure 3 shows the inverted reflectivity pro-
files with different initial Ricker wavelet and corresponding 
estimated-Q. By comparison, the nonstationary inversion 
with different initial Ricker wavelet and Q-model bring the 
Q-compensation and structure-preservation distinctions, 
especially in the red rectangular areas. Although the window 
extracted from the top of attenuated seismic data will affect 
initial Ricker wavelet estimation and further Q-estimation, 
the comprehensive effect of different initial Ricker wavelets 

and corresponding estimated-Q always ensures that the non-
stationary inverted results are not significantly different. 

Conclusion

By comprehensively considering the inherent attenuation 
characteristics and multi-trace spatially structural cor-
relation of seismic data, we proposed a multi-trace non-
stationary inversion which is constrained by a structural 
geosteering l2-norm and a temporal lp-norm (0 < p < 1) in 
this paper. Due to the attenuation mechanism or Q-model, 
seismic wavelet is not stationary, but a time-varying sig-
nal with amplitude attenuation and phase distortion in 
this technique. A sparse l0.1-norm is provided to quan-
tify the sparsity of the multi-trace reflectivity obtained by 
scanning-Q strategy, and to find the optimal equivalent-Q 
and the corresponding nonstationary inverted reflectivity 
further. Tested by the synthetic attenuated and field exam-
ples, the proposed method is capable of simultaneously 

Fig. 2  The field seismic data and the inverted results: a the field seis-
mic data, b the amplitude spectrum of the window seismic data in 
a, c the stationary inverted reflectivity constrained by the temporal 
lp-norm (0 < p < 1) and the structural l2-norm, d case 1: the l0.1-norm 
curve with an optimal equivalent Q = 40, e case 1: the nonstationary 
inverted reflectivity corresponding to the optimal Q = 40, f case 1: the 
inverse-Q filtering result convoluted by the inverted reflectivity (e) 
and the initial wavelet, g case 2: the l0.1-norm curve with an optimal 
equivalent Q = 45, h case 2: the nonstationary inverted reflectivity 
corresponding to the optimal Q = 45, i case 2: the inverse-Q filtering 
result convoluted by the inverted reflectivity (h) and the initial wave-
let, j case 3: the l0.1-norm curve with an optimal equivalent Q = 45, 
k case 3: the nonstationary inverted reflectivity corresponding to the 
optimal Q = 45, l case 3: the inverse-Q filtering result convoluted 
by the inverted reflectivity (k) and the initial wavelet. Case 1, case 
2 and case 3 represent nonstationary inversion with the temporal lp-
norm (0 < p < 1) constraint, the lateral l2-norm and temporal lp-norm 
(0 < p < 1) constraints, and the structural l2-norm and temporal lp-
norm (0 < p < 1) constraints, respectively

◂ Table 1  Variation of the extracted initial wavelet with the window 
length extracted from the top of the attenuated seismic data

Window of the attenuated data Main frequency of the 
estimated initial Ricker 
wavelet

0–100 ms 36 Hz
0–130 ms 36 Hz
0–160 ms 33 Hz
0–200 ms 31 Hz

Fig. 3  The nonstationary inverted reflectivity with the initial wave-
let and corresponding estimated-Q in Table  1: a the nonstationary 
inverted reflectivity with the structural l2-norm and temporal lp-norm 
(0 < p < 1) constraints when the main frequency of the initial Ricker 
wavelet is 36 and estimated equivalent-Q is 45, b the nonstationary 
inverted reflectivity with the structural l2-norm and temporal lp-norm 

(0 < p < 1) constraints when the main frequency of the initial Ricker 
wavelet is 33 and estimated equivalent-Q is 50, c the nonstationary 
inverted reflectivity with the structural l2-norm and temporal lp-norm 
(0 < p < 1) constraints when the main frequency of the initial Ricker 
wavelet is 31and estimated equivalent-Q is 55
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estimating a stable equivalent-Q model and a structurally 
continuous and temporally sparse reflectivity with suffi-
cient Q-compensation. Impressively, the complex struc-
tures probably, especially for pinch-outs, faults, folds and 
cleavages, present higher-quality spatial imaging, which 
is mainly attributed to the structural l2-norm constraint. 
Thus, the developed technique can be used not only for 
nonstationary sparse inversion and structural preservation, 
but also a resolution enhancement tool with the estimated 
Q-model for compensation.
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