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Abstract
Time–frequency analysis technology is widely used in non-stationary seismic data analysis. The energy concentration of 
the spectrum depends on the consistency of the kernel function of the time–frequency analysis method and the instantane-
ous frequency variation of the signals. The conventional time–frequency analysis methods usually require that the local 
instantaneous frequency of the signals remains unchanged or linearly changed. So it is difficult to accurately characterize the 
instantaneous frequency nonlinear variation of the non-stationary signal. The local polynomial Fourier transform (LPFT) 
method can effectively describe the instantaneous frequency variation by local high-order polynomial fitting and obtain the 
results with high spectral and energy concentration. The numerical simulations and field seismic data applications show that 
the time–frequency spectrum results obtained by LPFT can reflect the instantaneous frequency variation characteristics of 
the seismic data, while ensuring the concentration of time–frequency energy.

Keywords Non-stationary seismic data · Time–frequency analysis · Local polynomial Fourier transform · Energy 
concentration

Introduction

Numerous studies have indicated that seismic waves vary 
continuously with increasing propagation distance due to the 
influence of geometric diffusion, absorption attenuation and 
fluid, resulting in the non-stationary seismic data (e.g., Rene 
et al. 1986; Wang 2006; Wang et al. 2012; Yuan et al. 2017). 
Time–frequency analysis technique is an effective approach 
of non-stationary signals characterization. By transform-
ing the one-dimensional signal in the time domain into the 
time–frequency domain, the relationship between the fre-
quency components over time can be characterized (Puryear 
et al. 2012; Liu et al. 2016; Yuan et al. 2019a).

Traditional time–frequency analysis methods include 
short-time Fourier transform (STFT) (Durak and Ari-
kan 2003), continuous wavelet transform (CWT) (Sinha 
et al. 2009), S transform (ST) (Wu and Castagna 2017), 
matching pursuit (MP) (Mallat and Zhang 1993), etc. 
STFT realizes the characterization of the time–frequency 

relationship of non-stationary signals by calculating the 
Fourier transform of the truncated signal in the time win-
dow. However, its time window function is fixed, and the 
time–frequency resolution is the same regardless of the 
low-frequency or the high-frequency components. So 
STFT belongs to the single-resolution analysis method 
(Zhong and Huang 2010). To conquer the shortcomings of 
single-resolution STFT, CWT and ST make use of variable 
time windows instead of fixed ones. The time window is 
adjusted automatically by the methods. Wider time win-
dows are used for the low-frequency components, while 
narrower time windows are used for the high-frequency 
components, thereby realizing multi-resolution analysis 
of the signal (Phinyomark et al. 2011; Li et al. 2016). As 
a different approach, the MP method adopts the time–fre-
quency atomic dictionary instead of the time window func-
tion. The waveform and width of the atom are defined 
based on the instantaneous frequency (IF), instantaneous 
phase and envelope of the local signal. Then the multi-res-
olution analysis of the signal is realized by Wigner–Ville 
distribution (Wang 2010). So far, these time–frequency 
analysis methods have been widely applied in seismic 
exploration, such as high resolution processing (Smith 
et al. 2008; Radad et al. 2015), denoising (Parolai 2009; 
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Ouadfeul and Aliouane 2014), structural interpretation 
(Wang et al. 2019), reservoir prediction (Partyka et al. 
1999; Naseer and Asim 2017) and hydrocarbon detection 
(Sun et al. 2002; Castagna et al. 2003; Yuan et al. 2019b).

In fact, the traditional time–frequency analysis method 
implies the hypothesis of quasi-stationary in application 
(Kadambe and Boudreaux-Bartels 1992) that the statistical 
features of non-stationary signal does not change in the local 
time domain. Therefore, these methods are essentially zero-
order fitting of the time–frequency features. That is, based 
on the orthogonal rectangular time–frequency grid, the line 
segments parallel to the time axis or the frequency axis are 
used to approximate the time–frequency characteristics of 
the signal in the local time–frequency plane (Yang et al. 
2014). Take STFT for example, its basis function is sine 
or cosine function, the instantaneous frequency in the time 
window remains unchanged. It may lead to poor concen-
tration of time–frequency energy and difficult to accurately 
delineate the local time–frequency characteristics of non-
stationary signals.

To weaken the prerequisite of quasi-stationary, Mann and 
Haykin (1995) proposed a linear chirplet transform (LCT) 
method that allows the time–frequency grid to be tilted. The 
characterization of time–frequency features of non-station-
ary signals was improved by using a line segment with a 
certain slope in the local time–frequency plane to approxi-
mate the time–frequency characteristics of signals. How-
ever, since the slope parameter of the chirplet in the LCT 
is fixed, the time–frequency energy spectrum with higher 
concentration can be obtained only when the slope value is 
the same as the local time–frequency slope of the signal. In 
order to adapt to different time–frequency tilt variations, Yu 
and Zhou (2016) generalized this method and proposed the 
general linear chirplet transform (GLCT) method. The key 
of GLCT is to scan the slope values of the chirplet at local 
time–frequency points to obtain time–frequency energy 
with different concentrations and to select the slope value 
corresponding to the highest energy concentration as the 
time–frequency slope of the current time–frequency point. 
Therefore, the LCT and GLCT methods are essentially the 
first-order fitting of the local time–frequency characteristics 
of the signal. Accurate analysis results can be achieved espe-
cially when the local time–frequency characteristics of the 
non-stationary signal conform to linear variation.

Actually the local time–frequency characteristics of non-
stationary signals tend to vary nonlinearly. Therefore, Katko-
vnik (1998) proposed the local polynomial Fourier transform 
(LPFT) method, which allows the time–frequency grids to 
generate the local curvature. High-order characterization of 
local time–frequency variations of signals is achieved by 
polynomial fitting. LPFT can accurately characterize the IF 
variation of signals with high time–frequency energy con-
centration (Li et al. 2011).

In this paper, firstly, the LPFT method is analyzed on the 
basis of the analytical signal expression of Ville (1948). The 
calculation process of the coefficients in polynomial demod-
ulation operator is given as well. Then, through the syn-
thetic data, we compare LPFT methods with the traditional 
time–frequency analysis methods, such as STFT, CWT, ST 
and MP. Finally, LPFT is applied to the real seismic data, 
which verifies the validity of the method.

Methods

According to Ville (1948) theory, an analytical signal s(t) 
can be expressed as

where t represents time, A(t) represents instantaneous ampli-
tude, f(t) represents instantaneous frequency (IF), i repre-
sents the imaginary unit, and the integral result represents 
instantaneous phase.

The STFT of the signal s(t) can be expressed as (Cohen 
1995)

where S(τ, ω) represents the time–frequency spectrum at 
time τ and frequency ω, and w(t − τ) represents the time 
window.

According to the Taylor formula, the IF f(t) can be Taylor 
expanded in the time window w(t − τ) as

where ! represents the factorial, f(k)(τ) represents the kth 
derivative of f(t) at time τ, Rn(t) represents the Lagrangian 
remainder, and n represents the order of the Taylor expan-
sion. Ignore Rn(t) and substitute Eq. (3) into (2), we have

Therefore, the amplitude at the time–frequency point (τ, 
f(τ)) can be expressed as

(1)s(t) = A(t) exp

[
i∫ f (t)dt

]
,

(2)

S(�,�) = ∫
∞

−∞

w(t − �)s(t) exp(−i�t)dt

= ∫
∞

−∞

w(t − �)A(t) exp(−i�t) exp

[
i∫ f (t)dt

]
dt

,

(3)f (t) = f (�) +

n∑
k=1

1

k!
f (k)(�)(t − �)k + Rn(t),

(4)

S(�,�) = ∫
∞

−∞

w(t − �)A(t) exp(−i�t) exp

×

{
i

[
f (�)t +

n∑
k=1

1

k! ⋅ (k + 1)
f (k)(�)(t − �)k+1

]}
dt.
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Due to the presence of the modulation component in Eq. (5)

the time–frequency amplitude at (τ, f(τ)) is reduced, which 
makes the amplitude of STFT unable to focus on the f(t). To 
achieve that the amplitude maxima are obtained at (τ, f(τ)) so 
that the time–frequency spectrum obtains a higher time–fre-
quency energy concentration, it is necessary to eliminate 
the exponential term in Eq. (6). Therefore, a polynomial 
demodulation operator is introduced into STFT,

where ck is the coefficient of the polynomial demodulation 
operator.

Thus, Eq. (2) becomes

and

According to Eq. (5), when ck(τ) = f (k)(τ) (k = 1, 2,…, n), 
S(τ, f (τ)) reaches the maximum value and the time–frequency 
energy is the most concentrated.

(5)

|S(�, f (�))| = ||||�
∞

−∞

w(t − �) exp (−if (�)t)A(t) exp

×

{
i

[
f (�)t +

n∑
k=1

1

k! ⋅ (k + 1)
f (k)(�)(t − �)k+1

]}
dt

||||||
=
||||�

∞

−∞

w(t − �)A(t) exp

×

{
i

[
n∑

k=1

1

k! ⋅ (k + 1)
f (k)(�)(t − �)k+1

]}
dt

||||||
≤ ||||�

∞

−∞

w(t − �)A(t)dt
||||

.

(6)exp

{
i

[
n∑

k=1

1

k! ⋅ (k + 1)
f (k)(�)(t − �)k+1

]}
,

(7)exp

{
−i

[
n∑

k=1

1

k! ⋅ (k + 1)
ck(�)(t − �)k+1

]}
,

(8)

S(�,�) = ∫
∞

−∞

w(t − �)s(t) exp(−i�t)

× exp

{
−i

[
n∑

k=1

1

k! ⋅ (k + 1)
ck(�)(t − �)k+1

]}
dt,

(9)

S(�, f (�)) = ∫
∞

−∞

w(t − �)s(t) exp (−if (�)t) exp

×

{
−i

[
n∑

k=1

1

k! ⋅ (k + 1)
ck(�)(t − �)k+1

]}
dt

= ∫
∞

−∞

w(t − �)A(t) exp

×

{
i

[
n∑

k=1

1

k! ⋅ (k + 1)

(
ck(�) − f (k)(�)

)
(t − �)k+1

]}
dt

.

Equation (8) is the expression of nth-order LPFT. When 
n = 1 and the c1 is fixed, the LPFT reduces to LCT. When n = 0, 
the LPFT becomes STFT.

Taking signal

as an example, the spectrum of each order LPFT is calcu-
lated by using Eq. (8). According to the Ville (1948) for-
mula, the IF of signal (10) can be calculated as

Since Eq. (11) is a continuous derivable function, its deriv-
ative expressions can be calculated. For the convenience of 
expression, only the first to third derivatives are calculated 
as follows

The high-concentration time–frequency energy solution 
of the signal s(t) can be obtained through substituting f(k)(τ) 
(k = 1, 2, 3) into Eq. (12) by ck(τ) (k = 1, 2, 3) in Eq. (8), 
respectively.

Figure 1 shows the signal s(t) (Eq. 10), the IF (Eq. 11) 
and the results of zeroth–third-order LPFT, which are rep-
resented by LPFTk (k = 0, 1, 2, 3). In general, the peak posi-
tion of the time-spectrum energy of each order LPFT, also 
known as the time–frequency ridges (Gribonval 2001), all 
concentrate near the IF. However, the energy variation of 
LPFT0 is too large, which is greatly deviated from the real 
energy of the signal. Compared to LPFT0, the consistency 
of the time–frequency energy of other order LPFTs is greatly 
improved. In Fig. 2, time–frequency ridges and correspond-
ing amplitudes of LPFTs are extracted for IF detection (Ter-
rien et al. 2008). It can be seen in Fig. 2b, the IF errors 
of LPFT2 and LPFT3 are smaller than LPFT0 and LPFT1. 
For time–frequency ridge amplitude (Fig. 2c), the variation 
range of LPFT0 is too large, while the variation range of 
other LPFTs is small. LPFT3 takes the smallest one, which 
is consistent with the true amplitude variation trend of the 
signal.

In order to analyze the concentration of time–frequency 
energy near the IF of each order LPFT, the index of spec-
trum concentration (SC) is defined,

where TFA represents time–frequency amplitude, fmin and 
fmax are the lower and upper limits of the frequency analysis, 
respectively. The first expression in Eq. (13) indicates that 

(10)s(t) = sin [2� ⋅ 55 ⋅ t + 2� ⋅ sin(25 ⋅ t)]

(11)f (t) = 55 + 25 ⋅ cos(25 ⋅ t).

(12)
f (1)(t) = −252 ⋅ sin(25 ⋅ t)

f (2)(t) = −253 ⋅ cos(25 ⋅ t)

f (3)(t) = 254 ⋅ sin(25 ⋅ t)

.

(13)

[fmin, fmax] = arg
f

�
TFA(f , tj) =

√
2

2
max

�
TFA(f , tj)

��

SC(tj) = max
�
TFA(f , tj)

���
fmax − fmin

� ,
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the values of fmin and fmax are the frequencies corresponding 
to 
√
2∕2 of the maxima of TFA.

Based on Eq. (13), when the SC reaches the maximum 
value, the kernel function of LPFT (14)

w(t − �) exp(−i�t) exp

{
−i

[
n∑

k=1

1

k! ⋅ (k + 1)
ck(�)(t − �)k+1

]}

Fig. 1  The zeroth–third-order 
LPFT with known instantane-
ous frequencies and deriva-
tives. a The signal (10), b IF, c 
LPFT0, d LPFT1, e LPFT2 and 
f LPFT3
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and the frequency variation characteristics of the signal tend 
to be consistent, and the concentration of the spectrum is the 
highest. Figure 2d shows the SC of each order LPFT. As the 
order increases, the spectral concentration of the LPFT is 
enhanced correspondingly.

For further analysis, the time–frequency spectral contours 
of the integral of Eq. (14) are calculated targeting the signal 

(10) with 0.188 s, 0.314 s, 0.502 s, and 0.629 s as the time 
window centers respectively (Fig. 3). Meanwhile, the spec-
tral amplitudes at 0.188 s and 0.502 s (Fig. 4) are extracted 
to analyze the properties of the LPFT kernel function.

1. As shown in Fig. 3c, the time–frequency shape of the 
LPFT0’s kernel function is independent of the IF, which 
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Fig. 3  The correspondence between the spectral shape of the LTFT kernel function and the IF of the signal. a Signal, b IF, c LPFT0, d LPFT1, e 
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Fig. 4  Spectral amplitude at 
the typical time a 0.188 s and b 
0.502 s in the time–frequency 
spectrum of signal (10)
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is always parallel to the time or frequency axis. There-
fore, when the time–frequency shape of kernel function 
is more consistent with IF (0.502 s and 0.629 s), the 
spectral concentration is higher and the time–frequency 
amplitude is larger (blue dotted line in Fig. 4b). When 
the time–frequency shape of kernel function is less con-
sistent with IF (0.188 s and 0.314 s), the spectral con-
centration is lower and the time–frequency amplitude is 
smaller (blue line in Fig. 4a).

2. For LPFT1 (Fig. 2d), the exponential coefficient of the 
kernel function is a linear function, so the time–fre-
quency shape can be rotated by a certain angle along 
the time axis or the frequency axis. Thus for 0.188 s 
and 0.314 s, the time–frequency spectra of the kernel 
function are tilted along the direction of the IF. Com-
pared with LPFT0, the spectral concentration and 
time–frequency amplitude are improved (pink dotted 
line in Fig. 4a). For 0.502 s and 0.629 s, the time–fre-
quency shapes of the kernel function are similar to that 
of LPFT0, so the spectral concentration and time–fre-
quency amplitude are close to LPFT0 (pink line in 
Fig. 4b).

3. For LPFT2 and LPFT3, The exponential coefficients of 
the kernel function are quadratic and cubic, respectively, 
so the time–frequency shape can change nonlinearly. 
For 0.188 s and 0.314 s, the time–frequency shape of 
LPFT3 is closest to the IF, so its spectral concentration 
is the highest with the largest time–frequency ampli-
tude (red line in Fig. 4a). The time–frequency shape of 
LPFT2 is similar to that of LPFT1, so its time–frequency 
amplitude is also close to that of LPFT1 (green line in 
Fig. 4a). For 0.502 s and 0.629 s, the time–frequency 
shapes of LPFT2 and LPFT3 are similar. They all bend 
with the change of IF, and high degrees of coincidence 
are obtained. Therefore, the time–frequency amplitudes 
have reached maximum values, meanwhile the spectrum 
concentration is the highest (green dotted line and red 
line in Fig. 4b).

Therefore, under the condition that the coefficients of each 
order of the polynomial demodulation operator are known in 
Eq. (7), LPFT can obtain the time–frequency analysis results 
with a high spectral concentration. For the real signal, it is dif-
ficult to obtain the derivatives directly since the IF is unknown. 
The calculation procedure of nth-order LPFT is designed fol-
lowing the parameter estimation recursive algorithm of Yang 
et al. 2014:

1. Since LPFT0 does not contain the polynomial demodu-
lation operator, the initial time–frequency spectrum is 
calculated based on LPFT0 firstly.

2. Detect the time–frequency ridge to obtain the IF f(t).

3. For each time position τ, the derivatives f(k)(τ) (k = 1, 2, 
…, n) are obtained by the least squares method within 
the time window w(t − τ) according to Eq. (3).

  Suppose the length of the time window is 2 m + 1, 
Eq. (3) is written in the matrix form 

 where 

 

 

  The solution of Eq. (15) is 

 where λ is the damping factor, and I is unit matrix.
4. Let ck(τ) =  f (k)(τ) (k = 1, 2,…, n), calculate the LPFTn 

of the signal based on Eq. (8).
5. Return to step 2, the IF f(t) is calculated cyclically. The 

termination condition lies in reaching the maximum 
iterations or the error of two adjacent IF is less than a 
preset threshold.

6. Output the LPFTn satisfying the iteration termination 
condition.

Based on the flow mentioned above, the first–third-order 
LPFT time–frequency spectra of the signal (10) are com-
puted and compared with the results of LCT and GLCT 
(Fig. 5). For convenience of comparison, two time–fre-
quency tilt angles of π/8 (Fig. 5a) and − π/8 (Fig. 5b) are 
chosen for LCT, respectively. As the time–frequency slope 
in each LCT remains unchanged, the amplitude performance 
is either high or low, showing an intensive inconsistency 
and deviation from the real time–frequency amplitude of 
the signal. By changing the time–frequency slope in each 
local time–frequency point, GLCT improves the accuracy 
of time–frequency amplitude (Fig. 5c). Figure 5d–f is the 
time–frequency spectra of the first–third-order LPFT, 
respectively. As the order increases, the consistency and 
accuracy of the time–frequency amplitude step forward.

(15)�2m×n�n×1= �2m×1,

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(t(−m) − �)
1

2!
(t(−m) − �)2

1

3!
(t(−m) − �)3 ⋯

1
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(t(−m) − �)n

⋯ ⋯ ⋯ ⋯ ⋯

(t(−1) − �)
1
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1

3!
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1
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(t(−1) − �)n
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(t(1) − �)2

1
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1
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1
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,

� =
[
f (1)(�) f (2)(�) f (3)(�) ⋯ f (n)(�)

]T
,

� =
[
f (t(−m)) ⋯ f (t(−1)) f (t(1)) ⋯ f (t(m))

]T
− f (�).

(16)� =
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Fig. 6  IF detection and spectral 
concentration analysis. a The 
true and detection values of IF, 
b IF detection error, c time–
frequency amplitude at the IF 
position, and d spectral concen-
tration of GLCT and first–third-
order LPFT
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Figure 6 shows the results of IF detection and spectral con-
centration analysis about the four methods of GLCT, LPFT1, 
LPFT2 and LPFT3 in Fig. 5. It can be seen from the IF detec-
tion errors (Fig. 6b), since both GLCT and LPFT1 belong to 
the first-order fitting of the local time–frequency characteristics 
of the signal, the error values have the same magnitude. LPFT2 
and LPFT3 reduce the IF errors by the high-order fitting of the 
local time–frequency characteristics. Comparative analysis of 
time–frequency spectra (Fig. 6c) shows LPFT3 has the largest 
amplitude. Furthermore, the SC of the four time–frequency 
spectra are calculated based on Eq. (13). Figure 6d shows that 
LPFT3 has the highest spectral concentration.

For further analysis, the spectral amplitudes of GLCT 
and first–third-order LPFT at time 0.188 s and 0.502 s are 
extracted (Fig. 7). Compared with the third-order LPFT 
based on the true IF derivatives (Fig. 1) which is represented 
by LPFT3T here, it can be seen that the result of GLCT devi-
ates the farthest from LPFT3T. Compared with GLCT, the 
accuracy of each order LPFT is improved. The higher the 
order, the more obvious the improvement of the accuracy.

Examples

The synthetic traces are generated by using chirplet and 
Ricker wavelet with different IF characteristics, respectively. 
The LPFT of the traces are obtained. Considering the vari-
ation of magnitude in the IF, only the third order is calcu-
lated. It is also compared with the traditional time–frequency 
analysis methods in seismic exploration, which are STFT, 
CWT, ST, and the MP method based on the Ricker atomic 
dictionary (Liu and Marfurt 2007).

Figure 8a shows the synthetic trace with chirplet, IF and its 
time–frequency spectrum by STFT, CWT, ST, MP and LPFT, 
respectively. The five chirplets are generated by the formula

multiplied with a Gaussian window. The parameters of each 
chirplet are shown in Table 1.

Among the five chirplets, the IF of the first one changes 
linearly; the 2nd, 3rd and 4th are nonlinear; and the 5th is 
constant. For STFT, CWT and ST, the time–frequency mor-
phology reflects the IF variation of each wavelet to a certain 
extent, but the spectral magnitude shows a large difference, 
especially for ST. This is due to the quasi-stationary assump-
tions of these methods. When the IF does not change in 
the time window, such as the fifth chirplet, the local signal 
conforms to the stationary characteristic. The perfect fit-
ting of the signal can be obtained based on the orthogo-
nal time–frequency grid, so the time–frequency shape and 
amplitude of the signal are well preserved. However, when 
the IF changes in the time window, such as the first–fourth 
chirplets, the local signal does not conform to the station-
ary features. The orthogonal time–frequency grid can only 
achieve an approximate fitting of the IF, which inevitably 
undermines the time–frequency variation and thus damages 
the time–frequency amplitude. For the MP method, the 
signal-based instantaneous autocorrelation transform can 
well preserve the time–frequency energy and have a higher 
time–frequency resolution. However, its time–frequency 
shape is difficult to reflect the variation characteristics of the 
IF. This is because the frequency-related parameters in the 
atomic dictionary only reflect the central frequency of the 
local signal and fail to reflect the frequency variation charac-
teristics in the local time period. For LPFT, the polynomial 
demodulation operator can fit the IF effectively. Thus, the 
time–frequency shape can accurately reflect the IF variation 
characteristics, and the time–frequency energy of the signal 
can also be well preserved.

(17)
w(t) = cos

{
2�

[
�1(t − �1) + �2(t − �2)

2 + �3(t − �3)
3 + �4(t − �4)

4
]}

Fig. 7  Spectral amplitude at 
the typical time a 0.188 s and b 
0.502 s in the time–frequency 
spectrum of signal (10)
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Fig. 8  Synthetic trace with chirplet and time–frequency spectra anal-
ysis. a Time–frequency spectra of noise-free data, from left to right, 
they are synthetic trace, IF, and the spectra by STFT, CWT, ST, MP 

and LPFT, respectively. b, c Time–frequency spectra with 5% and 
10% noise, respectively, where the subgraphs have the same meaning 
as a 
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Figure 8b, c shows the time–frequency spectrum of differ-
ent methods after adding, respectively, 5% and 10% random 
noise to the synthetic signal (Fig. 8a). It can be seen from the 
results that these methods all have anti-noise ability to a cer-
tain extent. Among the five methods, the deteriorated result 
of MP is mainly caused by the imperfect match between the 
atomic dictionary and signal.

Similar to Figs. 8a and 9a is a synthetic trace associated 
with the Ricker wavelet. With the increase of time, the wave-
let is gradually changed from symmetrical to asymmetrical, 
and the IF gradually appears tailing, which corresponds to 
the dispersion in the process of seismic wave propagation 
(Wang 2004). The time–frequency energy characteristics 
of each wavelet are well preserved in five time–frequency 

spectrum results. However, compared with STFT, CWT, ST 
and MP, the time–frequency morphology of LPFT reflects 
the IF variation characteristics of each wavelet more accu-
rately. Therefore, LPFT has the advantage of retaining both 
time–frequency morphological features and energy features. 
The anti-noise capability of these methods shows up in the 
results of noisy synthetic trace (Fig. 9b, c). In addition, com-
pared to Fig. 8b, c, the anti-noise ability of the MP method 
has been improved due to the perfect match of the time–fre-
quency dictionary and the signal.

To further verify the ability of the proposed method, the 
interlayer velocity model is designed in Fig. 10. The model is 
divided into three groups from top to bottom, and the thick-
ness of the interbed layer is gradually thinned. Synthetic trace 
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Fig. 8  (continued)

Table 1  The parameters of each 
chirplet in Fig. 8a

Number ω1 (Hz) τ1 (s) ω2 (Hz) τ2 (s) ω3 (Hz) τ3 (s) ω4 (Hz) τ4 (s)

1 30 0 500 0.05 0 0 0 0
2 50 0 300 0.055 8000 0.04 0 0
3 30 0 100 0.1 1500 0.1 30,000 0.1
4 100 0.028 100 0.1 1500 0.1 30,000 0.1
5 80 0.02 0 0 0 0 0 0
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Fig. 9  Synthetic trace with Ricker wavelet and time–frequency spec-
tra analysis. a Time–frequency spectra of noise-free data, from left 
to right, they are synthetic trace, IF, and the spectra by STFT, CWT, 

ST, MP and LPFT, respectively. b, c Time–frequency spectra with 
5% and 10% noise, respectively, where the subgraphs have the same 
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and IF curve are obtained based on the zero-phase Ricker 
wavelet (Fig. 11). For the first group of the interlayers, the 
IF curve changes slightly. STFT, CWT, MP and LPFT main-
tain the IF variation characteristics and energy relationship. 
For the second group of the interlayers, the IF shows wavy 
characteristics. STFT, CWT, ST and MP are all unable to 
describe the change, while only LPFT3 can retain the IF vari-
ation feature well. For the third group, the IF exhibits an arc-
like feature. STFT, CWT, ST, and LPFT can all describe this 
time–frequency morphology, and the morphological variation 
of the LPFT spectrum is closest to the IF.

Since LPFT is a high-order form of STFT, the computa-
tional cost of LPFT is greater than that of STFT. For a more 
comprehensive comparison, the time consumption of differ-
ent TFA methods in the three examples (Figs. 8, 9, 10) was 
recorded. The CPU of the tested computer is Intel Xeon 5 
2.8 GHz, and the RAM is 16 GB. It can be seen from Table 2 
that, among the five methods, STFT and ST take less time, 
CWT takes moderate time, and MP and LPFT take more time.

Applications

Figure 12 shows a two-dimensional post-stack seismic pro-
file that has undergone the conventional processing such as 
static correction, denoising, deconvolution, migration and 

stacking. The seismic reflection characteristics of typical 
fluvial facies strata are displayed between 2.9 and 3.1 s, that 
is, short axial strong reflection in the overall weak reflection 
background. The weak reflection mainly reflects the mud-
stone background, while the strong reflection is usually the 
response of channel sandstone. The three events marked in 
the elliptic region in Fig. 12 have already been proved to 
be the response of three thin channel sandstones stacked 
vertically. The planar distribution characteristics of the three 
channel sandstones are shown in Fig. 13. The representa-
tive seismic traces of the channel sandstones (trace number 
95) and the mudstone background (trace number 170) are 
extracted, and the corresponding time–frequency spectra are 
calculated.

Figure 14 shows the time–frequency spectra of the seis-
mic trace at the channel sandstones. On the whole, the chan-
nel sand bodies between 2.9 and 3.1 s have strong time–fre-
quency energy. By comparison, note that CWT and ST 
cannot distinguish the response of the three sand bodies 
well. Although STFT distinguishes the three sand bodies, 
typical low-frequency oscillations occur in the time–fre-
quency spectrum due to the short-time window (Castagna 
et al. 2003). MP shows a high resolution, and the response of 
the three sand bodies are all labeled as independent energy 
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clusters. However, the shapes are similar, the local frequency 
variation characteristics of each waveform cannot be deline-
ated. LPFT not only discerns the three sand bodies, but also 
depicts the local frequency variation characteristics.

Figure 15 shows the time–frequency spectra of the seismic 
trace at the mudstone background. Since the seismic reflec-
tion between the target layers is weak, the corresponding 
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Fig. 10  Time–frequency spectra analysis of seismic trace with interbedded model. From left to right, they are a velocity model, b synthetic 
trace, c IF and time–frequency spectrum by d STFT, e CWT, f ST, g MP and h LPFT, respectively

Fig. 11  Ricker wavelet (a) and 
the amplitude spectrum (b) 
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Table 2  The cost time of different TFA methods on the three traces in 
Figs. 8, 9 and 10

Synthetic trace STFT (s) CWT (s) ST (s) MP (s) LPFT (s)

Chirplet 0.12 0.25 0.09 0.32 0.39
Rikcer 0.14 0.29 0.11 0.41 0.48
Interbed 0.17 0.42 0.15 0.58 0.64



14 Acta Geophysica (2020) 68:1–17

1 3

time–frequency energy is also feeble. However, outside the 
target layer, from the time–frequency spectrum of strongly 
reflected waveform at 2.8 s, it can be seen that MP and LPFT 

have a high resolution. For the time–frequency spectrum of 
strongly reflected waveform at 3.2 s, LPFT well retains the 
IF variation characteristics of seismic waves.

Fig. 12  Real seismic data. The events marked by the elliptic are the response of three channel sandstones

Fig. 13  Planar distribution 
characteristics of the three 
channel sandstones in Fig. 12 
based on amplitude attribute. 
The position of the black circle 
corresponds to the 95th trace in 
Fig. 12
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Conclusions

The LPFT method based on the Ville’s analytical signal 
shows that LPFT is a higher order form of STFT and LCT. 
Through the polynomial demodulation operator, LPFT can 
achieve high-order fitting of local time–frequency features of 
the signal through accurate determination of the demodula-
tion operator coefficients. The calculation process of LPFT 
given in this paper can solve the demodulation operator coef-
ficients, and then obtain the time–frequency spectrum results 
with high energy concentration.

For non-stationary seismic traces, LPFT not only 
exhibits high time–frequency resolution, but also 

effectively preserves the instantaneous frequency and 
amplitude variation characteristics of local seismic sig-
nals. These properties can be utilized for target detection 
with frequency and amplitude anomalies, for example, 
in gas-bearing reservoirs with dispersion and attenuation 
characteristics. LPFT can be applied to prestack gathers, 
with which the prestack prediction of gas-bearing reser-
voirs can be realized by using the varied characteristics 
of frequency with offset. In addition, LPFT can be com-
bined with spectral decomposition technology to realize 
the post-stack prediction of gas-bearing reservoirs related 
to low-frequency shadow phenomenon. These potential 
research will be carried out in the future.
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