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Abstract
This article explores the suitability of a long short-term memory recurrent neural network (LSTM-RNN) and artificial intel-
ligence (AI) method for low-flow time series forecasting. The long short-term memory works on the sequential framework 
which considers all of the predecessor data. This forecasting method used daily discharged data collected from the Basantapur 
gauging station located on the Mahanadi River basin, India. Different metrics [root-mean-square error (RMSE), Nash–Sut-
cliffe efficiency (ENS), correlation coefficient (R) and mean absolute error] were selected to assess the performance of the 
model. Additionally, recurrent neural network (RNN) model is also used to compare the adaptability of LSTM-RNN over 
RNN and naïve method. The results conclude that the LSTM-RNN model (R = 0.943, ENS = 0.878, RMSE = 0.487) outper-
formed RNN model (R = 0.935, ENS = 0.843, RMSE = 0.516) and naïve method (R = 0.866, ENS = 0.704, RMSE = 0.793). 
The finding of this research concludes that LSTM-RNN can be used as new reliable AI technique for low-flow forecasting.

Keywords Artificial intelligence · Long short-term memory recurrent neural network · Low flow · Hydrological time series 
forecasting, naïve method

Introduction

Forecasting hydrologic time series (HTS) is a vital research 
topic for researchers, and undoubtedly forecasting has always 
been prime concern in hydrological practices. The forecast-
ing of rainfall and water level in a river is very important 
task for water resources engineers for planning and monitor-
ing water resources activities like providing irrigation water, 
maintaining environmental flow, providing drinking water, 
recreational purpose and many more other activities. Hydro-
logical processes like stream flow generation processes are 
not only controlled by external climatic conditions, but also 
by physical properties (Beven 2012). Developing appro-
priate models for forecasting hydrological time series is a 
challenging task due to the influences of many factors and 
complicated hydrologic processes (Gárfias-Soliz et al. 2010; 
Nayak et al. 2004; Sang 2013; Sang et al. 2009).

While dealing with time series forecasting in hydrol-
ogy, there are two approaches generally witnessed in the 

literature: the first one is stochastic models and the other one 
is artificial intelligence (AI) techniques. The AI techniques 
are generally referred as black box models in the literature 
due to its complex and unknown underlying process. It is 
very difficult to say which approach is the best for hydro-
logical time series forecasting. However, a recent study on 
hydrological time series forecasting by (Papacharalampous 
et al. 2019) and its companion studies was algorithmically 
proved by using large datasets (135–2537 real-world time 
series and 16,000–48,000 simulated time series) that at the 
annual and monthly time scales traditional and AI tech-
niques can perform equally well. The gaining popularity 
of AI techniques for HTS forecasting is clearly witnessed 
in the studies. (Papacharalampous et al. 2018a) assess the 
one-step ahead forecasting performance of 20 univari-
ate time series forecasting methods to a large number of 
geophysical and simulated time series of 91 values. “The 
simulation experiments reveal the most and least accurate 
methods for long-term forecasting applications, also sug-
gesting that the simple methods may be competitive in spe-
cific cases.” Some of those AI models used in HTS includes 
neural network (NN)(Atiya et al. 1999; Kişi 2007), support 
vector machines (SVM) (Kisi and Cimen 2011; Sahoo et al. 
2018; Sivapragasam et al. 2001), extreme learning machines 
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(ELM) (Yaseen et al. 2016), adaptive neuro-fuzzy inference 
system (ANFIS) (Firat and Güngör 2007), random forest 
(Tyralis and Papacharalampous 2017) and many more such 
AI techniques can be seen in the literature. Tyralis and 
Papacharalampous (2018) used Prophet for multi-step ahead 
forecasting of monthly streamflow. The Prophet algorithm is 
developed by Facebook for time series forecasting. These AI 
techniques are the viable alternative tool to study hydrologi-
cal phenomena, when hydrological attributes are limited and 
forecasting is essential.

HTS forecasting has received the remarkable considera-
tion by the researchers in the last few decades, and many 
models for HTS forecasting have showed significant perfor-
mance in terms of forecasting accuracy. HTS forecasting is 
still one of the difficult problems and is an active research 
area of interest in operational hydrology. We have applied 
sequential LSTM-RNN model for low-flow forecasting at 
Mahanadi River basin, using low-flow data from the Bas-
antapur station. Additionally, to check its adaptivity for this 
process, a benchmark model (naïve method) and sequential 
model (RNN) were used for HTS forecasting.

The main purpose of this study is to inspect the suitabil-
ity of LSTM-RNN for low-flow forecasting in the selected 
station of Mahanadi River basin India and compare it with 
RNN and naïve method. The naïve forecasting method is one 
of the most commonly used benchmarks for time series fore-
casting (Hyndman and Athanasopoulos2013; Pappenberger 
et al. 2015). This method simply sets all forecasts equal to 
the last value. This naïve method is appropriate when we 
are interested in multi-step ahead forecasting of time series 
without seasonality. However, in this study, we are interested 
in one-step ahead forecasting of monthly values; therefore, 
an appropriate naïve method is the one based on all monthly 
values of the last year.

Reviews on modeling approaches for HTS

HTS modeling can be categorized into two groups such as 
parametric and nonparametric methods. The most widely 
used parametric time series method is autoregressive inte-
grated moving average (ARIMA) model (Box and Jenkins 
1970), that is, ARIMA (p, d, q), where p, d, q, respectively, 
represent the autoregressive, integrated and moving average 
polynomial orders. Extensive application and assessments of 
the various classes of such models reported for the modeling 
of hydrologic time series were suggested in the past (Arena 
et al. 2006; Chen and Rao 2002; Hipel and McLeod 1994; 
Komorník et al. 2006; Srikanthan and McMahon 2001; Toth 
et al. 2000). Traditional time series forecasting involves 
decomposing the data into its components such as trend 
component, seasonal component and noise. In contrast to 
parametric approaches, nonparametric methods do not have 

a fixed model structure and parameter. Some of the previous 
studies also includes the chaotic behavior, hurst phenomena, 
stochastic and deterministic models and their performance 
in HTS forecasting (Dimitriadis and Koutsoyiannis 2015; 
Dimitriadis et al. 2016; Koutsoyiannis and Langousis 2011; 
Koutsoyiannis et al. 2008).

According to Wang et al. (2009), the HTS models can be 
broadly divided into three groups: regression-based meth-
ods, time series models and artificial intelligence (AI)-based 
methods. In recent years, HTS forecasting methods have 
been gradually shifting from traditional statistical models 
to AI approaches technique. AI techniques being capable of 
analyzing long series, handling large-scale data, recognizing 
patterns hidden in historical data and then applying those 
patterns to predict future scenarios have become increas-
ingly popular in HTS modeling among researchers for devel-
oping a variety of models for time series prediction (Sahoo 
et al. 2017). Papacharalampous et al. (2018b) used random 
walk (with drift), autoregressive fractionally integrated 
moving average (ARFIMA), exponential smoothing state-
space model with Box–Cox transformation, ARMA errors, 
trend and seasonal components (BATS), simple exponential 
smoothing, Theta and Prophet methods for univariate time 
series forecasting along with a naïve method based on the 
monthly values of the last year, used for benchmarking pur-
poses. Some of the models used by Papacharalampous et al. 
(2018b) are quite new or rare in HTS forecasting and beyond 
the scope of this study.

The artificial neural network (ANN) is one of the com-
mon AI procedures established on the conceptualization of 
the brain and nervous systems (Abiodun et al. 2018) and 
was successfully applied for HTS forecasting. A broad 
review of the use of ANN in the hydrological field is given 
by ASCE Task Committee on “Application of Artificial 
Neural Networks in Hydrology” (ASCE 2000a, b). A wide 
number of research have published to report the forecasting 
performance of several time series models HTS (Carlson 
et al. 1970; Chang et al. 2002; Chen and Rao 2002; Cheng 
et al. 2005; Firat and Güngör 2008; Hu et al. 2001; Jain and 
Kumar 2007; Keskin et al. 2006; Komorník et al. 2006; Lin 
et al. 2006; Nayak et al. 2004; Salas 1993; Sivapragasam 
et  al. 2007; Zounemat-Kermani and Teshnehlab 2008). 
Yaseen et al. (2018) have applied Elman recurrent neu-
ral network coupled with the rolling mechanism and gray 
models for streamflow forecasting over various lead times. 
Wunsch et al. (2018) advocated the suitability of nonlin-
ear autoregressive networks with exogenous input (NARX) 
model for forecasting groundwater levels in several wells 
in southwest Germany with a lead time of 6 months ahead. 
Recently, Zhang et al. (2018a) successfully implemented 
long short-term memory network for sewer overflow moni-
toring. A comprehensive review of the state-of-the-art for 
the application of different AI techniques in streamflow 
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forecasting from 2000 to 2015 was presented by Yaseen 
et al. (2015). The LSTM-RNN has been found very useful 
in continuous time series processing such as word recogni-
tion and speech recognition. Some studies have investigated 
the feasibility of LSTM in soil moisture modeling and agri-
cultural applications (Fang et al. 2017), water table depth 
predicting (Zhang et al. 2018b) drought forecast (Xu et al. 
2018). Here, the performance of LSTM-RNN in low-flow 
forecasts was examined.

Case study and catchment description

In this paper, the monthly low-flow HTS at gauging station 
namely Basantapur (82◦78�E, 21◦72�N) of Mahanadi River 
basin, India, was analyzed. The Mahanadi River basin was 
situated between 80°28′E–86°43′E and 19°8′N–23°32′N 
(Fig. 1). It travels a distance of 851 km from the source of 
origin before falling into the Bay of Bengal. The major part 
of the basin is covered with agricultural land accounting for 
54.27% of the total area, and 4.45% of the basin is covered 
by water bodies. The Mahanadi River basin has an average 
annual rainfall of 1572 mm, over 70% is precipitated during 
the southwest monsoon between June and October. The daily 
discharge data from June 1971 to May 2010 of the stations 
Basantapur were obtained from central water commission 
(CWC) Bhubaneswar and were used to calculate the monthly 
low-flow at Basantapur station.

Defining low flow and its importance

An appropriate definition of low flow differs from person 
to person according to the need of the study (Pyrce 2004). 
Low-flow situation is determined by a certain percentile of 
discharge (Ahn and Palmer 2016) or a truncation level in a 
stream. A significant amount of past studies has reported a 
number of low-flow indices such as Q95 (Laaha and Blöschl 
2005), Q85 (Giuntoli et al. 2013), Q75 (Demirel et al. 2013; 
Jha and Smakhtin 2008; Pyrce 2004), used for low-flow 
study, where Q95, Q85,Q75 are the discharge equaled or sur-
passed for the duration of 95%, 85%, and 75% of the obser-
vation period, respectively. In the study, ‘low-flow’ threshold 
is taken as the Q75 discharge, i.e., the flow is equal to or 
surpassed for the duration of 75% of the observation period 
which was obtained from the daily discharge data. It is to 
be noted that the hydrological, topographical and climatic 
conditions of rivers in India, in general, are quite different, 
and the approach suggested by Q75 (Jha et al. 2008; Pyrce 
2004) may be applicable for Mahanadi River based on actual 
field conditions.

The reliable prediction of future low flow has many 
important applications in water resources planning and 
management. It is also important for the environmental/
ecological discharge (Tegos et al. 2018). The importance of 
low flow encouraged researchers to apply different types of 
forecasting approaches to evaluate and forecast low flows in 
rivers. Low flows can be critical in determining how much 

Fig. 1  Study area and selected station
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water must by pass a run-of-river hydro-plant to maintain 
downstream river ecology and how much is available for 
power generation in the dry season. “Thermal power sta-
tions are dependent on cooling water and information on 
low flows when the availability of water for abstraction and 
dilution of cooling water is at a minimum is essential for 
design purposes” (WMO 2008). For all these applications, 
there may be a need to forecast flows in order to implement 
restriction on water use to minimize the risk of very severe 
restriction in the future. In some instances, licenses to extract 
water in excess of the available supplies have been issued 
and thus low-flow forecasts are essential forecast tool. The 
ultimate goal of the understanding of low-flow processes is 
to facilitate the development of early warning systems for 
low-flow adaptation and mitigation which is very crucial in 
managing water resources in the study river basin. Thus, 
low-flow assessment plays a crucial role in low-flow man-
aging (Dracup et al. 1980) along with many environmental 
purposes related to the better management and sustainable 
development of water resources. Further, detailed informa-
tion about the various aspect of the low flow can be found 
in manual on low-flow estimation—prediction by Gustard 
and Demuth (2009), and a review on low-flow hydrology by 
Smakhtin (2001).

Theoretical overview

Recurrent neural networks (RNNs)

In recent times, due to successful application of deep learn-
ing especially in the field of sequential prediction like sta-
tistical language modeling, chaotic time series, ecological 
modeling for dynamic systems control and finance and 
marketing motivated researchers to use deep learning for 
time series forecasting for hydrology events (Assaad et al. 
2008; Cinar et al. 2017; Mikolov et al. 2010). The concept 
behind RNNs is to make use of arbitrarily input data over 
long sequences, such that it repeats the same task to every 
element in the sequence and output dependence on the previ-
ous computation. In more technicality, it consists of memory 

cell which captures information till sequence of training data 
completed. The architecture of RNN’s varies according to 
its application, many-to-one model (useful when we want to 
predict at the current time step given all the previous inputs), 
many-to-many model (useful when we want to predict mul-
tiple future time steps at once given all the previous inputs) 
and several other variations. The final structure selection 
depends upon the problem statement which depends on 
phenomena. In our study, many-to-one for one-step ahead 
forecasting model is used, i.e., to predict the current month’s 
low-flow value given all the previous month’s low-flow val-
ues as input to the model.

RNN is a connectionist model described by interconnec-
tions and suitable for modeling temporal dependencies of 
unspecified duration inputs and the output using internal 
memory. The feature of RNN is that there is no instanta-
neous flow of information taking place among the neurons 
rather than the loops. Thus, it makes possible to keep the 
influence of the information for a variable at a particular 
period till the sequential time series complete. The memory 
of RNN is coded by the recurrent connections, and the out-
put comes from each neuron itself (Assaad et al. 2008). Fig-
ure 2 shows a typical RNN structure in unrolled (network of 
complete sequence) form of full connected network.

where xt is the input at a time t. The black square in Fig. 2 
gets inputs from other neurons at a previous time step xt−1, 
stis the hidden state at time step t. It is the “memory” of 
the network. st is calculated based on the previous hidden 
state and the input at the current step. st captures informa-
tion about what happened in all the previous time steps and 
is given by Eq. (1)

yt is the output at step t. For example, if we wanted to pre-
dict the next sequence in a time series, it would be a vector 
of probabilities across the time series. The function f usually 
is a nonlinear activation function as tanh. RNN shares the 
same parameters (A, B, W) Fig. 2 across all steps performing 
the same task at each step, just with different inputs.

(1)st = f (Axt +Wst−1)

Fig. 2  Unfolding of Recurrent 
Neural Network (RNN) (LeCun 
et al. 2015)
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Long short‑term memory recurrent neural 
network (LSTM‑RNN)

Although the RNNs have the higher competency to deal with 
nonlinear time series in an effective manner, but there are 
still some gradient issues to train long time lags, which spe-
cially needed for time series forecasting, more specifically 
for hydrology time series. Also, it has issue with predeter-
mined time lags to learn temporal sequence processing and 
finding optimal time window size automatically (Gers 2001; 
Gers et al. 1999). Therefore, to overcome such limitations 
over RNN, an LSTM-RNN model is adopted in this paper 
to forecast low flow.

This state-of-the-art approach LSTM-RNN is proposed 
by Hochreiter and Schmidhuber (1997). The objective of 
this work is to develop a robust many-to-one LSTM model 
for hydrological time series. Similar to RNN, LSTM also 
consists a memory cell (Abidogun 2005) consisting four 
basic elements: an input gate, a neuron with a self-recur-
rent connection (a connection to itself), a forget gate and an 
output gate. The three nonlinear gates present in the block 
are the summation unit, which controls the inside-outside 
movement of information via activations cell through mul-
tiplications. This multiplication takes place at each input 
and output cell by their respective gates, while forget gate 
multiplies previous state (memory cell’s self-recurrent con-
nection) and allowing the cell to forget or remember its pre-
vious state using sigmoid activation function. In general, 
gate activation function (‘ft’) is taken as logistic sigmoid, 
so that gate activation is between 0 (gate close) and 1 (gate 
open), whereas tanh or logistic sigmoid is for output acti-
vation function (‘Ot’) to overcome the vanishing gradient 
problem, whose second derivative can sustain for a long 

range before going to zero. Further, augmentation is possible 
which depends upon the different problem statement. The 
weights (‘peephole’ connection) join the cell to the gates, 
which is presented in Fig. 3, and the rest of the connection 
is unweighted (or equivalently, a fixed weight). The memory 
block output connects the rest of the network through output 
gate multiplication.

The model input is denoted as x = (x1, …, xj, …, xt), and 
the output sequence is denoted as y =

(
xt+1,… , xt+i,… , xt+t�

)
 

where t is prediction period and t′ is the next time step pre-
diction. In the case of low-flow prediction, x can be consid-
ered as historical input data, and y is the single lag period 
series. The goal of LSTM-RNN is to predict low-flow dis-
charge in the next time step based on previous data and is 
calculated by the following equation:

where σ denotes the sigmoid function
The memory block is outlined in a box and consists of 

an input gate, an output gate and a forget gate, where the 
outputs of three gates are, respectively, represented as fol-
lows: it, ot, ft . The activation vectors for each cell and mem-
ory block are, respectively, denoted as ct and ht. The weight 

(2)it = �
(
Wix ⋅ xt +Wih ⋅ ht−1 +Wicct−1 + bi

)

(3)ft = �
(
Wfx ⋅ xt +Wfh ⋅ ht−1 +Wfc ⋅ ct−1 + bf

)

(4)ct = fj ⋅ ct−1 + it ⋅ g
(
Wcx ⋅ xt +Wch ⋅ ht−1 + bc

)

(5)ot = �
(
Wox ⋅ xt +Woh ⋅ ht−1 +Woc ⋅ ct + bo

)

(6)ht = ot ⋅ h
(
ct
)

(7)yt = Wyh ⋅ ht + by

Fig. 3  LSTM memory block 
with one cell with three gated 
layers: forget gate ft, input gate 
it and output gate ot, controlling 
the activation of cells ct−1 and ct



1476 Acta Geophysica (2019) 67:1471–1481

1 3

matrices W and bias vectors b are utilized to build connec-
tions between the input layer, output layer and the memory 
block.

Naïve method

Naïve forecast is the simple and very effective forecasting 
model and considered as benchmark against most of sophis-
ticated models (Hyndman and Athanasopoulos 2018). Using 
the naïve approach, forecasts are produced that are equal 
to the last observed value. Naïve method is also useful for 
highly seasonal data. The low flows are highly seasonal as in 
this case, we set each forecast to be equal to the last observed 
value from the same season of the year (e.g., the same month 
of the previous year). Suppose the historical data be denoted 
by, y1, … yT, then forecasting can be denoted by Eq. (8),

where ŷT+ h|T is a short-hand for the estimate of ŷT+h based 
on the data y1,… yT and h is the forecast horizon, m is the 
seasonal period and k is the integer part of (h − 1)/m (i.e., 
the number of complete years in the forecast period prior to 
time T + h). This looks more complicated than it really is. 
For example, with monthly data, the forecast for all future 
February values is equal to the last observed February value. 
The interested reader can find more detail about the method 
in (Hyndman and Athanasopoulos 2018).

Model development and performance 
evaluation

The objective of study is to implement many-to-one LSTM-
RNN model. The assembly of time delay model is developed 
using “Keras: The Python Deep learning library” (Chollet 
2016). The low-flow dataset is divided into training and 
testing to build the models. The partitioning of the dataset 
(training and testing) generally varies with the problem of 
interest. Hence, there is no data division and depend upon 
problem. We used 70% data for training model and remain-
ing 15% for validation and 15% for testing. Considering the 
view point of simple model, the RNN has a single-layered 
topology, i.e., one input layer, one hidden layer and one out-
put layer. LSTM-RNN is constructed using one input layer, 
one LSTM layer with memory blocks and one output layer. 
Both the models were tested with 1, 2,3,4 and 5 neurons in 
the hidden layer with a lag of 1, 3, 6, 9 and 12, and the best 
configuration was selected based on the RMSE.

A simple data pre-processing step was tested to check 
model sensitivity, by adopting time series transformation to 
a logarithmic scale prior training the model (Bandara et al. 
2017). Finally, in the post-processing stage, the forecasted 
value was back-transformed into their actual scale, by taking 

(8)ŷT+ h|T = yT+h−m(k+1)

the exponent of each generated output value. This process 
is adopted to stabilize the variance of a time series. Firstly, 
we calculated the Q75 value from the original discharge data. 
Then, we transformed the Q75, i.e., the low-flow time series 
in this study using natural logarithm. All the Q75 low-flow 
time series discharge data are greater than one so while we 
do log transform of the Q75 time series, there is no chance of 
getting any value negative. The selection of model architecture 
includes a selection of model input. Therefore, various time 
steps were tested in between 1 and 12, and finally 12 time 
steps were fixed for building the model (Ouyang and Lu 2018). 
Hence, as input, vector 3D array (number of sample = 468, 
number of time steps = 12, output = 1) was used to train (70% 
of the sample data) the model in both cases; in addition, the 
loss function mean square error and optimizer Adam were 
used to compile the model as the final step in building the 
model with 2000 epochs.

Some techniques are recommended for HTS forecasting 
model performance evaluation according to the published 
literature related to calibration, validation and application of 
hydrological models (Schoups et al. 2008). Four performance 
evaluation criteria used in this study are computed in the fol-
lowing section.

The coefficient of correlation (R)

Root‑mean‑squared error (RMSE)

Nash–Sutcliffe efficiency coefficient (ENS)

Mean absolute error (MAE)

where Q75,obs = observed Q75; Q75,for = forecasted Q75; 
Q̄75,obs = average observed; Q̄75,for = average forecasted Q75; 
N = number of data points.

(9)

R =

∑N

i=1

�
Q75,obs − Q̄75,obs

��
Q75,for − Q̄75,for

�
�∑N

i=1

�
Q75,obs − Q̄75,obs

�2�∑N

i=1

�
Q75,for − Q̄75,for

�2

(10)RMSE =

�∑N

i=1

�
Q75,obs − Q75,for

�2
N

(11)

ENS = 1 −

⎡⎢⎢⎢⎣

∑N

i=1

�
Q75,obs − Q75,for

�2
�∑N

i=1

�
Q75,obs − Q̄75,obs

�2

⎤⎥⎥⎥⎦
, −∞ ≤ ENS ≤ 1

(12)MAE =
1

N

N∑
i=1

||Q75,obs − Q75,for
||
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We used 70% data for training model and remaining 15% 
for validation and 15% for testing, i.e., from June 1971 to 
September 1998 for training, from October 1998 to July 
2004 for testing and from August 2004 to May 2010 for 
validation in case of LSTM-RNN and RNN, while for naïve 
method, we used June 1971 to July 2004 for training and 
August 2004 to May 2010 for validation.

Result and discussion

As earlier stated, the main purpose of this study is to inspect 
the suitability of LSTM-RNN for low-flow HTS forecasting 
and compare with RNN and naïve method.

The outcomes accomplished in this study suggest that the 
LSTM-RNN method is an effective technique to model the 
monthly low-flow discharge time series and can give signifi-
cant prediction performance than the traditional RNN and 
benchmark naïve method for time series approaches. The 
results indicate that the best performance can be obtained by 
LSTM-RNN with a lag of 12 considering RMSE evaluation 
criteria during the validation phases (Table 1). For RNN, the 
best performance is also obtained at lag 12.

Overall, the RNN and LSTM-RNN models can give good 
prediction performance and could be successfully applied to 
establish the forecasting models that could provide accurate 
and reliable monthly low-flow prediction. But long-range 
dependence (also known as the Hurst phenomenon) can-
not be modeled by AI learning regression models. This 
modeling can be made within stochastic frameworks and is 
mostly important for probabilistic forecasting (long-range 
dependence leads to wider prediction intervals)(Tyralis and 
Koutsoyiannis 2014). The results suggest that the LSTM-
RNN model was superior to the RNN for monthly low-
flow time series forecasting at Basantapur station in the 
Mahanadi River basin. From Table 1, it is observed that the 
LSTM–RNN has outperformed in forecasting low flow for 
the representative station in the Mahanadi River basin com-
pared to RNN and naïve method. The Nash–Sutcliffe model 
efficiency coefficient (ENS) is 0.889 for LSTM-RNN, 0.825 
for RNN and 0.704 for naïve method indicating LSTM-RNN 
has better predictive power than other two methods. When 
comparing forecast methods applied to a single time series 
or to several time series with the same units, the MAE is 
popular as it is easy to both understand and compute. A fore-
cast method that minimizes the MAE will lead to forecasts 

Table 1  Forecasting models are implemented using R, RMSE, ENS 
and MAE values during validation period

LSTM- RNN RNN Naïve

RMSE 0.487 0.561 0.793
ENS 0.878 0.843 0.704
R 0.943 0.935 0.866
MAE 0.361 0.391 0.617

Fig. 4  Training (from June 1971 to September 1998), testing (from 
October 1998 to July 2004) and validation (from August 2004 to May 
2010) for LSTM-RNN

Fig. 5  Training (from June 1971 to September 1998), testing (from 
October 1998 to July 2004) and validation (from August 2004 to May 
2010) for RNN

Fig. 6  Training (from June 1971 to July 2004) and validation (from 
August 2004 to May 2010) for naïve method
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of the median, while minimizing the RMSE will lead to 
forecasts of the mean. It is clearly seen from Table 1 that 
LSTM–RNN has MAE 0.361 which is better than RNN’s 
MAE 0.391. For this case study of forecasting low flow 
for the station Basantapur in the Mahanadi River basin, 
the LSTM-RNN LSTM-RNN’s performance is increased 
by 7.67% than the performance of RNN. However, a large 
comparison study can be used to provide generalized results 
about the forecasting performance of black box models (e.g., 
LSTM-RNN, RNN, ANN) (Papacharalampous et al. 2018a, 
c, 2019; Tyralis and Papacharalampous 2018). Figures 4 and 
5 show the LSTM-RNN plots of data during training, testing 
and validation period, and Fig. 6 showing the training and 
validation results for naïve method. The scatterplot of the 
forecasted versus observed Q75 during the validation period 
is shown in Figs. 7, 8 and 9, respectively, for LSTM-RNN, 
RNN and naïve method.

Fig. 7  Scatterplot of the fore-
casted versus their correspond-
ing observed Q75 values for 
LSTM-RNN in the validation 
period

Fig. 8  Scatterplot of the forecasted versus their corresponding 
observed Q75 values for RNN in the validation period

Fig. 9  Scatterplot of the fore-
casted versus their correspond-
ing observed Q75 values for 
naïve method in the validation 
period
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Conclusions

An effort was made in this paper to explore the suitability 
of LSTM-RNN over RNN for hydrological time series. As 
a case study, monthly low-flow discharge data are used to 
implement the forecasting models. The standard statistical 
performance evaluation measures are adopted to evaluate the 
performances of various models applied.

LSTM-RNN’s ability to forget, remember and update the 
information pushes it one-step ahead of RNN. The results 
obtained in this study indicate that the LSTM-RNN method 
can be used to model low-flow HTS at Basantapur station 
in the Mahanadi River basin, India, and can give satisfac-
tory performance over RNN and naïve method. LSTM-RNN 
is well-suited to learn from experience to classify, process 
and predict time series given time lags of unknown size and 
bound between important events. Time series prediction 
involves processing of patterns that evolve the appropriate 
response at a particular point in time and depends not only 
on the current value of the observable but also in the past.

Therefore, the results of the study are encouraging, and 
the authors advocate that LSTM-RNN approaches can be 
used in modeling the low-flow hydrological time series 
for the selected station, and this may provide some ideas 
for researchers and engineers who apply data-driven AI 
approaches for modeling low-flow hydrological time series 
forecasting. This work recommends the performance of such 
model can be improved for low-flow hydrological time series 
forecasting by adopting several stacked layers (multiple hid-
den LSTM layers) and a GRU (Gated Recurrent Unit) LSTM 
that would be scope of this work.
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