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Abstract
Singular value decomposition (SVD) is an efficient method to suppress random noise in seismic data. The performance of 
noise attenuation is typically affected by choosing the rank of the estimated signal using SVD. That the rank is fixed limits 
noise attenuation especially for a low signal-to-noise ratio data. Therefore, we propose a modified approach to attenuate 
random noise based on structure-oriented adaptively choosing singular values. In this approach, we first estimate dominant 
local slopes, predict other traces from a reference trace using the plane-wave prediction and construct a 3D seismic volume 
which is composed of all predicted traces. Then, we remove noise from a 2D profile whose traces are predicted from differ-
ent reference traces via adaptive SVD filter (ASVD), which adaptively chooses the rank of estimated signal by the singular 
value increments. Finally, we stack every 2D denoised profile to a stacking denoised trace and reconstruct the 2D denoised 
seismic data which are composed of all stacking denoised traces. Synthetic data and field data examples demonstrate that 
the proposed structure-oriented ASVD approach performs well in random noise suppression for the low SNR seismic data 
with dipping and hyperbolic events.

Keywords Adaptive singular value decomposition · Singular value increments · Random noise attenuation · Plane-wave 
prediction

Introduction

Random noise has always been one of the important fac-
tors affecting the quality of seismic data. One of the main 
tasks of seismic data processing is to attenuate it. Many 
scholars have put forward and developed numerous effec-
tive approaches for random noise attenuation such as pre-
dict filter (Canales 1984; Liu and Liu 2011; Liu et al. 2012; 
Naghizadeh and Sacchi 2012), median filter (Liu et al. 2006; 

Zheng et al. 2017), empirical mode decomposition (EMD) 
(Cai et al. 2011; Chen et al. 2017; Liu et al. 2018), edge-
preserving filtering (Yuan et al. 2018b) and some methods 
based on transform including the wavelet transform (Yang 
et al. 2017), the seislet transform (Fomel and Liu 2010) and 
sparsity dictionary (Beckouche and Ma 2014).

Singular value decomposition (SVD) filtering is a sim-
ple and powerful tool in random noise attenuation based on 
extracting the essential coherency components. Its perfor-
mance of removing background noise is better than other 
denoising methods in seismic data with continuous unconflict-
ing events (Bekara and Mirko 2007). Freire (1988) used it in 
the time-space (t-x) domain to separate noise with the upgoing 
and downgoing waves especially when the events are horizon-
tal. Cadzow filtering (Trickett 2002; Trickett et al. 2003) can 
separate linear dipping coherent events from random noise 
because the rank of the Hankel matrix which is built from 
each frequency slice of linear events in the frequency-space 
(f-x) domain is equivalent to the number of their different 
slopes. Cadzow filtering is expanded to multiple dimensions 
(Oropeza and Sacchi 2011; Naghizadeh and Sacchi 2013, ), 
called multichannel singular spectrum analysis (MSSA), via 
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embedding–deducting and restructuring the Hankel matrix in 
the f-x domain for 3D seismic volumes. Kreimer and Sacchi 
(2012) represented the spatial data at one frequency slice by 
a high-order tensor for denoising and interpolating of curved 
events. Huang et al. (2015) developed the MSSA algorithm 
by a damping factor controlling the degree of residual noise 
attenuation. However, the frequency-space (f-x) domain SVD 
methods, such as Cadzow filtering and MSSA, need to fit the 
assumption of a few linear events. To meet approximately lin-
ear and denoise effectively, Yuan and Wang (2011) presented 
that the seismic data in the t-x domain are preprocessed with 
a sliding window before using Cadzow filtering (called local 
Cadzow filtering). The denoising performance of the method is 
affected by the parameter of window length which is set more 
subjectively and experientially.

Local SVD (LSVD) (Bekara and Mirko 2007) is utilized 
by laterally aligning all coherent signal along dip direction 
within t-x domain local window. The method is not limited 
by the linear assumption. A structure-oriented SVD approach 
(SOSVD) (Gan et al. 2015) can enhance useful reflections via 
flattening predicted seismic events according to the estimated 
local dips. Although the structure-oriented-type approach 
requires prior flattening, which complicates the process, it has 
two advantages. First, both rank reduction of SVD and stack-
ing can reduce noise. Second, without the limit of a uniform 
slope in processed windows, it is more effective in handling 
hyperbolic events and complex structures. However, the design 
that the rank of the estimated signal is fixed limits the denoised 
performance of SOSVD. If it can be adjusted according to the 
signal-to-noise ratio of the data, the effect of noise reduction 
will be improved.

In this paper, we propose a structure-oriented adaptive SVD 
(named SOASVD) approach for random noise attenuation. 
Firstly, we review the theory of SVD, analyze the distribution 
of singular values corresponding to random noise and put for-
ward the concept of adjacent singular value increment and the 
method of adaptively choosing the rank of estimated signal. 
Then, we introduce the prediction of plane waves and combine 
it with ASVD for random noise attenuation of seismic data. 
Finally, we use the synthetic and field examples to compare the 
proposed algorithm with f-x deconvolution, f-x EMD, LSVD 
and local Cadzow filtering, and draw some conclusions.

Theory

SVD

Seismic data � consist of useful signal � and random noise 
� , which is:

(1)� = � + �

where the size of matrixs � , � and � is N ×M , M represents 
the number of seismic traces and N represents the number of 
time samples in the processed window. The SVD of matrix 
� can be expressed as (Vrabie et al. 2004):

where � = [�1, �2, ..., �k, ..., �R], � = [�1, �2, ..., �k, ..., �R] , 
�k and �k are the eigenvectors, the matrix �k�Tk  is the 
eigenimages of ��T  ,  ∑ = diag[�1, �2, ..., �k, ..., �R] , 
�1 ≥ �2 ≥ ...�k ≥ ... ≥ �R , �k is the singular value and R is 
rank of � . Equation (2) means that seismic data � include 
R eigenimages weighted by the corresponding singular val-
ues. Equation (2) can be also represented as (Freire 1988; 
Lu 2006) :

where r is the rank of estimated seismic signal. Therefore, 
seismic data can be approximately divided into the seismic 
signal and random noise.

To effectively attenuate noise in seismic data using SVD 
method, we need to solve two problems. Firstly, we should 
obtain the events as horizontal as possible in processed win-
dows. Secondly, the rank r needs to vary with the SNR of the 
seismic section. It is often set as 1 or 2 (Bekara and Mirko 
2007), but it is only suitable for a single horizontal event with 
the fixed SNR. Lu (2006) suggests that it is given via the ratio 
of the stacking energy to the energy of the whole data. Freire 
(1988) refers that an abrupt change in the signal eigenvalues 
magnitude is easily distinguished from more gradual change 
in those of noise. However, the assumption is not proved and 
how to choose r based on the assumption is not given.

Singular value distribution of random noise

Assuming that the mean of random noise � is zero and its vari-
ance is �2 , normally, it is considered that all singular values �ni 
for � are equal to 

√
N� . However, the singular value of noise 

�ni is also calculated by the equation:

(2)� = �
∑

�T =

R∑
�=�

�k�
T
k
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r∑
k=1

�kukv
T
k
+
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k
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where �2
n1
,⋯ , �2

ni
,… , �2

nM
 is the descending order of the col-

lection 
�∑N
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n2
1,j
,… ,

∑N
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,… ,

∑N

j=1
n2
M,j

�
 Defining a 

statistic variable X =
∑N

j=1
n2
i,j
∕�2 , X yields �2 distribution 

with the degree of freedom of N. When N is relatively large, 
then X approximately yields a normal distribution with the 
mean of N and variance of 2N . Taking Y = (X − N)∕2N , Y 
yields a standard normal distribution. If p denotes probabil-
ity, up and ua denote the quantile and upper quantile of Y. The 
relationship between up and ua can be described as:

According to Yamauchi approximation, we have

where z = −ln(4a(1 − a)) . Therefore, the relationship 
between uxp and p can be written as:

where uxp represents the quantile of X and the relationship 
between unp and p can be written as:

where unp represents the quantile of �ni . Equations (5), (6) 
and (8) describe the relationship between unp and p. It is 
equivalent to the relationship between �ni and the index i. 
We plot the curve of unp with p ( N = 100 and � = 0.1778 ) 
in Fig. 1. It indicates that: 1) All singular values �ni are 
larger than zero and the mean value is about 

√
N� . 2) unp is 

approximately linear with p from 0.1 to 0.9; in other words, 

(5)up =

⎧
⎪⎨⎪⎩

−ua 0 < p < 0.5, p = a

0 p = 0.5

ua 0.5 < p < 1, p = 1 − a

(6)ua ≈
√
z(2.0611786 − 5.7262204∕(z + 11.640595)

(7)uxp =
√
2Nup + N

(8)unp = �

�√
2Nup + N

the slope of unp can be regarded as a constant. Therefore, the 
difference of adjacent singular values of � can be considered 
as a constant. 3) Both the slope of unp and the mean of �ni 
increase with � and N . So we define the difference between 
two adjacent singular values as the singular value increment:

Then, we have the following equation:

where Δ�ni , �n1 and �nN are the mean of adjacent singu-
lar value increments, the maximum singular value and the 
minimum singular value corresponding to random noise, 
respectively.

Adaptive SVD

Different from random noise, seismic signal may be recon-
structed from only a few of the first eigenimages because 
of their high correlation. The high correlation has been 
commonly utilized to seismic data processing (Yuan et al. 
2018a; Ma et al. 2018; Shi et al. 2018). Increments of 
adjacent singular values corresponding to seismic signal 
can be characterized by the following equation:

where △�sm and �s1 are the maximum adjacent singular 
value increment and the maximum singular value corre-
sponding to seismic signal, respectively. Comparing Eqs. 
(10) and (11), it is derived:

Equation (12) indicates that the seismic events can be better 
separated from noise by choosing the rank r by the singular 
value increments than the singular values. The r is varied 
with the singular value increments corresponding to seismic 
signal and noise using ASVD algorithm. The main flowchart 
of ASVD is as follows:

1. Determine a threshold by the mean of singular value 
increments corresponding to noise;

2. Determine the rank r through comparing the first few 
singular value increments with the threshold.

Prediction of plane waves

The input matrix of ASVD algorithm should be adjusted 
as horizontal as possible, so we apply the prediction of 
plane waves to it. The local plane differential equation is 
expressed as:

(9)Δ�i = �i − �i+1

(10)Δ𝜎ni ≈ (𝜎n1 − 𝜎nN)∕(N − 1) < 𝜎n1∕(N − 1)

(11)Δ𝜎sm > 𝜎s1∕(N − 1)

(12)Δ𝜎sm∕Δ𝜎ni > 𝜎s1∕𝜎n1

(13)
�D

�x
+ �

�D

�t
= 0

Fig. 1  The relationship between u
np

 and p 
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where � is the local seismic dip. The solution of Eq. (13) can 
be given as (Fomel 2002; Liu et al. 2015):

(14)�(x+1) = �(x)�(x→x+1)

where �(x) is the data of trace x. �(x→x+1) represents a predic-
tion matrix from trace x to trace x + 1 and is a function of � . 
The local seismic dip � is optimized by solving the follow-
ing least-squares minimization problem:

(a) Noisy model. (b) Estimated dip field.

(c) Predictived 3D volume using PWD. (d) Partial 2D profile of predictived 3D volume.

(e) ASVD denoised result of the Partial 2D profile. (f) Denoised data of noisy model.

Fig. 2  Demonstration for SOASVD method
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where �(�) =

⎡
⎢⎢⎢⎢⎢⎣

� 0 0 ⋯ 0

−�(1→2) � 0 ⋯ 0

0 − �(2→3) � ⋯ 0

⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 − �(N−1→N) �

⎤⎥⎥⎥⎥⎥⎦

 , 

� is the identity matrix. Let �̃1 represent a collection of pre-
dicted traces from the reference trace �1 , �̃1 can be calcu-
lated (Fomel 2002):

w h e r e  �̃1 = [�̃(1→1), �̃(1→2), �̃(1→3),⋯ , �̃(1→N)]  a n d 
�(1→i) = [�,�(1→2), �(1→3),⋯ , �(1→N)] . Then, we can predict 
�̃i from a reference trace i (i = 1, 2,⋯ ,N ). Therefore, a 3D 
predicted volume from a 2D seismic data is created. A 2D 
profile of the 3D predicted volume is composed of predicted 
traces �̃(1→x), �̃(2→x), �̃(3→x),⋯ , �̃(N→x) , which have high simi-
larity with the primitive trace x.

SOASVD denoising

The ASVD is applied to the 2D profile with approximate flat 
events. It is a structure-oriented ASVD ( SOASVD ) denois-
ing approach. The detailed steps are shown below:

1. Estimate dominant local slopes.
2. Predict other traces from a reference trace i (i = 1,… ,N) 

by applying plane-wave destruction filter which are 
designed by using the estimated slope. A 3D seismic 
volume is composed of all predict traces.

3. Apply ASVD filter to a 2D profile of the 3D seismic 
volume for denoising.

(15)�̃ = argmin ‖�(�)�‖2
2

(16)�̃T
1
= �T

(1→i)
�1

4. Stack the output of step 3).
5. Repeat steps 3) and 4) until all 2D profiles are processed 

and stacked.

Figure 2 demonstrates the process of SOASVD. Figure 2a 
is the original noisy model. Figure 2b is the estimated dip 
field of noisy model. A front view of Fig. 2c is the pre-
dicted traces from a reference trace applying the plane-wave 
destruction filter, and a profile view of Fig. 2c is the predic-
tion of a primitive trace from all reference traces. Figure 2d 
is the partial profile view which is close to the primitive 
trace. Figure 2e is the denoised result of Fig. 2d using ASVD 
method. Figure 2f is the final denoised result of Fig. 2a, and 
every trace in the figure is formed by the stacked trace of a 
denoised 2D profile.

Examples

Synthetic examples

To test the performance of the proposed algorithm, we use 
two synthetic examples in this section. The first example is a 
simple seismic profile including five hyperbolic events. The 
data consist of 81 traces with a sampling rate of 4 ms. The 
total time is 1.5 s. The slopes of five events become gradu-
ally smaller from the top to the bottom. The amplitudes of 
five events are 3, 2.5, 2, 1.5 and 0.8 from the top to the bot-
tom, respectively. The clean data and noisy data with SNR 
of −4.074 dB are shown in Fig. 3. For f-x deconvolution, f-x 
EMD and local Cadzow filtering, the range of frequency is 
set from 2 Hz to 75 Hz. For local Cadzow filtering, LSVD 
and LASVD, we use the sliding window consisting of 20 
traces and 50 time samples. For local Cadzow filtering and 

(a) Clean data. (b) Noisy data.

Fig. 3  Hyperbolic-events synthetic seismic example
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(a) f-x deconvolution. (b) f-x EMD.

(c) LSVD. (d) local Cadzow filtering.

(e) LASVD. (f) SOASVD.

Fig. 4  Comparison of denoised data for the hyperbolic-events synthetic example
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(a) f-x deconvolution. (b) f-x EMD.

(c) LSVD. (d) local Cadzow filtering.

(e) LASVD. (f) SOASVD.

Fig. 5  Comparison of removed noise for the hyperbolic-events synthetic example
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(a) f-x deconvolution. (b) f-x EMD.

(c) LSVD. (d) local Cadzow filtering.

(e) LASVD. (f) SOASVD.

Fig. 6  Cross-correlation of denoised data and, respectively, removed noise for the hyperbolic-events synthetic example
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LSVD, we set the rank r to be 2. For LASVD and SOASVD, 
we set the threshold as 4△ �ni . The denoised results using 
f-x deconvolution, f-x EMD, LSVD, local Cadzow filter-
ing, LASVD and SOASVD algorithm are shown in Fig. 4. 
We can see that the denoised result using f-x deconvolu-
tion (Fig. 4a) has obvious residual noise. Compared with 
local Cadzow filtering, LSVD, f-x EMD and f-x deconvolu-
tion, LASVD and SOASVD are more effective in removing 
noise. The removed noise sections are displayed in Fig. 5. 
We can also observe five hyperbolic leakage events from the 
removed noise section using f-x deconvolution in Fig. 5a 
and some visible leakage energy to the high slope event for 
LSVD (Fig. 5c) and local Cadzow filtering (Fig. 5d). There 
are little visible events using f-x EMD (Fig. 5b), LASVD 
(Fig. 5e) and SOASVD approach (Fig. 5f). To measure the 
leakage energy, we evaluate the cross-correlation sections 
between the denoised data and the corresponding removed 
noise shown in Fig. 6. The cross-correlation section in 
Fig. 6f illustrates that the leakage energy using SOASVD 
approach is least. For numerically comparing the denoising 

performances of these approaches, we evaluate the SNR 
of results processed with five approaches and list them in 
Table 1. The SNR of input noisy data in experiment one is 
−4.074 dB. The SNR using f-x deconvolution, f-x EMD, 
LSVD, local Cadzow filtering, LASVD and SOASVD 
approaches is 5.780 dB, 6.634 dB, 6.542 dB,7.237 dB, 9.709 
dB and 12.047dB, respectively. The SNR of input noisy data 
in experiment two is −6.974 dB, and the SNR after process-
ing using these approaches is 4.785 dB, 4.75 dB, 4.897 dB, 
5.785 dB, 7.741 dB and 9.238 dB, respectively. SOASVD 
approach yields the best result for noise attenuation.

The second synthetic example contains conflicting lin-
ear events. The clean data (Fig. 7a) include one horizontal 
event and two dipping events. The noisy data are shown in 
Fig. 7c after adding random noise (Fig. 7b). Figures 8,  9 
and  10 show the denoised results, the removed noise sec-
tions and their corresponding cross-correlation sections. 
The denoised results (Fig. 8a–d) by using f-x deconvolu-
tion, f-x EMD, LSVD and local Cadzow filtering are still 
contaminated by a certain amount of noise. Compared 

(a) Clean data. (b) Random noise.

(c) Noisy data.

Fig. 7  Conflicted linear synthetic seismic profile
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with them, Fig. 8e, f shows that random noise is largely 
suppressed. The removed noise (Fig. 9a–c) still has vis-
ible coherent events. From Figures 8f,  9f and  10f, it can 
be observed that SOASVD has the best performance in 

removing noise and preserving the useful signal except 
leaking a little energy in conflicted point of events. The 
processed result using the local orthogonalization method 
(Fomel 2007; Chen and Fomel 2015) is shown in Fig. 11. 

(a) f-x deconvolution. (b) f-x EMD.

(c) LSVD. (d) local Cadzow filtering.

(e) LASVD. (f) SOASVD.

Fig. 8  Comparison of denoised data for the conflicted linear synthetic example
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(a) f-x deconvolution. (b) f-x EMD.

(c) LSVD. (d) local Cadzow filtering.

(e) LASVD. (f) SOASVD.

Fig. 9  Comparison of removed noise for the conflicted linear synthetic example
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(a) f-x deconvolution. (b) f-x EMD.

(c) LSVD. (d) local Cadzow filtering.

(e) LASVD. (f) SOASVD.

Fig. 10  Cross-correlation of denoised data and, respectively, removed noise for the conflicted linear synthetic example.
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Comparing Fig. 11b, c with Figs. 9f,  10f illustrates that 
the leaked useful signal in conflicted point is effectively 
retrieved.

Field data example

To further demonstrate the performance of SOASVD in 
practice, we choose the 2D profile (Fig. 12a) from western 
China. There are 57 traces with a sampling rate of 1 ms. It 
can be observed that strong random noise is present in data. 
After applying f-x deconvolution, f-x EMD, LSVD, local 
Cadzow filtering and SOASVD methods, the denoised result 
and the removed noise are shown in Figs. 12 and  13, respec-
tively. Random noise around at about 0.2 s is effectively 
attenuated by using f-x deconvolution, f-x EMD, LSVD and 

local Cadzow filtering approaches, while their performance 
is poor at about 0.3 s–0.5 s. Figures 12f and  13e show the 
information of events is well preserved and noise is sup-
pressed using SOASVD method. It is noted that the domi-
nant local slopes are estimated from Fig. 12b.

Limitations and future work

The SOASVD approach has its own limitations. The main 
limitation is that seismic events are attenuated or distorted 
at the crossed points because the predicted traces have 
lower similarity with the primitive trace in the region of the 
crossed points. Although the performance has improved by 
using the local orthogonalization, the investigation of noise 
attenuation regarding crossed points may be the subject of 
our future work.

(a) denoised data. (b) removed noise.

(c) cross-correlation.

Fig. 11  SOASVD orthogonalization for the conflicted linear synthetic example
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Conclusions

We put forward a approach to attenuate random noise using 
structure-oriented adaptive singular value decomposition 
(SOASVD). With the approach, each trace is extended to a 

flat 2D profile via predicting the trace from its neighboring 
traces. After noise is attenuated, the predicted 2D profile 
is stacked as one trace. Random noise of the predicted flat 
2D profile is attenuated by using ASVD filter which can 
adaptively choose the rank of the estimated signal according 

(a) field data. (b) f-x deconvolution.

(c) f-x EMD. (d) LSVD.

(e) local Cadzow filtering. (f) SOASVD.

Fig. 12  Comparison of denoised results for field data
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(a) f-x deconvolution. (b) f-x EMD.

(c) LSVD. (d) local Cadzow filtering.

(e) SOASVD.

Fig. 13  Comparison of denoised results for field data

Table 1  Comparison of SNR 
using different approaches

Test Original f-x filter f-x EMD LSVD Local Cadzow LASVD SOASVD

Exp one(dB) −4.074 5.780 6.634 6.542 7.237 9.709 12.047
Exp two(dB) −6.974 4.785 4.750 4.897 5.785 7.741 9.238
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to the adjacent singular value increment and the SNR of 
processed windows. Synthetic and field data examples dem-
onstrate that, compared with f-x deconvolution, f-x EMD, 
LSVD and local Cadzow filtering, the proposed approach 
can obtain the best performance in suppressing random 
noise and preserving the useful signals for the low SNR 
data with dipping and hyperbolic events .
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