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Abstract
According to Brajanovski periodic layered model, a fractural medium can be equivalent to layered media with periodic 
distribution of fractural layers and background layers, but the analytical solution given by Brajanovski can only interpret 
the dispersion and attenuation effects of single characteristic unit model. In order to study the dispersion and attenuation 
features of multiple characteristic units, forward modeling methods are needed. Based on the theory of two-phase medium, 
Biot deduced the propagation equation of longitudinal waves in fluid-saturated porous media. However, there are two 
problems in the forward modeling using time-domain equation. One is the influences of boundary reflection, and the other 
is the introduction of cumulative error. For convenience, time-domain equation is rewritten in the frequency domain, thus 
constructing a one-dimensional rock physics model. Then, forward method is used to study the dispersion and attenuation 
features of fluid-saturated medium. Numerical simulation results are found to be in good agreement with the analytical 
solution. Furthermore, the frequency-domain forward method can analyze the velocity dispersion and energy attenuation of 
longitudinal waves in any multilayered fracture medium. By analyzing those numerical simulation results, it can be obtained 
that, as the length of characteristic unit increases or the number of characteristic unit decreases, both the starting frequency 
of dispersion and the peak frequency of attenuation shift to low, whatever the attenuation peaks are equal. In addition, the 
effects of porosity, permeability and fluid saturation on energy attenuation and velocity dispersion are also studied. Finally, 
the stress field and displacement field distributions of fluid-saturated fractural medium are given by the frequency-domain 
forward modeling method.

Keywords Attenuation · Dispersion · Fractural medium · Frequency-domain forward modeling

Introduction

In recent years, natural fractured reservoirs have attracted 
the interest of geophysicists in the fields of petroleum explo-
ration and development. In many cases, natural fractures 
control the permeability of the reservoir, so the ability to 
find and characterize natural fracture areas of the reservoir 
is a major challenge for seismic exploration.

When discussing the seismic response of fluid-saturated 
porous media, the most commonly used theory is Biot’s 
(1939, 1941, 1956a, b, 1962) two-phase medium theory, 
which divides fluid-saturated porous media into solid frame 
and porous fluids, respectively. Biot two-phase medium the-
ory is the beginning of research on fluid-saturated porous 
media. The theory predicts the longitudinal wave velocity 
in fluid-saturated medium under the condition that the dry 
rock skeleton and fluid properties are known. The energy 
loss between the crest and trough of a longitudinal wave is 
called “Biot loss.” However, the loss of fluid in the macro-
scopic background is much less than the loss in the seismic 
band (Pride et al. 2004). Mavko and Nur (1979) proposed a 
microscopic mechanism to explain the seismic wave attenu-
ation of porous media. When seismic wave causes particle-
scale background rupture, microcrack will generate larger 
fluid pressure than the pore space and then cause fluid to flow 
from microcrack into pore, called the “squirt flow.” Dvorkin 
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et al. (1994) proposed a squirt flow model for fluid-saturated 
rocks and combined it with Biot theory to obtain Biot/squirt 
(BISQ) theory. Ba and Zhao (2016) developed a new dual-
porosity medium based on squirt flow theory and proposed 
a new boundary to predict the longitudinal wave velocity of 
saturated dense rock. Although the squirt flow theory can 
fully explain and calculate the attenuation at ultrasonic fre-
quencies, it fails to explain the attenuation produced in the 
seismic band. In recent years, Rubino et al. (2009) and Ba 
et al. (2012) have strongly proved that the most important rea-
son for the dispersion and attenuation of longitudinal waves 
in the seismic frequency band is that the waves induced 
fluid flow (WIFF) in the mesoscopic scale. Dvorkin (2014) 
and Shen et al. (2018) study the mechanism for attenuation 
in the seismic frequency band and establish the relationship 
between velocity and formation absorption parameters.

The mechanism of attenuation and dispersion due to the 
presence of fluid in rock pore space is broadly called WIFF. 
Elastic wave creates pressure gradient in the fluid phase that 
causes the fluid to flow until fluid pressure reaches equilib-
rium under the action of internal friction. Because of the 
effect of WIFF, elastic parameters of the medium exhibit 
frequency-dependent features and then cause velocity dis-
persion and energy attenuation when elastic waves propa-
gate in the subsurface medium, especially in oil and gas 
reservoirs. Gassmann–Biot theory (Gassmann 1951; Biot 
1956a) gives the expression of the bulk modulus of fluid-sat-
urated rock in an isotropic medium at low frequencies, and 
the theory becomes a very classic model for fluid replace-
ment, but it only applied to isotropic media. For anisotropic 
background media with cracks, fractures, etc., Brown and 
Korringa (1975) derived an effective elastic modulus for-
mula for anisotropic rock skeletons and fluid-saturated rocks. 
This model is equally applicable to low-frequency condi-
tions and does not work well under laboratory ultrasonic 
conditions. White et al. (1975) first proposed a periodic 
layered patchy saturated model with the interlaced super-
position of water and gas layers on the premise that the 
mesoscopic scale was attenuated by WIFF, and described 
the longitudinal wave dispersion and attenuation. Hudson 
et al. (1996) and Chapman (2003) developed a theoretical 
model of attenuation and dispersion due to wave-induced 
flow between cracks and pores; this model is developed for 
sparse penny-shaped cracks in porous matrices. Chapman 
(2002, 2003) proposed a medium model with aligned frac-
tures under isotropic media conditions. Galvin and Gurevich 
(2003) and Brajanovski et al. (2005) calculated the stiff-
ness matrix of porous media with aligned planar fractures 
and then calculated the attenuation and dispersion of fast 
longitudinal waves. Galvin and Gurevich (2009) proposed 
a complex pore space model composed of penny-shaped 
cracks and rigid pores and gave an expression for calculat-
ing the modulus of the model. A more general approach to 

modeling fractural porous media is based on Biot’s theory 
of porous elasticity. In the context of Biot’s theory, fractures 
can be thought of as heterogeneous formations with high 
compliance. Based on this assumption, a model of fractural 
medium can be constructed and then applied to study the 
wave propagation in non-uniform porous media.

In this paper, we only study the elastic wave response 
of a one-dimensional model. The characteristic units are 
stacked vertically with no horizontal heterogeneity. Accord-
ing to the Brajanovski periodic layered model, the fractural 
porous medium is equivalent to a layered medium in which 
the fracture layer and the background layer are periodically 
distributed. Combined with Gurevich et al. the periodically 
distributed fracture layer is regarded as a layer with high com-
pliance and high porosity embedded in background porous 
medium, and an equivalent model of fractural porous medium 
is obtained. Then based on the Biot pore elasticity equation, 
we use the finite difference algorithm to carry out the forward 
modeling, to study the elastic characteristics of the porous 
media with plane fractures and to analyze the energy attenu-
ation and velocity dispersion characteristics of the fast lon-
gitudinal waves. In addition, we examine the effects of three 
important parameters of porosity, permeability and fluid satu-
ration on energy attenuation and velocity dispersion.

Elastic wave response with planar fracture 
medium

The main reason for the attenuation of elastic waves in fluid-
saturated rocks is the WIFF. When elastic waves propagate 
in a fluid-saturated porous medium, a local pressure gradient 
is formed in the fluid phase, causing liquid flow and cor-
responding viscous friction until the pore pressure reaches 
equilibrium (Müller et al. 2010). When a simple harmonic 
wave propagates in a fluid-saturated porous medium, a part 
of the rock is compressed and the other part is expanded. 
High pore pressure is generated in the compression zone, 
and the pore fluid will flow from high pore pressure to low 
pressure, so that the relative flow of the fluid will cause 
energy loss. In other words, during the propagation of the 
wave, dispersion and attenuation occur due to the influence 
of WIFF.

According to the Brajanovski periodic layered model, 
the fractured porous medium can be equivalent to a layered 
medium with periodic distribution of the fracture layer and 
the background layer. Gurevich et al. assume that the fracture 
in the periodic layered medium is a thin layer with high com-
pliance and high porosity. Thus, the fractural porous medium 
is equivalent to the model shown in Fig. 1 (White et al. 1975; 
Galvin and Gurevich 2003), where h represents the thickness 
of one characteristic unit, h1 represents the thickness of the 
background porous medium, and h2 represents the thickness 
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Fig. 1  Equivalent model of frac-
tured porous media (Galvin and 
Gurevich 2003)

of the equivalent fracture layer; they are stacked together to 
form a single characteristic unit. The compressive forces 
cause fluid flow from the softer layer into the stiffer layer 
during wave propagation on the rock, which creates a pres-
sure gradient between the layers and causes attenuation and 
dispersion. We will use this model to study the elastic wave 
response of fractural porous media at mesoscopic scale.

Assume that the symmetry axis of the medium is parallel 
to the z-axis; the layer is infinitely extended in the xoy plane. 
When the porous rock is dry or gas saturation, the stiffness 
matrix is as follows:

(1)�
dry =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1−2⟨�⟩)2
⟨1∕ L⟩ + 4⟨�⟩ − 4⟨��⟩ (1−2⟨�⟩)2

⟨1∕ L⟩ + 2⟨�⟩ − 4⟨��⟩ 1−2⟨�⟩
⟨1∕ L⟩ 0 0 0

(1−2⟨�⟩)2
⟨1∕ L⟩ + 2⟨�⟩ − 4⟨��⟩ (1−2⟨�⟩)2

⟨1∕ L⟩ + 4⟨�⟩ − 4⟨��⟩ 1−2⟨�⟩
⟨1∕ L⟩ 0 0 0

1−2⟨�⟩
⟨1∕ L⟩

1−2⟨�⟩
⟨1∕ L⟩

1

⟨1∕ L⟩ 0 0 0

0 0 0
1

⟨1∕�⟩ 0 0

0 0 0 0
1

⟨1∕�⟩ 0

0 0 0 0 0 ⟨�⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

In Eq.  (1),  the brackets ⟨⋅⟩ mean the thick-
ness weighted average of the property, that is, 
⟨q⟩ = qchc + qbhb = (1 − hb)qc + qbhb , where hb and hc 
denote the thickness fraction of background layer and 
fracture layer, respectively. � are the square of the shear 
wave velocity to the longitudinal wave velocity ration, 
L = � + 2� = K + 4�∕3 is the equivalent P-wave modulus, 
� and � are the Lame parameters, and K is bulk modulus.

Inversion of stiffness matrix �dry yields the compliance 
matrix �dry = (�dry)−1:

(2)�
dry =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−⟨��⟩∕ ⟨�⟩
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3⟨�⟩−4⟨��⟩ −

1−2⟨�⟩
2(3⟨�⟩−4⟨��⟩) 0 0 0

−
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2(3⟨�⟩−4⟨��⟩)
�

1

L

�
+

(1−2⟨�⟩)2
3⟨�⟩−4⟨��⟩ 0 0 0

0 0 0
�

1

�

�
0 0

0 0 0 0
�

1

�

�
0

0 0 0 0 0
1

⟨�⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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When the thickness of the fracture layer is infinite, that 
is, hc → 0 , there is �c, Lc → 0 , and ⟨�⟩ → �b , ⟨�⟩ → �b , ⟨
1

�

⟩
→

1

�b

+ lim
hc→0

hc

�c

 , 
⟨

1

L

⟩
→

1

Lb
+ lim

hc→0

hc

Lc
 , ⟨��⟩ → �b�b . �b 

and �c are the shear modulus of background and fracture 
layers, respectively. Lb and Lc are the P-wave modulus of 
background and fracture layers, respectively. Substitution of 
these results into Eq. (2) yields the compliance matrix of the 
dry fractured porous medium:

In Eq. (3) Eb = �b(3 − 4�b)∕ (1 − �b) denotes the dynamic 
Young’s modulus of background porous layer and 
�b = 1 − 2�b∕[2(1 − �b)] denotes the dynamic Poisson’s ratio 
of background porous layer. Matrices �dry

b
 and �dryc  are the 

compliance matrices caused by the dry background and dry 
fracture layers, respectively. Equation (3) is consistent with 
the equation for the compliance matrix of a fractural medium 
as given by linear slip deformation theory (Schoenberg and 
Douma 1988; Schoenberg and Sayers 2012).

Assuming the shear modulus �c and longitudinal modulus 
Kc + 4�c∕3 are

(hc) as hc → 0 , and defining

where ZN and ZT are called excess normal and tangential 
compliances, respectively, Fang et al. (2013) demonstrate 
the relations between ZN , ZT and fractures infill material 
properties. These results also verify the correct rationality 
of the assumption that the fracture layer is a thin layer with 
high compliance and high porosity.

However, when the pore space is saturated with fluid, 
the rock exhibits frequency-dependent velocity dispersion 
and attenuation due to the effect of WIFF between pores 
and fractures. Elastic waves in such a periodically layered 
and porous medium with periodic and segmental constant 
coefficients can be described by the Biot’s equation of poroe-
lasticity (Biot 1962).

The fluid-saturated P-wave modulus of layer is given by 
Gassmann’s equation

(3)

�
dry = �

dry

b
+ �

dry
c

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Eb

−
�b

Eb

−
�b

Eb

0 0 0

−
�b

Eb

1

Eb

−
�b

Eb

0 0 0

−
�b

Eb

−
�b

Eb

1

Eb

0 0 0

0 0 0
1

�b

0 0

0 0 0 0
1

�b

0

0 0 0 0 0
1

�b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ lim
hc→0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0
h c

L c

0 0 0

0 0 0
h c

� c

0 0

0 0 0 0
h c

� c

0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)lim
hc→0

hc

Lc
= ZN, lim

hc→0

hc

�c

= ZT,

(5)C = L + �2M

In Eq. (5), � = 1 − Kdry

/
Kg denotes Biot–Wills parameter 

and 1
/
M = (� − �)

/
Kg + �∕Kf denotes the bulk modulus 

of pore space.
White et al. (1975) and Norris (1993) showed that for 

frequencies much smaller than the Biot’s characteristic 
frequency �B = ��∕��f and also much smaller than the 
resonant frequency of the layering �R = Vp

/
H , the P-wave 

modulus csat
33

 of a periodic lamellar porous medium com-
posed of alternating fracture layers and background layers 
in fluid saturation can be expressed as:

In Eq. (6) � is circular frequency, � is the viscosity of the 
pore fluid.

H denotes the thickness of a characteristic unit, and hb 
and hc are the thickness fraction of background layer and 
fracture layer, respectively. �b and �c are the permeability of 
the background layer and fracture layer, respectively. Sub-
script b indicates the elastic parameters of the background 
layer, and subscript c indicates the elastic parameters of 
fracture layer.

After obtaining the equivalent longitudinal wave modu-
lus of the fluid-saturated medium in the vertical direction, 
the velocity dispersion and energy attenuation perpendicu-
lar to the layered medium can be obtained by the following 
Eq. (7).

In Eq. (7) � = hb[�b�f + (1 − �b)�g] + hc[�c�f + (1 − �c)�g] 
denotes the density of the rock. �b and �c are the density 
of the background and fracture layers, respectively. �b and 
�c are the porosity of the background and fracture layers, 
respectively.

One‑dimensional frequency‑domain 
forward method

The analytical solution given in the previous section can 
only describe the attenuation and dispersion features of 
a single characteristic unit. In order to study the seismic 
response of multiple characteristic units, we will use the 
numerical simulation method of finite difference forward 
modeling based on Biot theory. Under the assumption of 

(6)

1

c
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33

=
�
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C

�
+

2√
i��H
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�
b
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b
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−
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H
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�
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�
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√
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linear elasticity and isotropic medium, Biot gives the equa-
tion that P-waves satisfy in fluid-saturated porous media:

where f  and g are the body forces and fluid forces acting 
on the porous medium, respectively. � is stress, p is fluid 
pressure, � are solid displacement matrix; � is Biot–Wills 
coefficient, M is the bulk modulus of pore space, � is perme-
ability, and � is fluid viscosity.

To simplify the research, we just consider a P-wave prop-
agating in the z-direction, assuming that the body forces and 
fluid forces are vanishing, Eq. (8) can be simplified as:

where � and � are the Lame parameters. In order to per-
form the forward modeling, the differential processing of 
the above formula is as follows:

where U is the solid-phase displacement, P is the fluid pres-
sure, superscript indicates different nodes, and subscripts 
indicate different moments. Δt is time step, and Δz is space 
grid step size. In order to ensure the stability of the differ-
ential forward, it is required that within a time step Δt , the 
wavelength does not pass more than one grid step Δz (Yang 
et al. 2003).

Equation (10) can be used to calculate the fluid pres-
sure and solid displacement field distribution at any time 
when the wave propagates in a two-phase medium. If we 
want to obtain the velocity dispersion and attenuation of 
the medium, the absorbing boundary condition needs to be 
added. However, the forward modeling in the time domain 
needs to consider whether the boundary reflection is com-
pletely absorbed, and it is also possible that the iterative 
operation produces a large cumulative error, which has 
a great influence on the result. So we consider using the 
frequency-domain forward modeling method to study the 
elastic wave response in two-phase media.

(8)
− ∇ ⋅ � + �∇p = f

�

�t

( p

M
+ �∇ ⋅ �

)
− ∇ ⋅

�

�
∇p = g

(9)
− (� + 2�)

�2u

�z2
+ �

�p

�z
= 0

�

�t

(
p

M
+ �

�u

�z

)
−

�

�

�2p

�z2
= 0

(10)

−
U

t+1
i−1

− 2U
t+1
i

+ U
t+1
i+1

Δz2
+

P
t+1
i

− P
t+1
i−1

Δz
= 0

1

Δt

(
P
t+1
i+1

M
−

P
t

i

M
+

U
t+1
i+1

− U
t+1
i

Δz
−

U
t+1
i+1

− U
t+1
i

Δz

)

=
1

2

�

�

(
P
t+1
i−1

− 2P
t+1
i

+ P
t+1
i+1

Δz2
+

P
t

i−1
− 2P

t

i
+ P

t

i+1

Δz2

)

Under the assumption that the stress divergence of the 
porous medium is zero, the one-dimensional form of the 
quasi-static Biot equation of linear consolidation coupling 
in the frequency-space domain is:

where �zz is the strain of the solid frame, P is the fluid pres-
sure, Us is the displacement of the solid, Uf is the displace-
ment of fluid relative to solid, and Kdry and �dry are the bulk 
modulus and shear modulus of the solid frame, respectively. 
� is Biot–Wills parameter, M is the bulk modulus of pore 
space, � is circular frequency, � is permeability, and � is the 
viscosity of pore fluid.

Using the Taylor series expansion to expand Eq. (11) 
into the frequency-domain difference format, we obtain the 
following:

where i is the i th grid point.
When numerical simulation is performed using Eq. (12), 

it is necessary to apply an external force at the upper and 
lower interfaces to simulate the role of simple harmonics 
wave. In addition, in order to ensure the closed condition 
of the petrophysical model, the fluid displacement of the 
upper and lower boundaries is zero. So the boundary condi-
tions are:

where �upperzz  and � lower
zz

 are the stress of the upper interface 
and lower interface, respectively. Uupper

f
 and Ulower

f
 are the 

relative displacement of fluid at the upper and lower inter-
faces (Wu and Wu 2018), respectively.

Using the frequency-domain difference format Eq. (12), 
combined with the boundary condition Eq. (13), the finite 

(11)

��zz
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(
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4

3
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)�Us

�z
− �P

�Uf

�z
+ �
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+

P

M
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j�Uf +
�

�
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�z
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2dz
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�zz(i) =
(
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4

3
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2dz
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Uf(i + 1) − Uf(i − 1)

2dz
+ �
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2dz
+
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M
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j�Uf(i) +
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U
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difference numerical simulation method can be used to 
obtain the solid displacement value Us at any point in the 
model medium. In the case of a known solid displacement 
field distribution, the overall strain of the model medium can 
be determined to satisfy:

where Uupper
s  and Ulower

s
 are the solid displacement of the 

upper interface and lower interface, respectively.
When the medium is subjected to an external force p0 , the 

medium generates a bulk strain e , their ratio is the equivalent 
plane wave modulus E of the medium.

(14)e =
Ulower

s
− U

upper
s

L

(15)E =
p0

e

Because of the effect of WIFF, the modulus is frequency 
dependent, E(�) , and then velocity dispersion and energy 
attenuation satisfy:

where Re( ) and Im( ) are the real and imaginary parts of the 
plural, respectively.

� is the density satisfying:

where hb , �b and �b are the thickness fraction, density and 
porosity of the background layer, respectively. hc , �c and �c 
are the thickness fraction, density and porosity of the frac-
ture layer, respectively.

Numerical simulation

It is assumed that the fluid-saturated horizontal layered is 
periodically arranged alternately, and the lateral is infinitely 
extended. In order to study the elastic wave response of lay-
ered porous media with planar fractures, firstly, we compare 
the agreement between the white analytical solution and the 
frequency-domain forward modeling to verify the correct-
ness and rationality of frequency-domain forward modeling, 
and then we change the parameters such as the number of 

(16)
VP(�) =

√
Re[E(�)]∕�

Q−1(�) = Im[E(�)]∕Re[E(�)]

(17)
� = hb[�g ⋅ (1 − �b) + �f ⋅ �b] + hc[�g ⋅ (1 − �c) + �f ⋅ �c]

Fig. 2  Sketch of the model

Table 1  Porous media 
parameter

Skeleton parameter Fluid parameter Fracture layer parameter Background layer parameter

Kg = 33.4Gpa Kf = 2.2Gpa Kdry = 0.6Gpa Kdry = 6Gpa

�g = 22Gpa �f = 1000 kg/m3 �dry = 0.3Gpa �dry = 5Gpa

�g = 2650 kg/m3 � = 1 × 10−3 pa s �c = 0.8 �b = 0.2

kc = 5 × 10−10 m2
kb = 3 × 10−13 m2

(a) (b)

Fig. 3  P-wave velocity dispersion (a) and energy attenuation (b)
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characteristic units, fracture thickness, fluid saturation, back-
ground porosity and permeability, to analyze the variation 
of the elastic wave response and compare with the previous 
research results to confirm the correctness of the research 
results (Galvin and Gurevich 2003; Brajanovski et al. 2005; 
Galvin and Gurevich 2009; Wu and Wu 2018).

Suppose the model contains only one characteristic unit 
and the thickness of the fracture layer is 0.1L; the sketch 
of the model is shown in Fig. 2. In Fig. 2, p0 is an external 
force applied to the upper and lower interfaces. From top 
to bottom, there are fracture layer with thickness of 0.05L, 
background layer with thickness of 0.9L, and fracture layer 
with thickness of 0.05L; these three parts form a single char-
acteristic unit.

Correctness, accuracy and computational efficiency 
of frequency‑domain forward modeling

Firstly, we will verify the correctness of the frequency-
domain forward method. Depending on the model in Fig. 2 
and pore medium parameters in Table  1, the velocity 

dispersion and energy attenuation of Brajanovski layered 
medium with planar fractures are studied by analytical solu-
tion expression and frequency-domain numerical simulation. 
Their results are shown in Figs. 3 and 4.

Figure 3 and 4 shows the P-wave velocity dispersion and 
energy attenuation, the solid line represents the Brajanovski 
analytical solution, and the dotted line denotes the result 
of numerical simulation. The black curve, the blue curve 
and the red curve correspond to the characteristic unit thick-
nesses of 0.2 m, 0.4 m and 0.6 m, respectively. In Fig. 3, the 
model is divided into 400 grid points in the vertical direc-
tion for numerical simulation, and we can see the results of 
numerical simulation are in poor agreement with the ana-
lytical solution, especially in the low-frequency region. We 
deduce the reason for this error may be because the grid step 
size is too large. So we split the model into 900 grid points 
and the obtained results are shown in Fig. 4; the numerical 
simulation results are consistent with the analytical solu-
tion results. By comparing Fig. 3 with Fig. 4, we can con-
clude that when the grid points are small, it may cause the 
forward to produce dispersion phenomenon. Appropriately 

(a) (b)

Fig. 4  P-wave velocity dispersion (a) and energy attenuation (b)

(a) (b)

Fig. 5  Calculation accuracy (a) and efficiency (b) of finite difference forward modeling
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increasing the number of gridding points can effectively 
weaken the dispersion phenomenon and reduce the error 
between the numerical simulation results and the analytical 
solution.

The relationship between accuracy and efficiency of dif-
ferential forward modeling and the number of grid points 
is analyzed. Assuming that the model length is 0.2 m and 
contains only one characteristic unit, the model parameters 
used in the numerical simulation are shown in Table 1. The 
result is presented in Fig. 5.

It can be observed in Fig. 5 that, as the number of grid 
points increases, the error between numerical simulation 
and analytical solution decreases rapidly. When the num-
ber of grid points is greater than 800, the longitudinal wave 
velocity error is not more than 5 m/s. When the number 
of grid points is further increased, the velocity error does 
not decrease significantly, and the time spent on numerical 
simulation increases rapidly. In summary, we believe that 
when the number of grid points is between 800 and 1000, 
the calculation accuracy and efficiency can be satisfied. So 
in later studies, the model was divided into 800 grid points 
in the vertical direction.

Influence of the length and number of characteristic 
units and thickness of fracture layer on elastic wave 
response

Firstly, we analyze the velocity dispersion and energy attenu-
ation corresponding to different lengths of the characteristic 
unit. From the left of Fig. 4, we can see that as the length of 
the characteristic unit increases, the starting frequency of the 
velocity dispersion decreases, but the velocity corresponding 
to the low-frequency limit and the high-frequency limit does 
not vary. As can be seen on the right of Fig. 4, the attenua-
tion peak remains unchanged, but the peak frequency shifts 
toward low frequency as the length of the characteristic unit 
increases. 

Then, we analyze velocity dispersion and energy attenua-
tion corresponding to multiple characteristic units. Assume 
that the total thickness of the medium is constant, divided it 
into different numbers of characteristic units, and the frac-
ture thickness fraction in each characteristic unit is 10%. The 
model media with different numbers of characteristic units 
are forwarded separately to study the attenuation and dis-
persion features of the porous media with planar fractures.

As shown in Fig. 6, the model is divided into one, two 
and three characteristic units for forward modeling, and the 
corresponding elastic wave response is shown in Fig. 7. It 
can be seen from Fig. 7a that as the number of characteris-
tic unit increases, the low-frequency limit velocity does not 
change, but the high-frequency limit velocity decreases, and 
the dispersion start frequency shifts to high-frequency direc-
tion. In Fig. 7b, the energy attenuation peaks have the same 
magnitude, but the frequency corresponding to the attenu-
ation peak shifts toward high-frequency direction as the 
number of characteristic unit increases. This is because as 
the number of characteristic unit increases, the thickness of 
the single characteristic unit and the thickness of the fracture 

Fig. 6  Media model with different characteristic units

(a) (b)

Fig. 7  Velocity dispersion (a) and attenuation (b) corresponding to the number of different feature units
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layer decrease, causing the initial frequency of the velocity 
dispersion and energy attenuation to move to high frequency.

Further study is carried out when the thickness of the 
medium L = 0.4m remains unchanged, the variation fea-
tures of velocity dispersion and energy attenuation when 
the thickness of fracture layer is changed. Assuming that the 
media contains only one characteristic unit, the thickness 
of fracture layer accounts for 0.01, 0.02, 0.05 and 0.1 of 
the total thickness of the medium, respectively. The forward 
result is shown in Fig. 8. It can be seen from the curve shown 
in Fig. 8a that as the thickness of fracture layer increases, the 
medium velocity decreases overall and the velocity disper-
sion is more severe in the seismic band. In Fig. 8b, the atten-
uation peak becomes larger and the peak frequency shifts 
toward low frequency. The reason for the velocity decrease 
is that the compliance of the medium increases due to the 
increase in the soft layer volume fraction, and the equivalent 
plane wave modulus of the medium decreases. At the same 
time, the increase in the fracture layer thickness leads to an 
increase in the overall porosity of the medium, so that the 

relative flow of the fluid is more likely to occur, thereby 
generating a stronger energy attenuation.

Influence of porosity, permeability and gas 
saturation on elastic wave response

Keep the porosity of fracture layer unchanged, and study 
the attenuation and dispersion features of porous medium 
when the porosity of the background layer changes. Assum-
ing that the medium is a single feature unit, background layer 
porosity is 0.05, 0.10, 0.15 and 0.20, respectively. It can be 
observed in Fig. 9 that as the porosity of background layer 
increases, the wave velocity decreases as a whole, and the 
dispersion degree first increases and then slowly decreases. 
Attenuation peak increases first and then decreases, and the 
peak frequency gradually shifts to low frequency. At low 
frequencies, the fluid pressure of the medium can reach equi-
librium in half a wave period, but it cannot reach equilibrium 
at high frequencies. However, as the porosity of background 
layer increases, the difficulty of the internal pressure of the 

(a) (b)

Fig. 8  Velocity dispersion (a) and attenuation (b) for different crack thicknesses

(a) (b)

Fig. 9  Velocity dispersion (a) and attenuation (b) of porosity in different background layers



808 Acta Geophysica (2019) 67:799–811

1 3

medium reaching equilibrium is gradually reduced. Espe-
cially at high frequencies, due to the increase in porosity, 
the fluid still has a certain flow capacity at high frequencies, 
which reduces the high-frequency limit of bulk modulus, 
resulting in a decrease in the high-frequency velocity, caus-
ing the energy attenuation to increase first and then slowly 
decrease.

The effect of changing background layer permeabil-
ity on the velocity dispersion and energy attenuation is 
studied when the fracture layer permeability remains 
( kc = 5 × 10−10 m2 ) unchanged. Assuming that the medium 
contains one characteristic unit, the permeability of back-
ground layer is 1 × 10−12 m2 , 1 × 10−13 m2 , 1 × 10−14 m2 and 
1 × 10−15 m2 , respectively. It can be seen from the curve 
shown in Fig. 10 that as the permeability of the background 
layer increases, the low-frequency velocity of the medium 
remains substantially unchanged, the high-frequency veloc-
ity decreases, and the initial frequency of the velocity disper-
sion shifts toward high-frequency direction. Energy attenu-
ation peak remains substantially unchanged, and the peak 
frequency shifts to high frequency. We can deduce that the 

greater the difference in permeability between the back-
ground layer and the fracture layer, the lower the starting 
frequency of velocity dispersion and the peak frequency of 
energy attenuation.

We also study the elastic wave response when the fluid 
saturation in porous medium is different, assuming that the 
pores are filled with two fluids, gas and water. The saturation 
of water is sa , the saturation of the gas is sb , and sa + sb = 1 
is established. The water saturation used for the forward 
performance is 0.2, 0.5, 0.8 and 1.0, respectively. It can be 
seen from Fig. 11 that as the water saturation increases, the 
velocity of the low-frequency limit and high-frequency limit 
increases, but the shape of the velocity dispersion curve is 
basically maintained constant. The energy attenuation peak 
is slightly increased, and the corresponding peak frequency 
shifts slightly to high-frequency direction, which is consistent 
with the conclusions obtained by the predecessors (Masson 
and Pride 2010; Zhang and He 2015). We believe that this 
phenomenon is caused by an increase in water saturation, 
which increases the equivalent P-wave modulus, resulting in 
an increase in velocity. And the increase in water saturation 

(a) (b)

Fig. 10  Velocity dispersion (a) and attenuation (b) at different background layer permeabilities

(a) (b)

Fig. 11  Velocity dispersion (a) and attenuation (b) for different fluid saturations
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means a decrease in gas saturation. Since water is more diffi-
cult to compress than gas, when the water saturation increases, 
the resistance of the elastic wave propagating in the medium 
also increases, resulting in an increase in the attenuation peak.

In addition, we can use forward modeling to simulate 
the force field and displacement field distribution in layered 
media. Assume that the model length is 0.2 m, the model 
extends wirelessly in the horizontal direction, which con-
tains only one characteristic unit, the proportion of fracture 
layer is 10% of the total thickness, and elastic parameters of 
the medium are shown in Table 1. The model is divided into 
800 grid points in the vertical direction for numerical simu-
lation, and a constant force is applied to the upper and lower 
interfaces of the model. The distribution of the force field 
and the displacement field inside the model can be obtained 
as shown in Fig. 12.

It can be seen from Fig. 12a that the solid stress is uniform 
and independent of frequency, satisfying the assumption that 
the stress divergence of the porous medium is zero as previ-
ously mentioned. And in Fig. 12b the fluid pressure in the 
fracture layer and background layer is about 2.7 × 10−4 pa at 
low frequencies, but the fluid pressure in the fracture layer 
increases at high frequencies, while the fluid pressure in the 
background pores is reduced. In Fig. 12c, the solid displace-
ment is sensitive to the combination of characteristic unit, 
because the fracture has high compliance and is easy to be 
compressed, so the solid-phase displacement of the fracture 
layer is large, while the displacement of the background porous 
medium is small. In Fig. 12d, the fluid displacements at the 
upper and lower boundaries of the model are zero, and near the 
fracture layer are obviously larger than the background layer at 

low frequencies, but at high frequencies the fluid displacement 
is zero. The reason for fluid pressure and fluid displacement is 
frequency dependent is that fluid movement is hindered at high 
frequencies, resulting in fracture layer is subjected to more 
external forces as a highly compliant layer.

It is worth mentioning that the model used in all numeri-
cal simulations is that the fracture layer is distributed at the 
top and bottom, and the external force acts directly on it. 
When we change the combination of the characteristic units, 
the fracture layer is embedded in the background porous 
medium. At this time, the top and bottom of the model is 
the background porous medium, and then loading stresses 
at the boundaries of the model to study the elastic wave 
response. From the results of velocity dispersion and energy 
attenuation of different characteristic units, under the same 
fracture volume fraction, the elastic wave energy attenuation 
and velocity dispersion curves of the characteristic unit mod-
els with different combinations are also different. However, 
it is worth noting that the high- and low-frequency limits 
of different feature unit velocities are consistent and that 
the energy attenuation is on the order of magnitude. At the 
same time, the curve change features caused by the change 
of elastic parameters are consistent. The corresponding fig-
ure is not included for brevity.

Discussion

The numerical simulation method in this paper can obtain 
high-precision results for the frequency-domain seismic 
wave attenuation and dispersion of the one-dimensional 

Fig. 12  Force field and dis-
placement field distribution in a 
model under constant pressure: 
(a) the stress on the solid skel-
eton, (b) the force of the pore 
fluid, (c) the displacement of the 
solid skeleton under the external 
force and (d) the fluid displace-
ment under pressure
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model, but the theory is not applicable when the model 
is transverse anisotropy or even more complex. From the 
results of numerical simulation, we can infer that when the 
fluid-saturated reservoir contains a certain amount of gas, 
the seismic wave attenuation is relatively large, indicating 
the potential value of using the seismic wave attenuation for 
oil and gas prediction. In addition, the attenuation coefficient 
of the low-frequency band is linear with the frequency in 
the logarithmic coordinate system and thus can be used as a 
constraint condition for the inversion coefficient parameter 
Q. And it can qualitatively explain the high-frequency dis-
persion and high attenuation in the actual rock of the seismic 
frequency band.

Conclusion

The dispersion property of periodically layered medium 
with planar fracture is characterized by the finite differ-
ence forward method in frequency domain. By increasing 
the number of differential meshes, the natural dispersion 
of differential algorithm can be effectively weakened, and 
the frequency-domain forward results agreed with the Bra-
janovski analytical solution, which verified the correctness 
of frequency-domain differential forward method. It pro-
vides an accurate and reasonable method for studying the 
elastic wave response of Brajanovski layered media with 
planar fractures.

The dispersion and attenuation of fluid-saturated medium 
with different porosities, permeabilities and fluid saturations 
are analyzed. The results show that the thicker the fractural 
layer, the more easily the velocity dispersion occurs, and the 
larger the attenuation peak, the lower the peak frequency. 
As the porosity increases, the frequency of dispersion shifts 
to low frequency, the attenuation peak increases first and 
then decreases, and the peak frequency gradually moves to 
the low-frequency direction. As the permeability increases, 
the high-frequency velocity decreases slightly, the starting 
frequency of dispersion moves toward high-frequency direc-
tion, and the peak of attenuation is nearly the same, while 
the peak frequency moves to the high-frequency direction. 
As the water saturation increases, the velocity increases as a 
whole, the degree of dispersion increases, the peak of energy 
attenuation increases, and the peak frequency increases 
slightly.

For the horizontally layered medium with high-angle 
fracture, the corresponding dispersion and attenuation prop-
erties such as HTI media need to be further studied.
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