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Abstract
Saturated hydraulic conductivity (Ks) describes the water movement through saturated porous media. The hydraulic conduc-
tivity of streambed varies spatially owing to the variations in sediment distribution profiles all along the course of the stream. 
The artificial intelligence (AI) based spatial modeling schemes were instituted and tested to predict the spatial patterns of 
streambed hydraulic conductivity. The geographical coordinates (i.e., latitude and longitude) of the sampled locations from 
where the in situ hydraulic conductivity measurements were determined were used as model inputs to predict streambed Ks 
over spatial scale using artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and support vec-
tor machine (SVM) paradigms. The statistical measures computed by using the actual versus predicted streambed Ks values 
of individual models were comparatively evaluated. The AI-based spatial models provided superior spatial Ks prediction 
efficiencies with respect to both the strategies/schemes considered. The model efficiencies of spatial modeling scheme 1 
(i.e., Strategy 1) were better compared to Strategy 2 due to the incorporation of more number of sampling points for model 
training. For instance, the SVM model with NSE = 0.941 (Strategy 1) and NSE = 0.895 (Strategy 2) were the best among all 
the models for 2016 data. Based on the scatter plots and Taylor diagrams plotted, the SVM model predictions were found 
to be much efficient even though, the ANFIS predictions were less biased. Although ANN and ANFIS models provided a 
satisfactory level of predictions, the SVM model provided virtuous streambed Ks patterns owing to its inherent capability 
to adapt to input data that are non-monotone and nonlinearly separable. The tuning of SVM parameters via 3D grid search 
was responsible for higher efficiencies of SVM models.

Keywords  ANN · ANFIS · Spatial modeling · Streambed hydraulic conductivity · SVM · Vented dams

Introduction

Artificial intelligence (AI) based approaches are increasingly 
being used nowadays for the purpose of determining spatial 
patterns of soil processes and many ecological variables 
(Kirkwood et al. 2016; Leuenberger and Kanevski 2015). 
The AI models have shown potential applications in vari-
ous fields such as geography, geosciences, and demography. 
They are found applicable for spatial modeling of land use 
dynamics, spatial (environmental) processes that are non-
stationarity, soil nutrient dynamics, air pollution exposure 
modeling, etc. (Forkuor et al. 2017; Grekousis et al. 2013; 

Reid et al. 2015). The AI-based models are known to model 
any spatial parameter based on their inherent ability to learn 
from complex input–output relationships even without con-
sidering any of the influencing physical factors.

There exist several studies using artificial intelligence 
(AI) algorithms for predicting soil parameters such as cation 
exchange capacity, soil temperature, hydraulic conductiv-
ity, soil organic carbon, and microbial diversity over spatial 
scales (Dai et al. 2014; Ghorbani et al. 2015; Twarakavi et al. 
2009; Sanikhani et al. 2018). Several researchers indeed have 
successfully come up with models for estimating suspended 
sediment concentrations in rivers using novel data mining 
or AI techniques (Khosravi et al. 2018; Kisi and Yaseen 
2019). Recently, by coupling ANNs with GIS, Gholami 
et al. (2018) modeled soil erosion at different time scales to 
furnish soil erosion rate maps of the hillslopes in Kasilian 
watershed, Iran. Here are a few literature examples related 
to soil hydraulic conductivity prediction using AI models. 
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Soil physical and hydraulic properties such as particle-size 
distribution, bulk density, different pore sizes, field capacity, 
permanent wilting point, available water capacity etc. were 
used to develop using artificial neural network (ANN) and 
multiple linear regression models by Merdun et al. (2006) to 
predict soil water retention properties and saturated hydrau-
lic conductivity of soil sampled within the Erzincan plain, 
Turkey. Twarakavi et al. (2009) taking the advantage of 
soil data that are easily obtainable such as textural infor-
mation, bulk density, and retention points developed sup-
port vector machine (SVM)-based pedo-transfer function 
to predict soil hydraulic properties. Using terrain attributes 
such as slope gradient, elevation, profile curvature, slope 
aspect, and contour curvature as input variables, Motaghian 
and Mohammadi (2011) developed artificial neural network 
models to predict the spatial variation in saturated hydraulic 
conductivity. Zhao et al. (2016) evaluated the performance 
of multiple linear regression (MLR) and artificial neural 
network (ANN) models in the prediction of soil hydraulic 
conductivity (Ks) based on samples collected from Loess 
Plateau of China using bulk density, clay content, saturated 
soil water content, silt content (Silt), and latitude as input 
parameters. More and Deka (2018) employed hybrid struc-
tures such as neuro-fuzzy systems to model field-scale soil 
hydraulic conductivity sampled from murum soils of India.

Assessment of streambed hydraulic conductivity profiles 
at fine spatial and temporal resolution is necessary for river 
corridor studies related to stream–aquifer interaction, stre-
ambed-induced infiltration, solute retention, and contami-
nant transport along the streambed (Wu et al. 2015). Litera-
ture that documents the importance of streambed hydraulic 
conductivity and its role in surface and groundwater interac-
tions is comprehensively reviewed in Naganna et al. (2017). 
Successive erosion and deposition of sediments all along 
the stream course affect sediment distribution profiles and 
the streambed hydrogeological properties. In situ meas-
urement of streambed hydraulic conductivity all along the 
length of the stream may not be an ideal and cost-effective 
way. Hence, the applicability of the AI approaches could be 
tested to induce a rule-based relationship for estimating the 
values of streambed hydraulic conductivity at unmeasured 
locations using representative georeferenced neighborhood 
data. Limited or no studies are available in the literature 
related to the artificial intelligence (AI)-based spatial mod-
eling schemes to predict the spatial patterns of streambed 
hydraulic conductivity. Also, several studies in the literature 
use various soil properties and terrain attributes as inputs to 
simulate soil hydraulic conductivity. In reality, if the data 
of such predictor variables are unavailable then the applica-
tion of soil hydraulic conductivity estimation may not be 
possible from such models. Hence, in the present study the 
geographical coordinates (i.e., latitude and longitude) of the 
sampling locations (points) from where the in situ hydraulic 

conductivity measurements were made were used as model 
inputs to predict streambed hydraulic conductivity (Ks) over 
spatial scale using artificial neural network (ANN), adaptive 
neuro-fuzzy inference system (ANFIS) and support vector 
machine (SVM) paradigms. Additionally, the potential of 
several AI approaches in predicting streambed hydraulic 
conductivity was evaluated comparatively.

Theoretical overview

Artificial neural network (ANN)

The multilayer perceptron (MLP) neural network is an 
extremely versatile technique capable of learning most com-
plex nonlinear interrelationships between a set of depend-
ent and independent variables (Cross et al. 1995; Kohonen 
1988). A three-layered perceptron network with one hid-
den layer is as shown in Fig. 1. The network is trained on 
a set of reference data by adjusting the parameters of the 
MLP network with the assistance of a Levenberg–Marquardt 
backpropagation (BP) algorithm. The network architecture 
involving a set of processing units (neurons), a specific 
topology of weighted links connecting the neurons, and 
the learning paradigm that updates the connection weights 
determine the efficiency of MLP neural networks (Jain et al. 
1996). The activation function has to be chosen based on 
the type of application. In the case of nonlinear mapping, 
the normally used activation functions are sigmoidal and 
hard-limiting functions. Sigmoidal functions are continuous 
and differentiable; however, the hard-limiting functions are 
non-continuous but differentiable.

Every single input (Xn), weighted by an element (wij) of 
the weight matrix (W), is summated and provided to the 
transfer function or activation function (φ) along with a bias 
(B) term. The activation function constructs a nonlinear 
decision boundary via linear combinations of the weighted 
inputs and then applies a threshold to transform the net 
inputs from all the neuronal units into an output signal. The 
Levenberg–Marquardt backpropagation learning rule is a 
variation of Newton’s method which incrementally adjusts 
the weight and bias terms to minimize the mean square error 
(MSE) of the network. The quantum of progressions made 
in adjusting the synaptic weights and biases at every epoch 
is determined by the learning rate parameter. Smaller learn-
ing rates end up in longer training time, however, warrant 
stability that steers to minimum errors (Sivanandam and 
Paulraj 2009).

Adaptive neuro‑fuzzy inference system (ANFIS)

Jang (1993) introduced adaptive neuro-fuzzy inference 
system (ANFIS), a hybrid machine learning approach 
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that involves a fuzzy inference system (FIS) and a back-
propagation algorithm to tune the membership function 
parameters of FIS. Depending on the complexity of the 
problem addressed, sometimes the backpropagation gradi-
ent descent method in combination with the least squares 
method is used to adjust the parameters of FIS (Jang et al. 
1997). The fuzzy inference system, based on the number 
of input parameters, encompasses a set of fuzzy IF–THEN 
rules or conditional statements to approximate nonlinear 
functions. ANFIS is a multilayer feedforward five-layer 
architecture as illustrated in Fig. 2. The fixed nodes are 
represented by circular outline, and the square outlines 
are adaptive nodes presided by parameter settings. Each 
node performs a particular function on incoming signals. 
Every node in layer 1 (adaptive node) is associated with 

a node function governed by premise parameters. The 
output of every single node of layer 2 (fixed node) rep-
resents the firing strength of a rule which is nothing but 
the product of all incoming signals. Similarly, the output 
of every single node of layer 3 (fixed node) represents 
the normalized firing strength. Every node in the layer 4 
is an adaptive node associated with a node function gov-
erned by consequent parameters. The final fixed node in 
layer 5 labeled as (Σ) computes the overall output as the 
summation of all incoming signals (Abraham 2005). The 
premise and consequent parameters of ANFIS are tuned 
in the learning process by means of a hybrid technique 
which involves the gradient descent backpropagation 
method coupled with a least squares optimization algo-
rithm to provide optimal outputs. Soon after the training 

Fig. 1   Multilayer perceptron 
(MLP) neural network archi-
tecture

Fig. 2   ANFIS architecture
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converges, the values of the premise parameters of mem-
bership function are fixed in the search space and the 
overall output is expressed as a linear combination of the 
consequent parameters (Jang 1992). Herein, grid parti-
tioning (GP) type of the ANFIS model was employed in 
the streambed hydraulic conductivity modeling scheme. 
The performance of the ANFIS model is greatly affected 
by the type and number of membership functions, which 
are usually ascertained by trial-and-error procedure.

Support vector machine (SVM)

SVM belongs to the category of supervised learning method 
proposed by Vladimir Vapnik and his team (Vapnik 2000). 
Using suitable kernel functions, SVM maps the nonlinear 
datasets of the input space into a higher-dimensional feature 
space, to transform them into linear ones. By avoiding or 
else minimizing over fitting and under fitting of the data, 
SVM offers maximum predictive accuracy. The structural 
risk minimization principle of SVM takes the advantage of 
convex optimization algorithm to simultaneously account 
for both the empirical risk and the confidence interval of 
the learning machine by maximizing the geometric margin. 
SVM is known to perform efficiently in both linear and non-
linear regression tasks with the assistance from Kernel trick. 
The efficiency of SVM modeling is entirely dependent over 
the optimal selection of hyper-parameters (i.e., cost, kernel 
parameter, and loss function). Usually, a three-dimensional 
fine grid search will be sufficient for finding the optimal 
values of the SVM parameters. Figure 3 presents the general 
SVM architecture. For further details regarding SVM, its 
formulations and applications, one may refer to following 
literature (Cortes and Vapnik 1995; Cristianini and Shawe-
Taylor 2000; Raghavendra and Deka 2014; Vapnik 1999).

Study area and data analysis

The study pertains to a part of the Pavanje River originating 
in the Western Ghats of India. The study is focused on the 
stream reach obstructed by two vented dams in sequence. 
The streambed hydraulic conductivity data were collected 
from the study reach as shown in Fig. 4 for assessing the 
spatial and temporal variations in streambed hydraulic con-
ductance. The hydraulic conductivity tests using Guelph 
permeameter were conducted along 40 transects across the 
channel covering the upstream and downstream reaches of 
each vented dam. The spacing between each transect was 
50 m and in each transect, for every 5-meter interval, stre-
ambed hydraulic conductivity (Ks) was determined (refer 
to Fig. 5). The details related to physiography, geological 
details of the basin along with streambed sampling scheme, 
and frequency can be referred from Naganna and Deka 
(2018). This study uses the data of the streambed hydraulic 
conductivity of two time periods (2016 and 2017) presented 
in Naganna and Deka (2018) for the development of AI-
based spatial prediction models.

The descriptive statistics of in situ measured streambed 
hydraulic conductivity (Ks) along the three segments of the 
study reach measured at two different time periods (dry peri-
ods of 2016 and 2017) are presented in Table 1 to illustrate 
the overall variation in the Ks distribution. The magnitude of 
Ks with reference to the three segments varied by two orders 
of magnitude.

Methodology and performance evaluation

For spatial modeling of streambed hydraulic conductivity, 
two diverse schemes/strategies were adopted. In Strategy 
1, the training and testing datasets were chosen in such a 

Fig. 3   General SVM architec-
ture (adopted from Raghavendra 
and Deka 2014)
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pattern that the Ks data along a transect were estimated by 
considering the Ks data of two neighborhood transects both 
upstream and downstream. Figure 6 shows the scheme of 
selection of training and testing transects along the study 
reach. The Ks data measured at transect locations—2, 3, 5, 
6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 
30, 31, 33, 34, 36, 37, 39, 40—were considered as training 
features, and the models were calibrated to estimate the Ks 
values at transects—1, 4, 7, 10, 14, 17, 20 m 23, 26, 29, 

32, 35, 38. The predicted Ks values were evaluated against 
the observed Ks values at those transects. The sample size 
considered for training and testing of AI models was, respec-
tively, 134 and 53 Ks point samples in the case of Strategy 1. 
During model development, the point location details (i.e., 
the geographical information—latitude and longitude) from 
where the Ks values were sampled along each transect were 
considered as model inputs by targeting measured Ks. Spe-
cifically, the geographical coordinates were the predictors 

Fig. 4   Study area—stream reach obstructed by vented dams
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and the Ks values serve as predictand. The testing transects 
were considered to be the unknown locations where there 
is a necessity for prediction. While model testing, the Ks 
values were estimated at those testing transect locations by 
entering only geographical coordinates as inputs so that it 
becomes easier to validate the model predictions based on 
the observed Ks values.

Similarly, in Strategy 2, the alternate transects—one after 
the other—were considered as training and testing transects. 
The scheme of Strategy 2 is as shown in Fig. 6. In this case, 
the samples of upstream transects are considered for train-
ing the models. The sample size considered for training and 

testing of AI models was, respectively, 96 and 91 Ks point 
samples in the case of Strategy 2. The proposed AI models 
have been developed using Matlab software.

The spatial prediction performance of all the models 
was evaluated by computing error and efficiency statistics 
as given below.

Statistical criteria Value Inference

Root-mean-square error, 
RMSE = 

√
(Oi−Pi)

2

N

A value below half of the 
standard deviation

Satisfactory

Fig. 5   Streambed hydraulic conductivity sampling scheme

Table 1   Statistical analysis 
of streambed hydraulic 
conductivity (Ks) (cm/day)

Sd standard deviation; Var variance

2016 Data Min Max Mean Sd Var Kurtosis Skewness

Segment 1 11.634 205.2 87.015 59.339 3521.092 − 0.992 0.638
Segment 2 76.871 558.481 328.703 142.222 20,227.01 −1.125 − 0.444
Segment 3 376.678 793.886 674.809 101.678 10,338.47 1.295 −1.358
Full stretch 11.634 793.886 349.809 255.518 65,289.44 −1.337 0.283
2017 Data
Segment 1 16.932 231.967 93.676 62.386 3892.03 − 0.646 0.775
Segment 2 65.86 547.88 332.857 141.238 19,948.25 −1.113 − 0.426
Segment 3 280.273 777.989 657.485 121.177 14,683.98 1.583 −1.503
Full stretch 16.932 777.989 348.578 249.325 62,162.71 −1.301 0.298
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Statistical criteria Value Inference

Relative RMSE, 
RRMSE = RMSE

�obs

0.00 ≤ RRMSE ≤ 0.10
0.10 ≤ RRMSE ≤ 0.30
0.30 ≤ RRMSE ≤ 0.50
RRMSE > 0.70

Very good
Good
Satisfactory
Poor

Mean absolute error, 
MAE = 

∑N

i=1 �Pi−Oi�
N

A value below half of the 
standard deviation

Satisfactory

Nash–Sutcliffe efficiency, 
NSE = 

1 −

∑N

i=1 (Pi−Oi)
2

∑N

i=1

�
Oi−O

�2 0.75 < NSE < 1.00
0.65 < NSE ≤ 0.75
0.50 < NSE ≤ 0.65
0.4 < NSE ≤ 0.50
NSE ≤ 0.4

Very good
Good
Satisfactory
Acceptable
Unsatisfactory

where O and P signpost the observed and predicted Ks 
values, respectively. O and P are the mean of observed and 
forecasted values, �

o
 and �

p
 are the standard deviation of 

observed and forecasted values, respectively. N represents 
the total number of data samples.

Results and discussion

Performance of ANN prediction models

Based on trial-and-error scheme, the number of hidden 
neurons of the multilayer perceptron neural network (ANN) 
was determined. The tansig and purelin were employed 
as input and output transfer functions along with Leven-
berg–Marquardt backpropagation learning rule. The model 
structure and performance statistics of the ANN model for 
each strategy are presented in Table 2 along with the perfor-
mance statistics of the ANN model for each strategy. From 
the statistical indices, it is evident that the performance of 
ANN models during the testing phase was satisfactory but 
not up to the mark. For instance, the MAE of all the mod-
els was sufficiently high and the RRMSE values above 0.4 
signpost that the spatial Ks predictions were not so accurate 
but fall under the satisfactory category. With reference to 

Fig. 6   Spatial modeling schemes

Table 2   Performance indices of 
ANN modeling

ANN Model Model structure Train Test

RRMSE MAE (cm/day) NSE RRMSE MAE (cm/day) NSE

Strategy 1—2016 2-3-1 0.445 84.67 0.796 0.462 100.63 0.782
Strategy 1—2017 2-3-1 0.411 81.22 0.835 0.491 108.72 0.75
Strategy 2—2016 2-5-1 0.265 36.41 0.917 0.482 92.36 0.765
Strategy 2—2017 2-5-1 0.395 68.26 0.821 0.458 85.82 0.788
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Strategy 1 model of 2017, even though the training results 
were good with an NSE = 0.835, the test performance was 
merely acceptable with an NSE = 0.75.

Performance of ANFIS prediction models

The adaptive neuro-fuzzy inference system (ANFIS) with 
grid partitioning method was calibrated by selecting the 
shape and optimal number of membership functions. The 
optimal ANFIS architectures calibrated based on trial-and-
error approach for spatial modeling of streambed Ks are 
presented in Table 3. The ‘hybrid’ training algorithm which 
includes the backpropagation gradient descent method in 
combination with a least squares method was used for fitting 
the training data set. The performance statistics of ANFIS 
model for each strategy are presented in Table 4.  

From the statistical indices, it is evident that the perfor-
mance of all the ANFIS models during the testing phase has 
acceptable accuracy measures. For instance, the MAE of all 
the models was sufficiently less and the RRMSE values less 
than 0.4 and 0.3 signpost that the spatial Ks predictions were 
decently and highly accurate, respectively. Strategy 1 model 
of 2017 had a higher prediction accuracy compared to other 
ANFIS models with a test NSE = 0.949. The Gaussian and 
Gbell membership functions were found to provide better 
prediction accuracy for the spatial modeling strategies 1 and 
2, respectively.

Performance of SVM prediction models

The support vector machine (SVM) with radial basis kernel 
function was employed in this study to predict the spatial 

streambed hydraulic conductivity. The optimal parameters of 
SVM (i.e., the cost, kernel, and the ε-insensitive loss func-
tion) were identified via 3D Grid Search. Table 5 presents 
the optimal values of SVM parameters. Hypothetically, a 
logarithmic grid ranging between 2−12 and 212 is usually 
sufficient for arriving at the best parameter combination. 
In the event that the best parameters lie on the limits of the 
grid, the further search could be extended in that direction in 
a subsequent search. The performance statistics of the SVM 
model for each strategy are presented in Table 6.

From the statistical indices, it is evident that the perfor-
mance of all the SVM models during the testing phase was 
of relatively higher accuracy. The MAE of all the model 
predictions was sufficiently less, and the RRMSE values less 
than 0.3 signpost superior spatial Ks predictions. Strategy 1 
model of 2016 had a higher prediction accuracy compared 
to other SVM models with a test NSE = 0.941.

Comparative evaluation of AI models

The three AI models, namely the ANN, ANFIS, and SVM, 
provided more or less satisfactory spatial predictions with 
respect to both the strategies considered. Both SVM and 
ANFIS prediction models performed much better than 
the ANN models, and based on the error indices the SVM 
models performed relatively better than the ANFIS predic-
tion models. For a comparative evaluation of all the mod-
els, Table 7 presents the evaluated statistical indices of the 
test phase. Figure 7 illustrates the scatter plots based on the 
observed vs predicted streambed Ks values of Strategy 1—
ANN, ANFIS, and SVM models during the test phase. Simi-
larly, Fig. 8 illustrates the scatter plots of Strategy 2—ANN, 

Table 3   The optimal ANFIS architectures

ANFIS models ANFIS parameters

Membership function

Number Input Output

Strategy 1—2016 3 Gaussmf Constant
Strategy 1—2017 3 Gaussmf Constant
Strategy 2—2016 3 Gbellmf Constant
Strategy 2—2017 3 Gbellmf Constant

Table 4   Performance indices of 
ANFIS modeling

Bold values represent superior performance during test phase

ANFIS Model Train Test

RRMSE MAE (cm/day) NSE RRMSE MAE (cm/day) NSE

Strategy 1—2016 0.206 40.78 0.957 0.247 56.14 0.937
Strategy 1—2017 0.216 41.78 0.955 0.222 51.5 0.949
Strategy 2—2016 0.279 45.278 0.931 0.372 67.386 0.86
Strategy 2—2017 0.294 47.98 0.913 0.335 64.6 0.887

Table 5   The optimal SVM architectures

SVM models SVM parameters

Radial basis kernel function

Cost ‘C’ Gamma ‘γ’ Epsilon ‘ε’

Strategy 1—2016 1024 38 0.0707
Strategy 1—2017 1156 44 0.1080
Strategy 2—2016 980 52 0.1785
Strategy 2—2017 1120 40 0.0967
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ANFIS, and SVM models during the test phase. The scatter 
plot displays the strength, direction, and form of the rela-
tionship between the observed and predicted streambed Ks 
values. The prediction performance or the relative skill of 
different AI models is graphically summarized via Taylor 
diagrams as presented in Figs. 9 and 10.

With reference to Strategy 1 model for 2016 Ks data, 
the SVM model provides relatively better predictions than 
other two based on the NSE statistic. The RRMSE = 0.24 
indicates relatively good spatial Ks predictions. The 
instances of underestimation and overestimation of 
observed Ks values were better captured in scatter plots 
presented in Fig. 7 wherein the Ks predictions by SVM 
model were quite closer to the observed values. In Taylor 
diagram as presented in Fig. 9, three statistical indices, 
namely the correlation coefficient (R), the standard devia-
tion (σ) and the root-mean-square difference (RMSD), are 
used to characterize the statistical relationship between 
the modeled and reference fields. In this case, both ANFIS 
and SVM predictions were analogous to each other. For 

a comparative evaluation of RRMSE and NSE statistic, 
Fig. 11 presents the pictographic representation via bar 
chart. The model efficiencies of spatial modeling scheme 1 
(i.e., Strategy 1) were better compared to Strategy 2 due 
to the incorporation of more number of sampling points 
for model training.

Pertaining to Strategy 1 model for 2017 Ks data, the 
performance of ANFIS prediction model was found to be 
relatively superior to the SVM model. The ANN model 
underperformed as compared to ANFIS and SVM predic-
tions. From the scatter plots presented in Fig. 7, it can be 
observed that both ANFIS and SVM models were analo-
gous in capturing the spatial variations of streambed Ks. 
From the Taylor diagram as presented in Fig. 9, it can 
be observed that the standard deviation of ANN predic-
tions significantly differs from that of the observed Ks 
data. Here, the RMSD, standard deviation, and correlation 
coefficient of ANFIS predictions were superior to SVM 
predictions.

Comparing the statistical indices with regard to Strat-
egy 2 models for 2016 and 2017 Ks data, it was evident that 
the SVM predictions outperform the other two models in 
terms of all the indices considered. The scatter plots pre-
sented in Fig. 8 portray the ability of individual AI models 
to fit the observed Ks data. From the Taylor diagrams as 
presented in Fig. 10, it could be seen that the standard 
deviation of ANFIS predictions was closer to the standard 
deviation curve of observed Ks data. However, the SVM 
predictions had better RMSD and R statistics, reaffirm-
ing the better accuracy over its comparison counterparts. 
Henceforth, based on NSE, RMSD and R values, the SVM 
model predictions were considered to be efficient even 
though the ANFIS predictions were less biased compared 
to SVM predictions.

It is always not possible to collect dense data of any var-
iable of interest by sampling through experiments from the 
area of interest. In such cases, with limited data obtained 
through coarse sampling could be employed to predict data 
samples to enhance the database. For instance, in the pre-
sent study, with the help of neighborhood streambed Ks 
data samples, the AI models provided reliable predictions 
of streambed Ks at two different spatial scales. The stre-
ambed Ks being an important parameter for assessing the 

Table 6   Performance indices of 
SVM modeling

Bold values represent superior performance during test phase

SVM model Train Test

RRMSE MAE (cm/day) NSE RRMSE MAE (cm/day) NSE

Strategy 1—2016 0.155 50.45 0.965 0.241 52.56 0.941
Strategy 1—2017 0.204 51.67 0.933 0.265 56.41 0.928
Strategy 2—2016 0.264 52.567 0.927 0.322 57.66 0.895
Strategy 2—2017 0.196 50.96 0.942 0.295 55.3 0.911

Table 7   Comparative evaluation of AI models with respect to test 
phase results

Bold values represent superior performance during test phase

Statistic RRMSE MAE (cm/day) NSE

Strategy 1—2016
 ANN 0.462 100.63 0.782
 ANFIS 0.247 56.14 0.937
 SVM 0.241 52.56 0.941

Strategy 1—2017
 ANN 0.491 108.72 0.75
 ANFIS 0.222 51.5 0.949
 SVM 0.265 56.41 0.928

Strategy 2—2016
 ANN 0.482 92.36 0.765
 ANFIS 0.372 67.386 0.86
 SVM 0.322 57.66 0.895

Strategy 2—2017
 ANN 0.458 85.82 0.788
 ANFIS 0.335 64.6 0.887
 SVM 0.295 55.3 0.911
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surface water seepage into aquifers needs to be studied to 
identify potential recharge zones along the length/stretch 
of the river.

Summary and conclusions

The artificial intelligence (AI) based spatial modeling 
schemes were tested to predict the spatial patterns of 
streambed hydraulic conductivity. The geographical 
coordinates (i.e., latitude and longitude) of the sampled 
locations from where the in situ hydraulic conductivity 
measurements were made were used as model inputs to 
predict streambed Ks over spatial scale using an artificial 
neural network (ANN), adaptive neuro-fuzzy inference 
system (ANFIS), and support vector machine (SVM) 
paradigms. The statistical measures computed by using 
the actual versus predicted streambed Ks values of indi-
vidual models were comparatively evaluated. The spatial 
modeling schemes/strategies proposed were found suitable 

for predicting streambed Ks patterns. With such spatial 
modeling schemes that incorporate the neighborhood data 
to predict the variable of interest, one can easily predict 
at unknown point locations at significant confidence lev-
els. The AI-based spatial models provided more or less 
satisfactory spatial Ks prediction efficiencies with respect 
to both the strategies/schemes considered. Although 
ANN and ANFIS models provided a satisfactory level of 
predictions, the SVM model was found to provide more 
accurate streambed Ks patterns due to its inherent capa-
bility to adapt to input data that are non-monotone and 
nonlinearly separable. The tuning of SVM parameters via 
3D grid search was responsible for higher efficiencies of 
SVM models. The present study involved the prediction of 
streambed hydraulic conductivity at shorter spans or inter-
vals. Even with limited field experimental data, the study 
discloses the potential of data-driven models to predict 
streambed Ks patterns by presenting two spatial modeling 
schemes. In the future, one can test the similar strategies 
for longer spatial scales/spans with sufficient data col-
lected from an extensive stretch of the river.

Fig. 7   Scatter plots of Strategy 1—ANN, ANFIS and SVM models during the test period
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Fig. 8   Scatter plots of Strategy 2—ANN, ANFIS and SVM models during the test period

Fig. 9   Taylor diagrams plotted for comparative evaluation of Strategy 1—ANN, ANFIS and SVM models of test phase
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