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Abstract
Ground vibration is one of the most undesirable effects induced by blasting operations in open-pit mines, and it can cause 
damage to surrounding structures. Therefore, predicting ground vibration is important to reduce the environmental effects of 
mine blasting. In this study, an eXtreme gradient boosting (XGBoost) model was developed to predict peak particle veloc-
ity (PPV) induced by blasting in Deo Nai open-pit coal mine in Vietnam. Three models, namely, support vector machine 
(SVM), random forest (RF), and k-nearest neighbor (KNN), were also applied for comparison with XGBoost. To employ 
these models, 146 datasets from 146 blasting events in Deo Nai mine were used. Performance of the predictive models 
was evaluated using root-mean-squared error (RMSE) and coefficient of determination (R2). The results indicated that the 
developed XGBoost model with RMSE = 1.554, R2 = 0.955 on training datasets, and RMSE = 1.742, R2 = 0.952 on testing 
datasets exhibited higher performance than the SVM, RF, and KNN models. Thus, XGBoost is a robust algorithm for build-
ing a PPV predictive model. The proposed algorithm can be applied to other open-pit coal mines with conditions similar to 
those in Deo Nai.

Keywords  eXtreme gradient boosting · XGBoost · Ground vibration · Peak particle velocity

Introduction

Blasting is one of the highly effective methods in open-cast 
mining when used to move rocks and overburden. However, 
only 20–30% of explosion energy is used for rock fragmen-
tation (Chen and Huang 2001; Coursen 1995; Gad et al. 
2005; Gao et al. 2018e). The remaining energy is wasted 

and generates undesirable effects such as ground vibration, 
air-blast overpressure (AOp), fly rock, and back break (Ak 
and Konuk 2008; Bui et al. 2019; Chen and Huang 2001; 
Ghasemi et al. 2016; Hajihassani et al. 2014; Hasanipanah 
et al. 2017a; Monjezi et al. 2011a; Nguyen and Bui 2018b; 
Nguyen et al. 2018a). Among these effects, PPV is one of 
the most undesirable effects because it may be harmful 
to humans and structures. To reduce the adverse effects 
of blasting operations, many researchers have proposed 
empirical equations to predict PPV; among these researchers 
are the United States Bureau of Mines (Duvall and Fogel-
son1962; Ambraseys and Hendron 1968; Davies et al.1964; 
Standard 1973; Roy 1991). However, influencing parameters 
are numerous, and the relationship among them is compli-
cated. Thus, the empirical methods may not be entirely 
suitable for predicting PPV in open-cast mines (Ghasemi 
et al. 2013; Hajihassani et al. 2015; Hasanipanah et al. 2015; 
Monjezi et al. 2011b, 2013; Nguyen and Bui 2018a; Nguyen 
et al. 2018b, 2019; Saadat et al. 2014).

Nowadays, artificial intelligence (AI) is well known as a 
robust tool for solving the real-life problems (Alnaqi et al. 
2019; Gao et al. 2018a, c; Moayedi and Nazir 2018; Moayedi 
et al. 2019; Moayedi and Rezaei 2017). Many researchers 
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have studied and applied AI in predicting blast-induced 
issues, especially blast-produced PPV. Longjun et al. (2011) 
applied two benchmark algorithms for estimating PPV, 
including support vector machine (SVM) and random for-
est (RF); two other parameters with 93 explosions were used 
as training datasets, and 15 observations among 93 views 
were selected as testing datasets. Their study indicated 
that the SVM and RF models performed well in estimating 
blast-induced PPV. The SVM model was introduced as a 
superior model in their study. Hasanipanah et al. (2017b) 
also developed a Classification and regression tree (CART) 
model to predict PPV at Miduk copper mine (Iran) using 
86 blasting events. Multiple regression (MR) and various 
empirical techniques were also considered to predict PPV 
and compared with the CART model. As a result, the CART 
model was exhibited better performance than the other mod-
els with RMSE = 0.17 and R2 = 0.95 in their study. In another 
work, Chandar et al. (2017) estimated blast-induced PPV 
using ANN model; 168 blasting operations were collected in 
dolomite, coal mine, and limestone (Malaysia) for their aim. 
The results indicated that the ANN model, with R2 = 0.878 
for the three mines, is the best among the approaches used 
in their study. Metaheuristics algorithm was also considered 
and used to predict PPV by Faradonbeh and Monjezi (2017), 
i.e., gene expression programming (GEP); 115 blasting 
operations were used for their study. Accordingly, a formula 
based on the GEP was developed to estimate PPV as the 
first step in their study. Then, it was compared with several 
nonlinear and general equation models as the second step as 
well. Their results designated that the GEP model was bet-
ter than the other models in forecasting blast-induced PPV. 
Similar works can be found at those references (Faradonbeh 
et al. 2016; Hasanipanah et al. 2017c; Sheykhi et al. 2018; 
Taheri et al. 2017).

In this study, an XGBoost model was developed to predict 
blast-induced PPV in Deo Nai open-pit coal mine (Vietnam). 
Three other models were also produced, including SVM, RF, 
and KNN for comparison with the constructed XGBoost 
model.

This paper is organized as follows. Section “two” 
describes the site study and the data used. Section “three” 
provides an overview of the algorithms used in this study. 
Section “four” reports the results and discussion. Section 
“five” shows the validation of the constructed models. 
Finally, Section “six” presents our conclusions.

Site study and data used

Study area

With the total area up to ~ 6 Km2, the Deo Nai open-pit coal 
mine was a large open-cast coal mine in Vietnam (Fig. 1). 

It is located in Quang Ninh province, Vietnam, with the 
proven reserve is 42.5 Mt, and productivity is 2.5 Mt/year. 
The study area has a complex geological structure, includes 
many different phases and faults. Conglomerate, siltstone, 
sandstone, claystone, and argillic rock were included in the 
overburden of this mine (Vinacomin 2015). The hardness of 
these rocks (f) in the range of 11–12 according to Protodia-
konov’s classification (Protodiakonov et al. 1964); specific 
weight (γ) in the range of 2.62–2.65 t/m3. Therefore, blasting 
operations for rock fragmentation in this mine is a high-
performance method.

However, the Deo Nai open-pit coal mine is located near 
residential areas (Fig. 1), which have a distance of approxi-
mately 400 m from the blasting sites. Moreover, the capac-
ity of burden must explode significantly in a blast of up to 
more 20 tons, and the adverse effects (especially PPV) of 
the blasting operation to the surrounding environment are 
substantial. Thus, we have selected this area as a case study 
to consider and predict PPV caused by blasting operations 
with the aim of controlling the undesirable effects on the 
environment and residential areas.

Data collection

To conduct this study, 146 blasting events were collected 
with nine parameters, such as the number of borehole rows 
per blast (N), charge per delay (Q), powder factor (q), length 
of stemming (T), burden (B), monitoring distance (D), spac-
ing (S), bench height (H), and time interval between blasts 
(Δt) which were considered as nine input parameters to pre-
dict the outcome, i.e., PPV. Table 1 shows a brief of the 
datasets used in this study.

For monitoring PPV, the Blastmate III instrument (Instan-
tel, Canada) was used with the specifications that are shown 
in Table 2. In this study, PPV values were recorded in the 
range of 2.140 to 33.600 mm/s. A GPS device was used to 
determine D. The remaining parameters were extracted from 
blast patterns.

Preview of XGBoost, SVM, RF, and KNN

eXtreme gradient boosting (XGBoost)

XGBoost is an improved algorithm based on the gradi-
ent boosting decision proposed by (Friedman et al. 2000, 
2001; Friedman 2001, 2002). XGBoost, which was cre-
ated and developed by Chen and He (2015), can construct 
boosted trees efficiently, operate in parallel, and solve both 
classification and regression problems. The core of the 
algorithm is the optimization of the value of the objec-
tive function. It implements machine learning algorithms 
under the gradient boosting framework. XGBoost can 
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solve many data science problems in a fast and accurate 
way with parallel tree boosting such as gradient boosting 
decision tree and gradient boosting machine.

An objective function usually consists of two parts (train-
ing loss and regularization):

where L is the training loss function and � is the regulari-
zation term. The training loss is used to measure the model 
performance on training data. The regularization term aims 
to control the complexity of the model such as overfitting 
(Gao et al. 2018d). Various ways are conducted to define 
complexity. However, the complexity of each tree is often 
computed as the following equation:

(1)Obj(�) = L(�) +�(�),

Fig. 1   Location of the study area

Table 1   Blasting events 
recorded for this study

Q (Kg) H (m) B (m) S (m) T (m)

Minimum: 3007 Minimum: 13.00 Minimum: 7.500 Minimum: 7.40 Minimum: 6.20
Mean: 13,324 Mean: 14.38 Mean: 8.071 Mean: 7.82 Mean: 6.87
Maximum: 24,171 Maximum: 16.0 Maximum: 8.50 Maximum: 8.20 Maximum: 7.50
q (kg/m3) N (borehole) D (m) Δt (ms) PPV (mm/s)
Minimum: 0.3500 Minimum: 2.000 Minimum: 180.0 Minimum: 17.00 Minimum: 2.140
Mean: 0.4184 Mean: 3.525 Mean: 465.8 Mean: 27.64 Mean: 13.322
Maximum: 0.480 Maximum: 5.00 Maximum: 726 Maximum: 42.00 Maximum: 33.600

Table 2   Basic parameters of the PPV monitoring instrument Source: 
http://www.insta​ntel.com

Features Parameters

Range 0.127–254 mm/s
Accuracy ± 0.5 mm/s or 5% (0.02 in/s)
Transducer density 2.13 g/cc (133 lbs/ft3)

http://www.instantel.com
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where T is the number of leaves and � is the vector of scores 
on leaves.

The structure score of XGBoost is the objective function 
defined as follows:

where �j are independent of each other. The form 
Gj�j +

1

2
(Hj + �)�2

j
 is quadratic and the best �j for a given 

structure q(x).

Support vector machines (SVM)

SVM is a machine learning method based on statistical 
theory and developed by (Cortes and Vapnik 1995). This 
method continues to be applied to high-performing algo-
rithms with slight tuning. Similar to CART, SVM can also 
be used to solve classification and regression problems. 
According to Cortes and Vapnik (1995), SVM was used for 
classification analysis. SVR, a version of SVM for regression 
analysis, was proposed by Drucker et al. (1997).

In  SVM,  f i t t i ng  da t a  {xi, yi}, (i = 1, 2,… , n),

xi ∈ Rn, yi ∈ R with a function f (x) = w ⋅ x + b is a problem. 
Thus, according to SVM theory, the fitting problem function 
is expressed as follows:

where ai, ai
*, and b are obtained by solving subsequent sec-

ond optimization problems. Usually, a small fraction of ai, 
ai

* is not zero; this fraction is called support vector.
Max:

where C is a penalty factor that shows the penalty degree 
to samples of excessive error ε; K(xixj) is kernel function, 

(2)
�(f ) = �T +

1

2
�

T∑
j=1

�2
j
,

(3)Obj =

T∑
j=1

[
Gj�j +

1

2
(Hj + �)�2

j

]
+ �T ,

(4)f (x) = w ⋅ x + b =

k∑
i=1

(ai − a∗
i
)K(xxi) + b

(5)

w(a, a∗) = −
1

2

k∑
i,j=1

(ai − a∗
i
)(aj − a∗

j
)K(xixj)

+

k∑
i=1

yi(ai − a∗
i
) − �

k∑
i=1

(ai + a∗
i
),

(6)s.t.

⎧
⎪⎨⎪⎩

k∑
i=1

(ai − a∗
i
) = 0

0 ≤ ai, a
∗
i
≤ C, (i = 1, 2,… , k)

,

which solves calculation problems of high dimension skill-
fully by introducing kernel functions. These functions are 
mainly of the following types:

1.	 Linear kernel

2.	 Polynomial kernel

3.	 Radial original kernel function

4.	 Two-layer neural kernel

In this study, the SVM method with a polynomial kernel 
function is used to develop the SVM model for anticipat-
ing PPV.

Random forest (RF)

RF is one of the decision tree algorithms and introduced 
by Breiman (2001) for the first time. It is well known 
as a robust non-parametric statistical technique for both 
regression and classification problems. On the other hand, 
RF was introduced as an ensemble method based on the 
results from different trees to achieve predictive accu-
racy (Vigneau et al. 2018). For each new observation, RF 
combines the predicted values from the individual tree in 
the forest to give the best result. In the forest, each tree 
roles as a voter for the final decision of the RF (Gao et al. 
2018b). The core of the RF model for regression can be 
described as three steps follow:

Step 1 Create bootstrap samples as the number of the 
tree in the forest (ntree) based on the dataset.
Step 2 Develop an unpruned regression tree for each 
bootstrap sample by random sampling of the predictors 
(mtry). Among those variables, select the best split.
Step 3 Predict new observation by ensemble the pre-
dicted values of the trees (ntree). For the regression 
problem as well as predicting blast-induced PPV, the 
average value of the predicted values by the individual 
tree in the forest used.

Based on the training dataset, an estimate of the error 
rate can be obtained by the following:

(7)K(x, y) = x ⋅ y,

(8)K(x, y) = [(x ⋅ y) + 1]d; d = (1, 2,…),

(9)K(x, y) = exp

�
−‖x − y‖2

�2

�
,

(10)K(x, y) = tanh
[
a(x ⋅ y) − �

]
.
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•	 At each bootstrap iteration, predict the data not in the 
bootstrap sample using the tree grown with the boot-
strap sample, called “out-of-bag” (OOB).

•	 Aggregate the OOB predictions and calculate the error 
rate.

The implementation of the RF algorithm for predicting 
blast-induced PPV in this study is shown in Fig. 2. More 
details of the RF algorithm can be found at those references 
(Breiman 2001; Bui et al. 2019; Nguyen and Bui 2018b).

k‑nearest neighbor (KNN)

KNN is known as a favorite technique for solving regression 
and classification problems in machine learning and intro-
duced by Altman (1992). Based on the closest neighbors 
(k neighbors), the KNN algorithm determines the testing 
point and classify them. On the other hand, the KNN algo-
rithm does not learn anything from training data. It only 
remembers the weights of neighbors in the functional space. 
When it comes to forecasting a new observation, it searches 
similar results and calculates the distance to those neighbors. 
Therefore, KNN is classified as “lazy learning” algorithms 
(Fig. 3).

For regression problems as well as predicting blast-
induced PPV, the KNN algorithm uses a weighted aver-
age of the k-nearest neighbors, computed by their distance 
inversely. The KNN for regression can be worked as four 
steps follow:

Step 1 Determine the distance from the query sample to 
the labeled samples.

where N is the number of features; xtr,n and xt,n denote 
the nth feature values of the training ( xtr ) and testing ( xt ) 
points, respectively; wn is the weight of the nth feature 
and lies interval [0,1].
Step 2 Order the labeled examples by increasing distance.
Step 3 Based on RMSE (Eq. 12), define the optimal num-
ber of neighbors. Cross-validation can be used for this 
task.
Step 4 Calculate the average distance inversely with 
k-nearest neighbors.

Results and discussion

In this study, the datasets are divided into two sections: train-
ing and testing. Of the total datasets, 80% (approximately 
118 blasting events) are used for the training process, and the 
rest (28 observations) are used for the testing process. The 
training dataset is used for the development of the mentioned 

(11)d(xtr, xt) =

√√√√ N∑
n=1

wn(xtr,n − xt,n)
2

Fig. 2   Workflow of RF in predicting blast-induced PPV

Fig. 3   Illustration of KNN algorithm for two-dimensional feature 
space (Hu et al. 2014)
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models. The testing dataset is used to assess the performance 
of the constructed models.

To evaluate the performance of the constructed models, 
two criteria statistical include determination coefficient (R2) 
and root-mean-square error (RMSE) are used with RMSE 
provide an idea of how wrong all predictions are (0 is per-
fect), and R2 provides an idea of how well the model fits the 
data (1 is perfect, 0 is worst). In this study, RMSE and R2 
were computed using the following equations:

where n denotes for the number of data, yi and ŷi denotes the 
measured and predicted values, respectively; ȳ is the mean 
of the measured values.

Additionally, the Box–Cox transform and 10-fold cross-
validation methods are used to avoid overfitting/underfitting.

XGBoost

In XGBoost, two stopping criteria, namely, maximum tree 
depth and nrounds, were considered to prevent complexity 
in modeling. Selecting the significant values for maximum 
tree depth and the nrounds causes excessive growth of the 
tree and an overfitting problem. Therefore, the maximum 
tree depth is set in the 1–3 range, and nrounds is set as 50, 
100, and 150.

To achieve an optimum combination of these two param-
eters, a trial-and-error procedure was conducted with the 
range of two settings proposed. The performance indices, 
which include RMSE and R2, were calculated to evaluate the 

(12)RMSE =

√√√√1

n

n∑
i=1

(yi − ŷi)
2

(13)R2 = 1 −

∑
i

(yi − ŷi)
2

∑
i

(yi − ȳ)2

XGBoost models on both the training and testing datasets 
(Table 3).

Based on Table 3, nine XGBoost models were developed 
and evaluated. The results of the XGBoost models in Table 3 
are very close to each other, which causes difficulty in select-
ing the best model. Thus, a simple procedure with the rank-
ing method proposed by Zorlu et al. (2008) is applied in 
Table 4. The XGBoost models in Table 4 are ranked and 
evaluated through ranking indicators. The results of the 
overall grade for XGBoost models 1–9 are summarized in 
Table 5.

According to Table 5, model 1 with the total rank value 
of 35 reached the highest value among all the constructed 
XGBoost models. On other words, the XGBoost model No. 
1 performed better than the other XGBoost models in this 
study.

Support vector machine (SVM)

In SVM, the kernel function with polynomial kernel was 
used to develop the SVM models. Two stopping criteria, 
namely degree and cost, were considered to prevent com-
plexity in modeling. Also, the scale parameter was held con-
stant at a value of 0.1. In this study, we select the range of 
1–3 for the degree and set the cost as 0.25, 0.5, and 1.

To achieve an optimum combination of these two parame-
ters, a trial-and-error procedure was also conducted similarly 
to that for the XGBoost method with the range of the two 
SVM parameters. The performance indices, namely, RMSE 
and R2, were calculated to evaluate the SVM models on both 
the training and testing datasets (Table 6).

Table 6 shows some low-performance models such as 
nos. 1, 4, 7, 2, 5. However, some models exhibit high per-
formances that are almost similar. Thus, a simple ranking 
method should be applied to determine the best SVM model 
among the developed ones, as shown in Table 7. Table 8 
indicates the total rank of the SVM models 1–9.

According to Table 8, model 6 with a total rank of 32 
achieved the best performance among all the developed 

Table 3   Performance indicators 
of the XGBoost models

Technique Model no. nrounds max_depth Training process Testing process

RMSE R2 RMSE R2

XGBoost 1 150 1 1.554 0.955 1.742 0.952
2 150 2 1.636 0.951 1.783 0.951
3 150 3 1.711 0.945 1.840 0.948
4 100 1 1.568 0.954 1.745 0.951
5 100 2 1.609 0.953 1.765 0.950
6 100 3 1.662 0.949 1.853 0.947
7 50 1 1.725 0.951 1.947 0.946
8 50 2 1.618 0.953 1.748 0.952
9 50 3 1.617 0.952 1.808 0.949
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SVM models. Thus, we conclude that model 6 is the best 
SVM model with the SVM method. Note that, the same 
training and testing datasets were applied for the develop-
ment of the SVM models as those used for the XGBoost 
models.

Random forest (RF)

With the RF technique, two stopping criteria called ntree and 
mtry were considered to prevent complexity and reduce the 
running time of the model. A trial-and-error procedure with 
ntree is discussed in the range of 50–150, whereas mtry set as 
5, 7, and 9 is implemented in Table 9. Likewise to the devel-
opment of the XGBoost and SVM models, the same training 
and testing datasets were applied for the development of the 
RF models in this study.

Table 4   The ranking of the 
XGBoost models based on their 
performance

Technique Model RMSE R2 Rank for 
RMSE

Rank for R2 Total rank

XGBoost Training 1 1.554 0.955 9 9 18
Training 2 1.636 0.951 4 4 8
Training 3 1.711 0.945 2 1 3
Training 4 1.568 0.954 8 8 16
Training 5 1.609 0.953 7 7 14
Training 6 1.662 0.949 3 2 5
Training 7 1.725 0.951 1 3 4
Training 8 1.618 0.953 5 6 11
Training 9 1.617 0.952 6 5 11
Testing 1 1.742 0.952 9 8 17
Testing 2 1.783 0.951 5 6 11
Testing 3 1.840 0.948 3 3 6
Testing 4 1.745 0.951 8 7 15
Testing 5 1.765 0.950 6 5 11
Testing 6 1.853 0.947 2 2 4
Testing 7 1.947 0.946 1 1 2
Testing 8 1.748 0.952 7 9 16
Testing 9 1.808 0.949 4 4 8

Table 5   Total rank of XGBoost models

The best model was shown in bold

Technique Model no. Total rank

XGBoost 1 35
2 19
3 9
4 31
5 25
6 9
7 6
8 27
9 19

Table 6   Performance indices of 
SVM models

Method Model no. Degree Cost Training data Testing data

RMSE R2 RMSE R2

SVM 1 1 0.25 2.763 0.877 3.875 0.805
2 2 0.25 2.213 0.917 2.991 0.869
3 3 0.25 2.074 0.923 2.580 0.926
4 1 0.5 2.725 0.880 3.763 0.808
5 2 0.5 2.185 0.918 2.753 0.890
6 3 0.5 2.036 0.921 2.566 0.934
7 1 1 2.664 0.883 3.908 0.783
8 2 1 2.186 0.916 2.469 0.916
9 3 1 2.152 0.911 2.440 0.944
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Based on Table 9, all of the nine constructed RF models 
are suitable for estimating blast-produced PPV in this study. 
Some of the RF models, such as models 5–9, provide higher 
performance than others. However, the results of the mod-
els are nearly similar. Thus, concluding which model is the 
best for the RF technique is difficult. A ranking technique 
was used to identify the best model for the RF technique, as 
reported in Table 10. Additionally, a total ranking of the RF 
models is computed in Table 11.

According to Tables 10 and 11, RF model 7 with a total 
ranking value of 30 reached the highest value among all the 
developed RF models. Thus, we can conclude that RF model 
7 with ntree = 150 and mtry = 9 is the superior model in the RF 
technique for anticipating blast-produced PPV in this study.

Table 7   Performance indices of 
SVM models with the rank

Method Model RMSE R2 Rank for 
RMSE

Rank for R2 Total rank

SVM Training 1 2.763 0.877 1 1 2
Training 2 2.213 0.917 4 6 10
Training 3 2.074 0.923 8 9 17
Training 4 2.725 0.880 2 2 4
Training 5 2.185 0.918 6 7 13
Training 6 2.036 0.921 9 8 17
Training 7 2.664 0.883 3 3 6
Training 8 2.186 0.916 5 5 10
Training 9 2.152 0.911 7 4 11
Testing 1 3.875 0.805 2 2 4
Testing 2 2.991 0.869 4 4 8
Testing 3 2.580 0.926 6 7 13
Testing 4 3.763 0.808 3 3 6
Testing 5 2.753 0.890 5 5 10
Testing 6 2.566 0.934 7 8 15
Testing 7 3.908 0.783 1 1 2
Testing 8 2.469 0.916 8 6 14
Testing 9 2.440 0.944 9 9 18

Table 8   Total rank of SVM models

The best model was shown in bold

Technique Model no. Total rank

SVM 1 6
2 18
3 30
4 10
5 23
6 32
7 8
8 24
9 29

Table 9   The RF models 
performance for predicting 
blast-induced PPV

Technique Model no. ntree mtry Training process Testing process

RMSE R2 RMSE R2

RF 1 150 5 1.816 0.944 2.837 0.885
2 100 5 1.819 0.944 2.975 0.874
3 50 5 1.803 0.944 3.126 0.859
4 150 7 1.736 0.948 2.031 0.939
5 100 7 1.737 0.948 1.945 0.943
6 50 7 1.745 0.948 1.925 0.944
7 150 9 1.719 0.946 1.811 0.947
8 100 9 1.723 0.946 1.804 0.948
9 50 9 1.717 0.946 1.886 0.944
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k‑nearest neighbor (KNN)

In this study, nine KNN models were developed with the k 
neighbors set in a range of 3–11 through training datasets. 
The performance of the KNN models was evaluated using 
the testing dataset as the second step in the development of 
the KNN models. Note that the same datasets were used for 
the development of the KNN models as those used for the 
development of the models above. The performance indices 
of the KNN models are shown in Table 12.

As shown in Table 12, the results of the constructed KNN 
models are close to one another. Thus, determining which 
model is the most optimal among the built KNN models 
is difficult. A simple ranking method similar to the previ-
ous sections was applied to the KNN technique. The per-
formance indices of the KNN models with their rank were 

Table 10   The RF models with 
their rank through performance 
indicators

Technique Model RMSE R2 Rank for 
RMSE

Rank for R2 Total rank

RF Training 1 1.816 0.944 2 1 3
Training 2 1.819 0.944 1 3 4
Training 3 1.803 0.944 3 2 5
Training 4 1.736 0.948 6 8 14
Training 5 1.737 0.948 5 9 14
Training 6 1.745 0.948 4 7 11
Training 7 1.719 0.946 8 6 14
Training 8 1.723 0.946 7 4 11
Training 9 1.717 0.946 9 5 14
Testing 1 2.837 0.885 3 3 6
Testing 2 2.975 0.874 2 2 4
Testing 3 3.126 0.859 1 1 2
Testing 4 2.031 0.939 4 4 8
Testing 5 1.945 0.943 5 5 10
Testing 6 1.925 0.944 6 7 13
Testing 7 1.811 0.947 8 8 16
Testing 8 1.804 0.948 9 9 18
Testing 9 1.886 0.944 7 6 13

Table 11   Total ranking of RF models

The best model was shown in bold

Technique Model no. Total rank

RF 1 9
2 8
3 7
4 22
5 24
6 24
7 30
8 29
9 27

Table 12   The KNN models 
performance in this study

Technique Model no. k Training process Testing process

RMSE R2 RMSE R2

KNN 1 3 2.878 0.853 3.708 0.791
2 4 2.864 0.861 3.581 0.809
3 5 2.796 0.876 3.161 0.859
4 6 2.857 0.878 3.326 0.851
5 7 2.985 0.867 3.203 0.870
6 8 3.008 0.867 3.278 0.874
7 9 3.006 0.866 3.368 0.861
8 10 3.061 0.859 3.466 0.850
9 11 3.017 0.864 3.434 0.863
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calculated and the results are presented in Table 13. Addi-
tionally, Table 14 shows the total rank of KNN models.

According to Tables 13 and 14, nine KNN models were 
ranked with the value of total rank in the range of 9–31. As 
shown in the tables, KNN model 3 with an entire rank value 
of 31 achieved the highest value among the developed KNN 
models.

Validation performance of models

In this study, two statistical criteria, namely, R2 and 
RMSE, were employed to measure the performance 
of the selected predictive models and computed using 
Eqs. (12–13). After the optimal models for each technique 

were selected, the values of the aforementioned statistical 
criteria for all models were calculated for both the training 
and testing datasets, as indicated in Table 15. According to 
these results, the accuracy level of the XGBoost technique 
is better than those of the SVM, RF, and KNN models. 
Figure 4 demonstrates the performance of the models in 
forecasting blast-induced PPV on the testing dataset.

Figure 5 presents a useful way to consider the spread 
of the estimated accuracies for the various methods and 
how they relate among the XGBoost, SVM, RF, and KNN 
techniques. According to Fig. 5, the KNN technique has 
the lowest accuracy level with several outliers, whereas 
the XGBoost technique exhibits the highest accuracy level 
without outliers. The RF technique can also provide an 
approximation of the XGBoost performance. However, 
a closer look shows that the developed XGBoost model 
offers higher performance than the RF model. Further-
more, the RF technique appears to have outliers, whereas 
the established XGBoost model has none. Additionally, the 
accuracy of the selected PPV predictive models was also 

Table 13   Performance of the 
KNN models with the rank

Technique Model RMSE R2 Rank for 
RMSE

Rank for R2 Total rank

KNN Training 1 2.878 0.853 6 1 7
Training 2 2.864 0.861 7 3 10
Training 3 2.796 0.876 9 8 17
Training 4 2.857 0.878 8 9 17
Training 5 2.985 0.867 5 7 12
Training 6 3.008 0.867 3 6 9
Training 7 3.006 0.866 4 5 9
Training 8 3.061 0.859 1 2 3
Training 9 3.017 0.864 2 4 6
Testing 1 3.708 0.791 1 1 2
Testing 2 3.581 0.809 2 2 4
Testing 3 3.161 0.859 9 5 14
Testing 4 3.326 0.851 6 4 10
Testing 5 3.203 0.870 8 8 16
Testing 6 3.278 0.874 7 9 16
Testing 7 3.368 0.861 5 6 11
Testing 8 3.466 0.850 3 3 6
Testing 9 3.434 0.863 4 7 11

Table 14   Total rank of KNN models

The best model was shown in bold

Technique Model no. Total rank

KNN 1 9
2 14
3 31
4 27
5 28
6 25
7 20
8 9
9 17

Table 15   Statistical values for selected predictive models

Model Training data Testing data

RMSE R2 RMSE R2

XGBoost 1.554 0.955 1.742 0.952
SVM 2.036 0.921 2.566 0.934
RF 1.719 0.946 1.811 0.947
KNN 2.796 0.876 3.161 0.859
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compared and shown in Fig. 6. According to Fig. 6, among 
the developed models, the XGBoost technique yields the 
most reliable results in forecasting blast-produced PPV.

Considering the input variables in this study, it shows 
that the number of input variables is high (9 input varia-
bles). Therefore, an analysis procedure of sensitivity was 
performed to find out which input variable(s) is/are the most 
influential parameters on blast-induced PPV as shown in 
Fig. 7. As a result, Q (charge) and D (distance) are the most 
influential factors on blast-induced PPV in this study. They 
should be used in practical engineering to control blast-
induced PPV. The other input parameters were also effected 
on blast-induced PPV but not much.

Conclusions and recommendations

In practice, an accurate and efficient estimation of PPV is 
essential to reduce the environmental effects of blasting 
operations, especially near residential areas. This study 
developed the XGBoost, SVM, RF, and KNN models to 
predict PPV caused by blasting operations in the Deo Nai 
open-pit coal mine in Vietnam. Nine input parameters (Q, 
H, B, S, T, q, N, D, and Δt) were used to predict PPV from 
146 blasting events at the mine. For modeling purposes, all 
datasets were divided into training and testing sets, with 80% 
(118 observations) of the entire dataset used for training 
and 20% (28 representations) for testing. The performance 

Fig. 4   Measured versus 
predicted values on the testing 
dataset

Fig. 5   Comparison of machine learning algorithms in box and whisker plots
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of the predictive models was evaluated based on two crite-
ria, namely, R2 and RMSE, using the training and testing 
datasets. Based on the results of this study, RMSE values of 
1.554 and 1.742 were obtained for the XGBoost model on 
the training and testing datasets, respectively. These values 
are the smallest among the RMSE values of the constructed 
models, which shows that the XGBoost model can be intro-
duced as a new approach to solve environmental problems 
caused by blasting. Furthermore, R2 values of 0.955 and 
0.952, respectively, for the training and testing datasets of 
the XGBoost technique indicate that the capability of the 
proposed technique is slightly higher than that of the other 
developed models for PPV prediction.

Although XGBoost was a robust model for predicting 
blast-induced PPV in this study, it is still needed to be fur-
ther studied for improving the accuracy level as well as the 
computational time. Also, a hybrid model based on XGBoost 
and another algorithm are also a good idea for future works.
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Fig. 6   Prediction values of 
selected predictive models on 
testing datasets

Fig. 7   Sensitivity analysis of 
independent variables for the 
PPV predictive model
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