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Abstract
The changing climate is affecting the melting process of glacier ice and snow in Himalaya and may influence the hydro-
geochemistry of the glacial meltwater. This paper represents the ionic composition of discharge from Bilare Banga glacier 
by carrying out hydro-geochemical analysis of water samples of melting season of 2017. The pH and EC were measured 
on-site in field, and others parameters were examined in the laboratory. The abundance of the ions observed in meltwater has 
been arranged in decreasing order for cations as Ca2+ > Mg2+ > Na+ > K+ and for anions as HCO3

− > SO4
2− > Cl− > NO3

−, 
respectively. Analysis suggests that the meltwater is mostly dominated by Ca2+ and HCO3

−. It has been observed that the ionic 
concentration HCO3

− is dominant and Cl− is the least in the catchment. Piper plot analysis suggests that the chemical com-
position of the glacier discharge not only has natural origin but also has some anthropogenic input. Hydro-geochemical het-
erogeneity reflected the carbonate-dominated features (Ca2+–HCO3

−) in the catchment. The carbonate weathering was found 
as the regulatory factor to control the chemistry of the glacial meltwater due to the high enrichment ratio of (Ca2+ + Mg2+) 
against TZ+ and (Na+ + K+). In statistical approach, PCA analysis suggests that geogenic weathering dynamics in the catch-
ment is associated with carbonate-dominant lithology.
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Introduction

The Himalayan mountain region is one of the youngest 
chain of mountains having the world’s highest range and 
huge freshwater reserves as snow and glaciers that helps in 
sustaining the downstream population and ecosystem (Singh 
et al. 2016a, b; Shekhar et al. 2017). It holds hydrological 
importance because of the potential reserve of freshwater 

as glacier, lake and river (Schild 2008). Glaciers are consid-
ered as indispensable climatic indicator as well as natural 
resources (Maurer et al. 2016). The component of the gla-
ciers, such as snow and ice melting, considerably contributes 
to river flow at downstream, which is very crucial for the 
drinking, irrigation and hydropower generation (Lutz et al. 
2014). In general, extreme water discharge in summer season 
in this region is a result of enhanced melting of snow and 
glaciers at higher altitude (Singh et al. 2008). It has been 
reported that the freshwater bodies such as glacial meltwater 
and glacial lake are getting contaminated under the natural 
as well as anthropogenic activities (Kanakiya et al. 2014; 
Kotadiya and Acharya 2014), generating serious problem at 
the global scale (Iscen et al. 2008). The responsibility of the 
contamination has been attributed to changing climate and 
global warming (Szopińska et al. 2018), but there has been 
no established relationship due to scarcity of database. This 
has led to a serious concern at regional as well as global level 
about fate of the glaciers and future freshwater availability. 
The glacial locations are ideal sections for understanding the 
process of water–rock interactions and the natural influence 
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on the hydro-geochemistry as little interventions of human 
activities are noticed. The varying discharge of glacial melt-
water influences the ionic concentration and dissolved load 
in its river system that influences the hydro-geochemistry 
and water quality. The glacier dynamics and higher meltwa-
ter discharge influence the rate of erosion and hence the pro-
cess of physical and chemical weathering making it higher 
than the continental average. Therefore, it is very important 
for the prospective of changing water quality and needs to 
conduct research for recognizing the responsible factors for 
deteriorating water quality (Saleem et al. 2015; Vetrimuru-
gan et al. 2013; Zhu et al. 2013). Hydro-geochemistry of 
Himalayan glacial meltwater is helpful in understanding the 
weathering dynamics of glacial environment (Chauhan and 
Hasnain 1993; Singh and Hasnain 1998a, b; Sharma et al. 
2013; Singh et al. 2015; Kumar et al. 2018a, b).The knowl-
edge of the hydro-geochemistry is vital due to the depend-
ency of a large populations on glacial meltwater. The correct 
assessment of chemical characteristics of ions activity and 
other physical–chemical parameters is necessary for under-
standing the weathering reactions, anthropogenic impact on 
the water resources within the catchment. The characteris-
tics of the glacial meltwater depend on the flow of water 
under subglacial conduits and its interaction with the rock 
surface (Haritashya et al. 2010; Kumar et al. 2009). It also 
depends on the velocity of water and interaction time with 
bedrocks (Sharma et al. 2013; Singh et al. 2014; Singh and 
Ramanathan 2015). Numerous glaciological studies have 
been carried out like glacier surge (Philip and Sah 2004), 
dynamics of glaciers (Sam et al. 2015), mapping of glacier 
facies as well as discharge and mass balance reconstruction 
(Singh et al. 2018), dissolved micronutrient nanoparticles 
(Kumar et al. 2018a) and sediment dynamics with respect 
to discharge (Kumar et al. 2018b) in the Shaune Garang 
basin, but there is not any documented research regarding 
the geochemical evidence in this basin. The paper attempted 
to highlight the chemical characteristics of the meltwater 
draining from Bilare Banga glacier of Baspa basin through 
the qualitative and quantitative methods. It is affected by the 
characteristics of the parent rocks as well as the weather-
ing process. This is helpful in addressing the migration and 
transport mechanism of solute particles to the downstream 
locations. Therefore, the present study focused on the geo-
chemical characterization of Bilare Banga (Shaune Garang 
basin) glacial meltwater is able to fill the research gap.

Study area

Geologically, this part of Baspa Valley comes in the group of 
Tethys Himalaya. A comprehensive study on the geological 
as well as geographical development of entire basin recom-
mends the control of Raksham group of granite, granodiorite 
and pegmatite rocks (Dutta et al. 2017). Bilare Banga is the 

second largest glacier of Shaune Garang catchment (Philip 
and Sah 2004). Glacier is located in the Shaune Garang 
catchment joining the Baspa River in the downstream. The 
glacier discharge of the catchment meets to the main Shaune 
Garang River at altitude of 3975 m above the sea level. Loca-
tion of study region is shown through the map (Fig. 1), while 
the geomorphic facies of Bilare Banga glacier are presented 
in Table 1. The altitude of glacier varies from 4250 m to 
5160 m asl. The total area of catchment is 8.54 km2 having 
the glacier area of about 3.51 km2. The study area falls under 
the influence of Western disturbance as well as Indian sum-
mer monsoon (Kumar et al. 2016, 2018a, b), and the inten-
sity of precipitation events is more in summer compared to 
winter (Wulf et al. 2010). The chemical characterization of 
meltwater has not been carried out in this region; hence, 
this attempt in view of the geological condition of the area 
becomes important to know the influence in the downstream 
catchment.

Materials and method

Water sampling protocol and analysis

Glacial meltwater sampling was carried out at different loca-
tions of downstream catchment of Bilare Banga stream in 
the melting season of 2017. Sampling bottles were cleaned 
by distilled water followed by glacial water, before collec-
tion of water at 12 different locations of varying altitudes. 
Glacial meltwater was filtered on known weight of Milli-
pore membrane (Whatman 0.45 µm) to separate suspended 
sediment. The meltwater is collected from the five loca-
tions in polyethylene bottle (1/4 l) about 10–15 cm deeper 
to the water surface directly. The in situ measurement of 
pH, EC and temperature has been performed through hand-
held multi-parameter (HI-98129, HANNA) instrument. The 
atomic absorption spectroscopy, (AAS) with accuracy of 
0.05 ppm for Ca, Mg, K and Na while 0.01 ppm for silicon, 
has been used to analyze the cations (Ca2+, Mg2+, K+ and 
Na+). Major anions (Cl−, NO3

− and SO4
2−) were analyzed 

through ion chromatography (PERKIN ELMEWR), Dionex 
ICS 900, USA (accuracy up to 0.1 ppm). The concentration 
of HCO3 was analyzed through titration method as defined 
by the APHA (1998). The utmost precaution has been taken 
during water sampling, and it was preserved at 4 °C in the 
laboratory before subjected to analysis. A set of samples was 
used for evaluation of every calibration curve. Multivariate 
statistical analysis was applied to assess and understand the 
variations within the dataset. Correlation matrix analysis has 
been performed to examine the interrelationship among the 
measured variables within the dataset. Principal component 
analysis (PCA) is used for knowing sources of dissolved 
ionic concentration in glacial meltwater. Bartlett’s sphericity 
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methods were tested to know the strength and efficiency of 
PCA which is helpful in reducing the dimensionality in data 
(Kumar et al. 2014; Pant et al. 2018).

Results and discussion

Hydro‑geochemistry

The accuracy of the charge balance error between total 
cations (TZ+) and total anions (TZ−) was calculated as 

5.86%, which indicates the precision and quality of the 
data and considered acceptable. The CBE error was cal-
culated through following equation:

where TZ+ is total cation and TZ− is total anion.
Water draining from the Bilare Banga glacier has been 

found to be alkaline and may be linked to weathering of 
rocks (Meybeck 1987; Sharma et al. 2013), and pH varies 
from 6.98 to 8.23 with an average value of 7.45 ± 0.44. 
Electrical conductivity (μS/cm) has shown the range of 
54.0–91.0 with an average value of 73.0 ± 12.9 μS/cm. 
Highly varying electrical conductivity (EC) indicates 
that the catchment’s geochemistry is controlled by mete-
orological parameters, interaction of water with rock that 
controls the hydro-chemical facies (Kumar et al. 2014, 
2018b). The EC also represents the concentrations of 
total dissolved ions in meltwater (Shichang et al. 2000; 
Singh et al. 2015). Total ionic budget of meltwater shows 
major cation contribution of Ca2+ and Mg2+ constituting 
41.07% and 28.29%, respectively, in the total cationic 
budget. The average Ca2+ and Mg2+ concentrations in 
the meltwater of Bilare Banga glacier was observed to 
be 288.29 ± 48.95 and 198.56 ± 32.41 μeq/l, respectively. 

(1)CBE =

(

TZ
+
− TZ

−
)

(

TZ
+
+ TZ

−
) × 100

Fig. 1   Map of Bilare Banga glacier presenting the river channels and water sampling site. The location of Bilare Banga glacier (in blue color) in 
Shaune Garang catchment and its stream channel (in green color) and location of Baspa basin (in red color) shown in inset

Table 1   Geomorphic characteristics of Bilare Banga glaciers. Source: 
Philip and Sah (2004)

Geomorphic characteristics

Summit height (m) 5555
Upper limit of glacier (m) 5160
Lower limit of glacier (m) 4250
Relative relief of glacier 910
Length of glacier (km) 6.42
Average slope of glacier 08°05′
Glacier area (km2) 3.51
Glacier area (%) 22.35
Basin area (km2) 8.54
Basin area (%) 5.47
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Similarly, anionic budget of meltwater indicates that bicar-
bonate (HCO3

−) is the major anion contributor (47.81%) 
of the total TZ− trailed by SO4

2− (42.05%), Cl− (9.26%) 
and NO3

− (0.91%). The concentration of bicarbonate 
(HCO3

−) in meltwater ranged from 214 to 350 μeq/l hav-
ing mean of 298 ± 45.0 μeq/l followed by sulfate (SO4

2−) 
concentration varied from 200 to 356 μeq/l having mean 
of 262.4 ± 57.5 μeq/l. The concentrations of dissolved 
silica fluctuated from 14.6 to 25.8  µmol/l with mean 
value of 20.5 ± 4.18 µmol/l. Study shows that Ca2+ and 
HCO3

− are dominant in the glacial meltwater of Bilare 
Banga. The cationic abundance in the meltwater follows 
decreasing order like Ca2+ > Mg2+ > Na+ > K+, and the 
concentration of anion follows decreasing order from 
HCO3

− > SO4
2− > Cl− > NO3

−. Excessive concentration of 
bicarbonate in meltwater is an indicative of higher weath-
ering of silicate-dominant lithology of the area, whereas 
the higher Cl− ion may be endorsed to the contribution of 
rainwater (Singh et al. 2014). The detailed distribution of 
the dissolved ionic concentration in meltwater of Bilare 
Banga glacier is presented through Table 2.

Hydro‑chemical process in glacial catchment

The evolution of the chemical species in the glacial melt 
has been accredited to weathering process of parental rock 
present in the glaciated region (Singh et al. 2012, 2014). 
The weathering of the chemical species in the rocks such 
as calcite, dolomite and dissolution or evaporation process 
of halite gypsum and anhydrite are the main factors in 

controlling the hydro-geochemistry of the glacial melt-
water (Pant et al. 2018). Richness of cations of calcium, 
magnesium and carbonates in glacial meltwater may be 
credited to the presence of carbonate minerals and its 
weathering. However, the richness of Ca2+, Mg2+, Na+ and 
K+ is also due to the weathering of silicate. Low content 
of chlorine and sodium ions and high content of bicarbo-
nates and calcium ions in meltwater reflect the stimulus 
weathering of the rocks having the richness of minerals 
like carbonates, silicates and sulfide (Tranter et al. 1993) 
as well as atmospheric CO2. Chloride (Cl−) and sulfate 
(SO4

2−) are primarily generated with the halite and sulfide 
oxidation in the river catchment. Sulfate minerals such as 
gypsum are also a main factor for controlling the concen-
tration of Cl− and SO4

2− in the glacial meltwater (Mortatti 
and Probst 2003; Thomas et al. 2015). To detect the deri-
vations of chemical species in water deliberately by weath-
ering phenomena, ionic ratios of water are computed and 
shown through Table 3. Average ratio of HCO3

−/Na2+ is 
1.87 ± 0.35, which indicates that glacial meltwater is influ-
enced by carbonate weathering. In addition, the propor-
tion of (Ca2+ + Mg2+)/TZ+ is 0.69 ± 0.03 and (Na+ + K+)/
TZ+ is 0.31 ± 0.03, which indicates the presence of silicate 
weathering process is lesser than the carbonate weather-
ing (Pant et al. 2018). (Ca2+ + Mg2+) versus (Na+ + K+) 
ratio observed to be 2.29 ± 0.29 suggests meltwater 
is influenced by the minerals of calcite and dolomite. The 
C-ratio [(HCO3

−/(HCO3
− + SO4

2−)] explains the impor-
tance of proton-producing reactions such as carbonation 
and sulfide oxidation being an essential component for 
chemical weathering of carbonate rocks (Huang et  al. 
2008). C-ratio < 0.50 represents the occurrence of major 
reaction in the glacial meltwater such as carbonate disso-
lution (carbonation) as well as sulfide oxidation reaction, 
although values of the whole C-ratio closer to 1 indicate 
dominance of carbonic reaction in the region as well as 

Table 2   Chemical characteristics of Bilare Banga glacier meltwa-
ter during ablation season of year 2017

Unit: EC in μS/cm; TZ+, TZ−  in µeq/l, H4SiO4 in µmol/l

Parameters Minimum Maximum Average SD CV %

pH 6.98 8.23 7.45 0.44 5.86
EC 54 91 73 12.9 17.67
Na+ 121 204.45 162.75 25.79 15.84
K+ 32 78 52.18 12.87 24.66
Ca2+ 178 356 288.29 48.95 16.98
Mg2+ 141.01 253.81 198.56 32.41 16.32
Cl− 48 78 57.8 10.07 17.42
SO4

2− 200 356 262.45 57.51 21.91
NO3

− 2.6 8.98 5.74 2.33 40.6
HCO3

− 214 350 298.04 45.07 15.12
H4SiO4 14.62 25.82 20.55 4.18 20.33
TZ+ 631.21 857.73 701.78 59.01 8.41
TZ− 516.3 703.1 624.02 52.82 8.46
HCO3 + SO4 464 645.5 560.49 48.91 8.73
Ca + Mg 425.21 609.81 486.85 47.69 9.8
Na + K 175 265.1 214.93 25.97 12.08

Table 3   Ionic ratios of various hydro-geochemical species during 
ablation period of year 2017

Parameters Minimum Maximum Average SD CV %

Ca2+ + Mg2+/TZ+ 0.62 0.74 0.69 0.03 4.29
Ca2+ + Mg2+/

Na+ + K+
1.61 2.78 2.29 0.29 12.84

Na+ + K+/TZ+ 0.26 0.38 0.31 0.03 9.72
Ca2+/Na+ 0.89 2.39 1.82 0.39 21.43
Mg2+/Na+ 0.97 1.85 1.24 0.25 20.32
HCO3

−/Na+ 1.07 2.39 1.87 0.35 18.88
Na+/Cl− 1.56 4.17 2.91 0.69 23.73
K+/Cl− 0.49 1.35 0.91 0.22 23.51
C-ratio 0.41 0.63 0.53 0.08 15.08
SMF 0.37 0.59 0.47 0.08 17.26



655Acta Geophysica (2019) 67:651–660	

1 3

atmospheric input of CO2-derived protons. We observed 
the C-ratio of meltwater from Bilare Banga as 0.53. The 
C-ratio of glaciers like Sutri Dhaka, Chhota Shigri, Dudu 
and Gangotri is represented through Table 4 which reflects 
the dominance of carbonate weathering in Chhota Shi-
gri, Sutri Dhaka as well as Bilare Banga glacier, while 
Gangotri and Dudu glaciers are majorly influenced by 
sulfide weathering. About 85% contribution of bicarbo-
nate in the glacial meltwater is due to higher weathering 
of carbonate while other 15% is contributed by the weath-
ering of silicate (Raymahasay 1986). The similar result 
has been reported by Singh and Hasnain (1998a, b) for 
the Alaknanda basin where the dominance of carbonate 
weathering is 78% while silicate weathering is of 22%. 
The Rajkhot watershed of Higher Himalaya also showed 
the similar trend (Blum et al. 1998). In the same man-
ner, the domination of carbonate weathering designates 
the partial role of assimilation of atmospheric CO2 in the 

Bilare Banga glacier meltwater. However, the strontium 
isotopes study would be helpful in confirming the role of 
atmospheric CO2 assimilation (Kumar et al. 2009) in the 
Himalayan region.  

Statistical analysis

Approach of statistical analysis, such as principal component 
analysis, correlation as well as factor analysis, was executed 
to understand the interrelationship among the variables. 
The Bartlett’s sphericity test having χ2 (observed) = 125.76, 
which is substantially greater than the critical value 
(χ2 = 38.95 at ‘degree of freedom’ 55, p values < 0.0001, 
significance level 0.05), shows the importance of PCA in 
understanding substantial decrease in dimensionality of the 
data (Singh et al. 2011; Kumar et al. 2018b). The PCA helps 
in standardization of the data collected on different scale 
of measurements through the diagonalization of correlation 

Table 4   Comparison of ionic 
ratio of glacier meltwater 
draining from diffrent parts 
of Himalayan region

Bilare Banga Sutri Gangotri Chhota Shigri Dudu

pH 7.45 8.2 7.2 6.5 6.3
EC 73 59.9 81 42.6 31.9
Na+ 162.75 5 75 38.8 42.7
K+ 52.18 14.7 83 28.9 24.6
Ca2+ 288.29 242 206 104 91.1
Mg2+ 198.56 43.6 197 98.8 6.5
Cl− 57.8 0.3 11.2 3.3 5
SO4

2− 262.45 71.6 401 104 85.4
NO3

− 5.74 3.3 1.9 1.5 14.9
HCO3

− 298.04 221 266 219 52.3
Ca2+ + Mg2+/TZ+ 0.69 0.94 0.72 0.75 0.59
Ca2+ + Mg2+/Na+ + K+ 2.29 14.5 2.55 3 1.45
Na+ + K+/TZ+ 0.31 0.06 0.28 0.25 0.41
Na+/Cl− 2.91 16.67 6.7 11.7 8.5
C-ratio 0.53 0.76 0.40 0.68 0.38

Fig. 2   a Scree plot between 
eigenvalue and factors, b load-
ing score of factor
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matrix. The variables in this statistical test automatically 
give the auto scale to mean = 0 and variance = 1. The scree 
plot between eigenvalues and factors (Fig. 2) shows that the 
principle component (PC) values > 1 explain 83.9% of the 
total variance among four PCs. PC1, PC2, PC3 and PC4 
are able to explain 34.34%, 19.49%, 15.90% and 14.23%, 
respectively, of the total variance. Statistical tools such as 
correlation matrix are used to find out the interrelationship 
between two hydro-geochemical species for investigating 
the grade of dependence of variables among each other 
(Ramanathan 2007; Vasanthavigar et al. 2013; Pant et al. 
2018). Table 5 represents the correlation analysis during the 
study period. Some of the parameters like EC and Na+ are 
strongly correlated with SO4

2−, and similarly, a good cor-
relation is also observed for Ca2+–HCO3

−, Mg2+–H4SiO4 

and Cl−–NO3
−. All these water parameters show the strong 

and positive correlation (r > 0.6), indicating that the hydro-
geochemistry of Bilare Banga glacier is primarily influenced 
by them. Factor analysis of the glacial meltwater shows that 
factor-1 with eigenvalue 3.77 describes 34.3% of the total 
variance considered as main factor (Table 6). On the basis 
of results, total variance is very high for Ca2+, SO4

2− and 
HCO3

− but has moderate loadings of electrical conductivity. 
This result determines that the EC in the meltwater is largely 
influenced through the presence of sodium and chloride; 
however, bicarbonate also plays significant role in determin-
ing conductivity. Factor 2 describes 19.4% of total variance 
and demonstrates that the high loading of sodium, nitrate 
and chloride in the meltwater is due to ion exchange at water 
interface and dissolution of sodium-bearing minerals and 

Table 5   The correlation matrix of chemical parameters of Blaire Banga glacier meltwater

The correlation values greater than 0.5 has been marked bold that signifies the acceptable limit of correlation at the significance level of 0.05

Variables pH EC Na+ K+ Ca2+ Mg2+ Cl− SO4
2− NO3

− HCO3
− H4SiO4

pH 1
EC − 0.084 1
Na+ − 0.448 − 0.349 1
K+ 0.368 − 0.035 − 0.235 1
Ca2+ − 0.169 − 0.062 0.020 − 0.331 1
Mg2+ − 0.023 0.313 0.436 0.204 − 0.369 1
Cl− − 0.013 0.105 − 0.256 0.336 − 0.015 0.254 1
SO4

2− 0.320 0.712 − 0.718 0.134 − 0.460 0.115 0.127 1
NO3

− − 0.319 − 0.277 − 0.182 0.204 0.135 − 0.136 0.604 − 0.134 1
HCO3

− − 0.318 − 0.242 0.153 − 0.470 0.921 − 0.311 0.100 − 0.568 0.287 1
H4SiO4 0.144 0.637 − 0.077 − 0.046 − 0.484 0.578 − 0.108 0.684 − 0.534 − 0.512 1

Table 6   Factor analysis of 
glacial meltwater during 
ablation period of 2017

The factor values greater than 0.5 has been made bold that indicates a significant association of three prin-
ciple components  at the significance level of 0.05

F1 F2 F3 F4 Initial com-
munality

Final 
commu-
nality

pH 0.335 0.197 0.034 − 0.374 0.996 0.292
EC 0.595 0.034 0.370 0.489 0.999 0.731
Na+ − 0.377 − 0.836 − 0.371 0.145 0.988 1.000
K+ 0.289 0.319 − 0.485 − 0.178 0.946 0.451
Ca2+ − 0.683 0.124 0.433 0.245 0.996 0.729
Mg2+ 0.424 − 0.398 − 0.442 0.469 0.995 0.753
Cl− 0.031 0.559 − 0.451 0.491 0.939 0.757
SO4

2− 0.870 0.353 0.292 0.111 0.993 0.980
NO3−  − 0.366 0.578 − 0.408 0.246 0.998 0.695
HCO3

− − 0.843 0.092 0.352 0.397 0.993 1.000
H4SiO4 0.824 − 0.351 0.187 0.274 0.998 0.913
Eigenvalue 3.778 2.145 1.749 1.566
Variability (%) 34.347 19.496 15.900 14.235
Cumulative % 34.347 53.843 69.743 83.978
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silicate-wearing minerals. Similarly, factors 3 and 4 explain 
15.9% and 14.2% of total variance, respectively, during the 
study period. Factor analysis further suggests a high loading 
of magnesium that influences the temporary hardness of the 
water. Thus, all these four PCs are collectively responsible 
toward 83.96% of total variance. Apart from this, communal-
ity of the variables and their proportion define that extracted 
common factor is larger than almost 0.8. Hence, factor anal-
ysis represents all variances of the dataset. The particular 
control of variables in each factor specifies the partial mix-
ing of different water types. Hierarchical cluster analysis 
shows that glacial meltwater is divided into two principal 

cluster components which are presented through the den-
drogram (Fig. 3). Maximum water samples lie in cluster 1, 
which has Ca–HCO3

− and mixed Ca–Mg–SO4
2− water-type 

facies. On the other hand, cluster 2 defines the less dominant 
water types in the catchment.  

Hydro‑geochemical facies

To perform the quantification of water type, Piper’s trilin-
ear diagram is broadly used to understand the geochemical 
evolution in water system (Piper 1944, 1953). The classi-
fication of water types in the piper plot demonstrates the 
basis of ratio of the geochemical characteristics in water 
(Xiao et al. 2012; Singh et al. 2016a, b). Characterization of 
glacial meltwater of the study area has been carried out by 
plotting average data of ablation season of 2017 on Piper’s 
trilinear diagram (Fig. 4). The outcomes of the study on the 
basis of piper plot encompass two triangles at base, which 
designate anions (SO4

2− and CO3
2− + HCO3

−) and cations 
(Ca2+, Mg2+ and Na+ + K+), while a diamond shape specifies 
dominance of anions and cations. Hydro-geochemical results 
helped in concluding the water type which is mainly influ-
enced by Ca–HCO3

− and mixed influence of Ca–Mg–SO4
2−, 

demonstrating the dominancy of carbonate weathering in the 
catchment. Ca–HCO3

− water type is the predominant phase 
of water in any natural system. Mixed Ca–Mg–SO4

2− facies 
of water is generally formed with the interaction of pyrite 
and gypsum minerals present in the catchment. The gradual 
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Fig. 4   Piper plot showing the 
chemical characterization of 
glacial meltwater samples from 
Bilare Banga glacier during 
ablation season of year 2017
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changes in the chemical features may be attributed to the 
longer interaction between minerals and flowing water. On 
the other hand, cation plot shows that maximum number 
of the water samples falls in the middle part of the trilin-
ear plot. Some of samples fall in the bottom left corner, 
representing the governance of Ca+ ion in the meltwater 
(Singh and Ramanathan 2017). Some of the water facies 
show increased concentration of Na+ and K+ ions which is 
an indicative of stimulus effect of local sources of pollutants 
that would have accumulated on the glaciers surface after 
being trapped in the surface ice through deposition from the 
atmosphere (Karim and Veizer 2000; Ravikumar et al. 2013; 
Pant et al. 2018). The anion diagram helps in understanding 
that the maximum water samples fall under the lower left 
corner to HCO3

− apex, indicating the dominancy of carbon-
ate. The results show a complete characteristic of hydro-geo-
chemistry, governance of alkali earth elements (69.36%) like 
calcium and magnesium over the alkaline (30.62%) sodium 
and potassium concentrations. In anion contribution of weak 
acid, HCO3

− (~ 47.81%) is dominating over the strong acid 
SO4

2− (~ 42.05%) in the catchment. 

Conclusion

The present study provides fundamental information to 
chemical characterization of meltwater of Bilare Banga 
glacier. Chemical characteristics of meltwater show that 
pH of water moves considerably from acidic to neutral with 
the presence of Ca2+ and HCO3

− as dominant ions. High 
ratio of (Ca2+ + Mg2+) versus TZ+ and (Na+ + K+) as well 
as strong correlation between Ca2+–HCO3, Ca2+–Mg2+ and 
Mg2+–HCO3

− indicates that carbonate weathering is the 
controlling factor of dissolved ions in glacial meltwater. 
The changing concentration of the ions in the river water is 
inversely associated with the runoff. It is further observed 
that the ratio of “Na+/(Na+ + Ca2+) and Cl−/(Cl− + HCO3

−)” 
in the catchment is less than 0.5 which is an indicative of 
the control of weathering on the ionic compositions in the 
glacial meltwater. Piper diagram shows that Ca2+–HCO3

− is 
most prevailing water type in this region. The C-ratio dem-
onstrates the process of dissolution and dissociation of CO2 
present in the local atmosphere which also controls the pro-
duction of H+ (proton). Hierarchical cluster analysis shows 
that the glacial meltwater is divided into two principal cluster 
components and most of the water samples fall in the cluster 
1, which has Ca–HCO3

− and mixed Ca–Mg–SO4
2− water-

type facies. Based on the statistical analysis, it is clear that 
the hydro-geochemistry in this region is mainly governed 
through the weathering of carbonate and silicate-dominant 
lithology. In addition, suspension of sulfate-bearing miner-
als, pyrite oxidation and precipitation are also contributing 
for the same.
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