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Abstract
At present, the seismic exploration of mineral resources such as unknown oil fields and natural gas fields has become the focus 
and difficulty. The Tarim Oilfield located in the desert area of northwest China has many uncertainties due to complicated 
geological structure and resource burial conditions. And the seismic record collected carries various noises, especially random 
noise with complex features, including non-stationary, non-Gaussian, nonlinear and low frequency. The seismic events are 
contaminated by random noise. Also the effective signal of desert seismic record is in the same frequency band as the random 
noise. These situations have brought great difficulties in denoising by conventional methods. In this paper, a noise reduction 
framework based on linear discriminant analysis effective signal detection in desert seismic record is proposed to solve this 
problem. At first, the method utilizes the difference between the effective signals and the noise in the low-dimensional space. 
The seismic data are divided into the effective signal cluster and the noise cluster. Then, the effective signal is extracted to 
realize the position of the seismic events. Finally, the conventional filter is matched to obtain better denoising results. The 
framework is applied to synthetic desert seismic records and real desert seismic records. The experimental results show that 
denoising capability after detecting effective signals is obviously better than those of conventional denoising methods. The 
accuracy of the seismic effective signal detection is higher, and the seismic events’ continuity is maintained better.

Keywords Linear discriminant analysis · The seismic effective signal detection · Random noise reduction · Desert seismic 
record

Introduction

Working conditions and field conditions may cause low sig-
nal-to-noise ratio (SNR) and low resolution. Many seismic 
denoising methods have been proposed, including median 
filter (Bednar 1983), f–x deconvolution (Canales 1984), f–k 
filter (Stewart and Schieck 1989) and curvelet thresholding 
(Neelamani et al. 2008). In 2012, non-local mean (NLM) 
filter was applied to land seismic random noise suppression 
(Bonar and Sacchi 2012; Shang et al. 2013) and achieved 
good noise suppression effect. However, in the complicated 

desert seismic records, conventional methods of seismic 
noise reduction including non-local mean filter have turned 
out to be ineffective. Therefore, the research on detecting the 
desert seismic events, improving the resolution of effective 
signals and reducing noise is of great significance for desert 
seismic exploration.

In order to solve the above problems, the dimension 
reduction theory and clustering theory in machine learn-
ing are introduced into desert seismic signal processing to 
compensate for the lack of non-local mean filter for desert 
seismic signals. Common methods for dimension reduc-
tion include principal component analysis (PCA) (Ander-
son 1963; Tipping and Bishop 2014), linear discriminant 
analysis (LDA) (Ye et al. 2006; Bandos et al. 2009; Yu and 
Yang 2001; Yang et al. 2005) and manifold learning (Meng 
et al. 2017). PCA is an unsupervised linear dimension reduc-
tion algorithm. Its purpose is to maximize the variance of 
projection sample points after projecting high-dimensional 
data into low-dimensional space. The sample points are 
scattered as much as possible. In desert seismic events, the 
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seismic data in the low-dimensional space only realize the 
dispersion of sample points and cannot distinguish effective 
signal points from noise data points. In this respect, LDA 
is superior to PCA. LDA is a supervised linear dimension 
reduction. So, it can achieve data classification while reduc-
ing dimensions.

The LDA was developed from Fisher discriminant analy-
sis which was first proposed by Fisher (1936) on the two 
classification problem (Fisher 1936). It assumes that the 
covariance matrices for all types of sample points are the 
same and full rank. Therefore, LDA can be used not only for 
two classifications, but also for multiple classifications. LDA 
obtains the optimal sample projection direction by training a 
known sample of a desert seismic signal training set. When 
this projection direction is used for new desert seismic data, 
effective signals and noise can be separated in a low-dimen-
sional space. Then, the effective signal is extracted to locate 
the seismic events. Finally, the non-local means filter is used 
for noise removal. Experiments have shown that the results 
obtained by this method are better than directly using the 
non-local means filter or f–x deconvolution.

Random noise reduction framework

This framework mainly includes two parts which are signal 
detection and filtering. In this paper, we select LDA as the 
signal detection method in this framework. LDA relies on 
the learning of the training sample set. The selection of the 
training set will directly determine whether the new seismic 
data can separate effective signals and noise when projected 
into the low-dimensional space. Therefore, the similarity in 
each feature between the synthetic seismic signals in the 
training set and the real desert seismic signals is extremely 
important.

Linear discriminant analysis

The idea of LDA is described as: Given the training set, 
the samples in the training set are projected onto a line in a 
certain way, so that the same type of projection data points 
are as close to each other as possible, and the heterogeneous 
projection data points are far away from each other. When a 
new data set is encountered, it is projected onto the same line 
and the classification of the new sample is obtained based on 
the position of the projected data points on the line.

For a given data set D = {(��, yi)}i=1 , yi ∈ {0, 1} , let Xi , 
�� and Σ� , respectively, be a set of examples, a mean vector 
and a covariance matrix. When all the sample data are pro-
jected onto a straight line � , the projections of the centers 
of the two types of sample data on the straight line are �T�� 
and �T�� . The covariances of the two types of samples are, 
respectively, �T

∑
0 � and �T

∑
1 � . According to the basic 

idea of the LDA algorithm, the similar sample data points 
should be as close as possible and the heterogeneous sample 
data points should be far away from each other. Then, the 
covariance matrix of the same type of projection sample 
points �T

∑
0 � + �T

∑
1 � should be as small as possible, 

and the distance of the projection center of the heteroge-
neous sample points ‖�T�� − �T��‖22 should be as far as 
possible, which can get the maximum goal as follow (Ye 
et al. 2006):

“Within-class scatter matrix” is defined as (Fukunaga 
1990):

“Between-class scatter matrix” is defined as (Fukunaga 
1990):

Then, Eq. (1) can be simplified as follow:

Equation (4) is the maximization goal of the LDA algo-
rithm. That is the “generalized Rayleigh quotient” of �� and 
��.

In order to get a determinate � , we must normalize the 
denominator of Eq. (4), and let �T��� = 1 , then, Eq. (4) 
can be equivalent to:

By Lagrange multiplier method, Eq. (5) can be equivalent 
to:

where � is the Lagrangian multiplier. It can be seen the fea-
ture vector of �−1

�
��.

For a new data set � , its low-dimensional projection data 
set � can be expressed as:

Training set

LDA needs a corresponding training set. However, there is 
no mature available training set for desert seismic signals. 
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Therefore, an appropriate training set needs to be generated 
to process the real desert seismic signal.

To generate the training set, it is necessary to understand 
the characteristics of sample data. In the denoising process 
of seismic prospecting, random noise is often assumed to be 
stationary and Gaussian. According to the statistical analy-
sis, the desert seismic random noise is not strictly station-
ary, but locally stationary. Moreover, we can get that the 
desert random noise is non-Gaussian through the Gaussian 
property test (Zhong et al. 2015a, b). In terms of linearity, 
Zhong et al. (2015a, b) proved that desert seismic random 
noise is nonlinear.

In general seismic signal inversion process, Ricker waves 
are used to synthesize seismic signals. Taking into account 
the complexity of desert seismic signals and its generali-
zation performance, general zero-phase waves and mixed-
phase waves are added to the training set. Previous studies 
of the desert seismic signals have shown that the frequency 
of their effective signals is around 30 Hz. The frequency 
range of noise is from several Hertz to twenty Hertz (Li 
and Li 2016; Li et al. 2017). In order to ensure the richness 
of frequency components, there are a total of 11 frequency 
components of seismic wavelets in the training set, including 
20 Hz, 22 Hz, 24 Hz, 26 Hz, 28 Hz, 30 Hz, 32 Hz, 34 Hz, 
36 Hz, 38 Hz and 40 Hz. In the desert seismic signal train-
ing set, the synthesize desert noise is used in the noise part 
(Li and Li 2016; Li et al. 2017). Its characteristics are very 
similar to the real desert noise.

The general formula for constructing Ricker waves as:

The general formula for constructing zero-phase waves 
as:

(8)f (t) = A
[
1 − 2 ×

(
�f0t

)2]
× e−(�f0t)

2

(9)f (t) = A cos
[
2�f0

(
t − t0

)]
× e−�

2f 2
0 (t−t0)

2

The general formula for constructing mixed-phase waves 
as:

where A is the amplitude, f0 is the dominant frequency and 
t0 is the time delay.

The LDA training set requires the noisy signal and the 
corresponding position noise as two types of training data. 
Therefore, Ricker waves noised by synthetic desert ran-
dom noise and synthetic random desert noise are used as 
two kinds of sample data in the training set. Sample data 
of general zero-phase waves and mixed-phase waves and 
corresponding frequency components are also obtained in 
this way. Every frequency component of each phase wave 
extracted 50 traces. Finally, 1650 noisy signal samples and 
corresponding 1650 noise samples are obtained, which 
together constitute a training set for training to learn the 
best projection direction �.

Desert seismic random noise reduction

We set a desert seismic record X = {xij} , where i = 1⋯N 
is data point and j = 1⋯D is trace number. The first part: 
LDA effective signal detection. The projection direction � 
can be obtained by training sample set. Then, it is compared 
to a sliding window, which slides from top to bottom to 
reduce dimension of new desert seismic data, and obtain-
ing low-dimensional projection data points. At this time, 
the low-dimensional data points have been divided into two 
categories labeled by the K-means clustering algorithm 
when k = 2 (Hartigan and Wong 1979). The effective signal 
is reserved for detection. The second part: The filter is used 
to get the denoising result. By above description, we choose 
the sliding window method to reduce the dimension. The 
advantage of this method is that it can fully guarantee the 

(10)f (t) = A sin
[
2�f0

(
t − t0

)]
× e−�

2f 2
0 (t−t0)

2

Fig. 1  Synthetic desert seismic record. a Clean synthetic desert seismic record. b Synthetic desert seismic records with SNR = − 8.0619 dB
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relationship between data points, so that the data in the low-
dimensional space still maintain the original relationship, 
and further ensure the accuracy of clustering. The compu-
tational cost of the method is dominated by training the cost 
of the projection direction � and clustering. The additional 
complexity associated with dimension reduction and the 

computation required to extract effective signal data points 
is negligible. Because of the small amount of sample data, 
the computational time is only a few minutes.

The noise reduction steps from desert seismic data based 
on LDA effective signal detection are given as follows:

Fig. 2  Processing results of synthetic desert seismic record. a Proposed method results. b Non-local mean filter results. c Non-local mean filter 
results after PCA detection. d f–x deconvolution results. e Curvelet thresholding results
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Set a desert seismic record X =
{
xij
}
 , where i is data 

point and j is trace number.
1. Generate the training set to get the within-class scatter 

matrix, between-class scatter matrix and the mean val-
ues of the two sample data points.

Fig. 3  Residual comparison of synthetic desert seismic record before 
and after denoising. a Removed noise using proposed method. b 
Removed noise using non-local mean filter. c Removed noise using 

non-local mean filter after PCA detection. d Removed noise using f–x 
deconvolution. e Removed noise using curvelet thresholding
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2. According to Eq. (6), we get the best projection direction 
� ; compare it to a window; and take the length of the 
window as 40 points.

3. From Eq. (7), the single-trace desert seismic record is 
processed. The sliding window moves downward by 
one point to reduce dimension. In order to avoid losing 
data points in the process of window sliding dimension 
reduction, we add zero to the beginning and ending of 
the original data.

4. Cluster the data of low dimensional by the K-means 
clustering algorithm to get the noise points and signal 
points; extract the signal data points to achieve effective 
signal detection.

5. The non-local mean filter is used to get the denoising 
results.

Experiments and results

Synthetic desert seismic record

Aiming to test the feasibility of this method, we apply it 
to a synthetic desert seismic record (Fig. 1) which has 50 
traces and each trace has 1400 data points with dominant 
frequency of 30 Hz and 35 Hz. The amplitude of signal is 1 
and the sampling frequency is 500 Hz, as shown Fig. 1a. We 
add synthetic desert seismic noise to this record and make 
the SNR = − 8.0619 dB. It is shown in Fig. 1b. The SNR is 
defined as follows (Meng et al. 2017):

where s(i, t) is the clean synthetic desert seismic signal, x(i, t) 
is the noisy signal, i = 1⋯N  is data point and t = 1⋯M 
is trace number. We replace the signal detection method of 
the denoising framework with PCA, and the non-local mean 
filter is selected as filtering part to form a comparative test. 
In addition, f–x deconvolution and curvelet thresholding 
are used as contrast experiments. The results are shown in 
Fig. 2. Figure 3 shows the residual results of synthetic desert 
seismic record by using five methods. Figure 2a describes 
the processing results under the denoising framework pro-
posed in this paper. Figure 2b shows the results of process-
ing with a non-local mean filter. Figure 2c illustrates the 
results of a comparative test using PCA to detect the effec-
tive signal. The results of f–x deconvolution and curvelet 
thresholding are shown as Fig. 2d, e, respectively. It can be 
seen that the result of the non-local mean filter is not satis-
factory. In Fig. 3b, effective signals have residue and the ran-
dom noise is hardly reduced. It also illustrates the shortcom-
ings of non-local mean filtering in random noise reduction 

(11)SNR = 10 log

∑
i

∑
t �s(i, t)�

2

∑
i

∑
t �x(i, t) − s(i, t)�2

in desert seismic record. The results of f–x deconvolution 
and curvelet thresholding are better. But, they are not the 
best results. We can see the seismic events clearly. And the 
amplitude of effective signals has attenuation, as shown in 
Fig. 3d, e. In the same framework, the detection method is 
changed to PCA. The random noise is reserved more. And 
the noise part and the effective signal part are distinguished 
by a higher error rate, which makes it difficult to achieve the 
desired denoising effect. In the denoising framework intro-
duced in this paper, the noise part and effective signal part 
of every trace can be accurately clustered when LDA is to 
detect effective signal. The output SNR of above methods 
is listed in Table 1. Figure 4 shows frequency–wavenumber 
spectra (FK spectra) of Figs. 1a, b and 2a–e. Comparing with 
Fig. 4a and Fig. 4c, we can see that the FK spectrum of clean 
synthetic desert seismic record and synthetic desert seismic 
record after denoising is very similar, and the denoising 
effect is obvious. In Fig. 4d, e, g, the noise reduction is not 
obvious; low-frequency noise is not reduced. The effective 
signal is also partially lost. In Fig. 4f, the part of effective 
signals is not clear. Therefore, the method proposed in this 
paper has the best denoising effect.

Figure 5 shows the result of single-trace processing. 
Figure 5a shows the clean synthetic record, synthetic noisy 
records, K-means clustering results, signal detection results 
and filtering results of 38th trace after signal detection using 
LDA, respectively. Figure 5b shows results after using PCA 
to detect signal. The results show that the accuracy of LDA 
in signal detection is much higher than that of PCA and 
also proves the rationality of selecting LDA as the detection 
method in this denoising framework. Figure 6 is the plots 
of the amplitude comparison of effective signals. Compared 
with the contents of the blue box, the effective signal ampli-
tude keeps great under the denoising framework, and the 
part of the noise is removed completely (Fig. 6a). However, 
using the other four ways to denoise, their amplitude have 
some attenuation, and a lot of random noise is preserved 
(Fig. 6b–e). Although the valley of partial Ricker waves 

Table 1  Output SNR comparison of selected methods for denoising

Methods Proposed 
method

NLM PCA + NLM f–x 
deconvo-
lution

Curvelet 
thresh-
olding

Output 
SNR 
(dB)

4.8118 − 5.7482 0.3263 3.1466 − 3.2852

Fig. 4  FK spectra of synthetic desert seismic record. a FK spectra of 
clean synthetic desert seismic record. b FK spectra of synthetic desert 
seismic records. c FK spectra of proposed method results. d FK spec-
tra of non-local mean filter results. e FK spectra of non-local mean 
filter results after PCA detection. f FK spectra of f–x deconvolution 
results. g FK spectra of curvelet thresholding results

▸
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is incomplete, it is obvious that the effective signal after 
denoising remains better under this framework.

It is known from the above description that the results 
of filtering after the detection are mainly dependent on the 
accuracy of the clustering after reducing the dimension of 
the data. To further prove the superiority of the method, 
the experiments, processing synthetic seismic records with 
SNR = 2.5583 dB, − 3.7059 dB, − 6.1335 dB, − 8.2854 dB, 
− 10.4649 dB and − 13.7081 dB, respectively, are repeated 
200 times to calculate the accuracy of clustering. The results 
are shown as shown in Table 2. The accuracy of clustering 
is defined as follows:

(12)� =
m

n
× 100%

where n is the point number of synthetic desert seismic 
record, m is the number of points accurately clustered. 
The clustering accuracy of the two detection methods and 
K-means methods decreases with the reduction in SNR. The 
accuracy rate of using the unsupervised PCA to detect is 
greatly influenced by the SNR. The accuracy rate can reach 
96.19% when the SNR is high. When the SNR is low, the 
accuracy rate will also be greatly reduced. On the contrary, 
the accuracy rate of using the supervised LDA to detect is 
less affected. Although the accuracy rate of LDA is not very 
different with PCA at the high SNR, the accuracy rate of 
LDA is far greater than PCA at low SNR. These all proved 
that LDA detection method has higher noise tolerance and 
better accuracy. The accuracy of directly clustering with-
out detection method is lower than that of using detection 

Fig. 5  Clustering result of 
single-trace processing. a Clean 
synthetic record, synthetic noisy 
records, K-means clustering 
results, signal detection results 
and filtering results of 38th 
trace after signal detection using 
LDA, respectively. b Clean 
synthetic record, synthetic noisy 
records, K-means clustering 
results, signal detection results 
and filtering results of 38th 
trace after signal detection using 
PCA, respectively
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method. It is difficult to achieve the purpose of effective 
signal detection. Therefore, in the face of the characteristics 
of low SNR of the desert seismic records, it is reasonable 

and effective to choose the LDA to detect the seismic events 
and then use the filter to denoise. At the same time, in the 
case of different input SNR, we quantitatively analyze the 
output SNR of several selected methods. The result is shown 

Fig. 6  Amplitude comparison of signals of 38th trace. a Proposed method results. b Non-local mean filter results. c Non-local mean filter results 
after PCA detection. d f–x deconvolution results. e Curvelet thresholding results

Table 2  Calculation result of 
the clustering accuracy based 
on LDA, PCA and K-means in 
different SNR

Methods SNR (dB)

2.5583 − 3.7059 − 6.1335 − 8.2854 − 10.4649 − 13.7081

LDA (%) 97.34 90.51 90.10 89.25 88.29 84.84
PCA (%) 96.19 89.13 85.15 80.23 77.28 73.57
K-means (%) 90.35 79.34 76.93 73.44 70.41 68.81

Fig. 7  Performance comparison of selected method for various input 
SNR Fig. 8  MSE comparison of selected method for various input SNR
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in Fig. 7. According to Fig. 7, we can see that the denoising 
framework proposed in this paper is the best to improve the 
SNR. However, when the detection method in this denoising 
framework is replaced by PCA, the improvement effect of 
the denoising framework on the output SNR will be reduced. 
And the output SNR is also influenced by the input SNR 
more seriously than other methods. Besides, we analyze 
the mean square error (MSE) of different denoising meth-
ods, and the results are shown in Fig. 8. MSE is defined as 
follows:

where s(i, t) is the clean synthetic desert seismic signal, 
x�(i, t) is the denoisy signal, i = 1⋯N  is data point and 
t = 1⋯M is trace number. It can be seen that the MSE of 
the method proposed in this paper is the smallest, which is 
most similar to the clean synthetic desert seismic signal. 
From this point of view, we know that the denoising effect 
introduced in this paper is also optimal.

In general, the framework introduced in this paper is 
very effective in random noise reduction. It is also reason-
able to select LDA for effective signal detection.

Real desert seismic record

The real desert seismic record with a total of 101 traces is 
used to analyze the practical application ability of this frame-
work, as shown in Fig. 9a. Figure 9b describes the result of 
using the random noise reduction framework introduced in 
the paper. It can be obtained that the resolution and the con-
tinuity of the seismic events are significantly improved. The 
parts of the effective signal become clearer. The areas where 
the denoising effect has been significantly improved have 
been marked with red boxes. Figure 9c shows the result of 
using non-local mean filter to denoise. It can be seen that the 
noise is reduced slightly. The denoising effect is not obvious. 
The resolution of the seismic events is not improved. Their 
continuity has not been obviously ameliorated. Figure 9d 
illustrates the result that first using the PCA method to detect 
the effective signal and then using the non-local mean fil-
ter to denoise. The resolution and continuity of the seismic 
events have not been improved. f–x deconvolution achieves 
acceptable results (Fig. 9e), but this result is inferior to that 

(13)MSE =

∑
i

∑
t

�
s(i, t) − x�(i, t)

�2

N ×M

of Fig. 9b in terms of continuity and clarity of the seismic 
events. The result of curvelet thresholding is also not ideal, 
as shown Fig. 9f. Compared with the denoising effect of all 
the areas marked by the red boxes in Fig. 9, the method pre-
sented in this paper can show better denoising performance. 
Meanwhile, we also compare the difference before and after 
denoising by using selected methods (Fig. 10). From the 
removed noise, we can see that the denoising framework can 
remove the noise thoroughly. In Fig. 10a, there is almost no 
residual effective signal. In removed noise of other methods, 
not only the random noise reduction is not complete, but also 
the effective signal remains (Fig. 10b–e).

In summary, this method is highly advantageous com-
pared with the non-local mean filter and curvelet threshold-
ing. It is also better than f–x deconvolution which is the 
most traditional method of seismic signal denoising. The 
supervised LDA detection method is better than the unsu-
pervised PCA detection method. It also shows the advantage 
of supervised LDA in dimension reduction.

Conclusions

In this paper, we have used LDA effective signal detection 
method to form a framework to reduce random noise of 
desert seismic record. By learning the two kinds of data 
in the training set and reducing dimension, the low-dimen-
sional signal data and noise data can be divided accurately 
in low SNR scenarios and the effective signal data can be 
extracted accurately. When the same projection direction is 
applied to the new seismic data, the signal is also divided 
into two kinds of effective signal and noise. The effective 
signal is extracted better. Then, the filter is used to denoise, 
so that the denoising effect is obviously improved. We test 
the capacity of this framework on both synthetic and real 
desert seismic record. Compared with conventional meth-
ods, such as using non-local mean filter directly, f–x decon-
volution and curvelet thresholding, this method can achieve 
better results. When the LDA detection way is replaced by 
PCA, the results become worse. In conclusion, the desert 
seismic record noise reduction method based on LDA effec-
tive signal detection can accurately detect the effective sig-
nal and finally obtain good denoising effect. Using machine 
learning to process seismic signals is a new idea. In future 
work, we will try to find a classification algorithm to reduce 
the desert seismic random noise, rather than relying on fil-
ters. Of course, we can also find new features in the trans-
form domain to classify seismic data and ultimately achieve 
noise removal.

Fig. 9  Processing results of real desert seismic record. a Real desert 
seismic records. b Proposed method results. c Non-local mean fil-
ter results. d Non-local mean filter results after PCA detection. e f–x 
deconvolution results. f Curvelet thresholding results

◂



120 Acta Geophysica (2019) 67:109–121

1 3



121Acta Geophysica (2019) 67:109–121 

1 3

Acknowledgements This work is supported by the National Natural 
Science Foundation of China (Grants 41730422 and 41774117).

References

Anderson TW (1963) Asymptotic theory for principal component 
analysis. Ann Math Stat 34(1):122–148

Bandos TV, Bruzzone L, Camps-Valls G (2009) Classification of 
hyperspectral images with regularized linear discriminant analy-
sis. IEEE Trans Geosci Remote Sens 47(3):862–873

Bednar JB (1983) Applications of median filtering to deconvolution, 
pulse estimation, and statistical editing of seismic data. Geophys-
ics 48(12):1598–1610

Bonar D, Sacchi M (2012) Denoising seismic data using the nonlocal 
means algorithm. Geophysics 77(1):5

Canales LL (1984) Random noise reduction. Seg Tech Program Expand 
Abstr 3(1):329

Fisher RA (1936) The use of multiple measurements in taxonomic 
problems. Ann Hum Genet 7(2):179–188

Fukunaga K (1990) Introduction to statistical pattern classification. 
Academic Press, London

Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means clustering 
algorithm. J R Stat Soc 28(1):100–108

Li GH, Li Y (2016) Random noise of seismic exploration in desert 
modeling and its applying in noise attenuation. Chin J Geophys 
59:682–692

Li G, Li Y, Yang B (2017) Seismic exploration random noise on land: 
modeling and application to noise suppression. IEEE Trans Geo-
sci Remote Sens 55(8):4668–4681

Meng Y, Li Y, Zhang C, Zhao H (2017) A time picking method based 
on spectral multimanifold clustering in microseismic data. IEEE 
Geosci Remote Sens Lett 14(8):1273–1277

Neelamani R, Baumstein AI, Gillard DG, Hadidi MT, Soroka WL 
(2008) Coherent and random noise attenuation using the curvelet 
transform. Lead Edge 27(2):240–248

Shang S, Han LG, Lv QT, Tan CQ (2013) Seismic random noise sup-
pression using an adaptive nonlocal means algorithm. Appl Geo-
phys 10(1):33–40

Stewart RR, Schieck DG (1989) 3-d f-k filtering. Seg Tech Program 
Expand Abstr 8(1):1123

Tipping ME, Bishop CM (2014) Mixtures of probabilistic principal 
component analyzers. Neural Comput 11(2):443–482

Yang J, Frangi AF, Yang JY, Zhang D, Jin Z (2005) Kpca plus lda: 
a complete kernel fisher discriminant framework for feature 
extraction and recognition. IEEE Trans Pattern Anal Mach Intell 
27(2):230–244

Ye J, Janardan R, Li Q, Park H (2006) Feature reduction via general-
ized uncorrelated linear discriminant analysis. IEEE Trans Knowl 
Data Eng 18(10):1312–1322

Yu H, Yang J (2001) A direct lda algorithm for high-dimensional 
data—with application to face recognition. Pattern Recognit 
34(10):2067–2070

Zhong T, Li Y, Wu N, Nie P, Yang B (2015a) A study on the station-
arity and Gaussianity of the background noise in land-seismic 
prospecting. Geophysics 80(4):V67–V82

Zhong T, Yue L, Ning W, Nie P, Yang B (2015b) Statistical properties 
of the random noise in seismic data. J Appl Geophys 118:84–91

Fig. 10  Residual comparison of real desert seismic record before 
and after denoising. a Removed noise using proposed method. b 
Removed noise using non-local mean filter. c Removed noise using 
non-local mean filter after PCA detection. d Removed noise using f–x 
deconvolution. e Removed noise using curvelet thresholding

◂


	Desert seismic random noise reduction based on LDA effective signal detection
	Abstract
	Introduction
	Random noise reduction framework
	Linear discriminant analysis
	Training set
	Desert seismic random noise reduction

	Experiments and results
	Synthetic desert seismic record
	Real desert seismic record

	Conclusions
	Acknowledgements 
	References




