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Abstract
The widely scattered pattern of meteorological stations in large watersheds and remote locations, along with a need to esti-
mate meteorological data for point sites or areas where little or no data have been recorded, has encouraged the development 
and implementation of spatial interpolation techniques. The various interpolation techniques featured in GIS software allow 
for the extraction of this new information from spatially distinct point data. Since no one interpolation method can be accurate 
in all regions, each method must be evaluated prior to each geographically distinct application. Many methods have been 
used for interpolating minimum temperature ( T

min
 ), maximum temperature ( T

max
 ) and precipitation data; however, only a few 

methods have been used in the Zayandeh-Rud River basin, Iran, and no comparison of methods has ever been carried out in 
the area. The accuracies of six spatial interpolation methods [Inverse Distance Weighting, Natural Neighbor (NN), Regular-
ized Spline, Tension Spline, Ordinary Kriging, Universal Kriging] were compared in this study simultaneously, and the best 
method for mapping monthly precipitation and temperature extremes was determined in a large semi-arid watershed with 
high temperature and rainfall variation. A cross-validation technique and long-term (1970–2014) average monthly T

min
 , T

max
 

and precipitation data from meteorological stations within the basin were used to identify the best interpolation method for 
each variable dataset. For T

min
 , Kriging (Gaussian) proved to be the most accurate interpolation method (MAE = 1.827 °C), 

whereas, for T
max

 and precipitation the NN method performed best (MAE = 1.178 °C and 0.5241 mm, respectively). Accord-
ingly, these variable-optimized interpolation methods were used to define spatial patterns of newly generated climatic maps.
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Introduction

It is increasingly important for climatologists to provide bet-
ter and more accurate information regarding climatic condi-
tions at a given place and time. This may be problematic in 
watersheds located in semi-arid to arid areas where complex 
topography and highly spatially differentiated climates make 

it difficult to estimate small-scale precipitation and tem-
perature patterns. In addition, such watersheds often have 
few meteorological monitoring sites and are only at point 
locations (e.g., climatological or synoptic weather stations) 
(Skirvin et al. 2003). To address this problem, interpolation 
techniques are used to produce meteorological data estimates 
for areas lacking monitoring infrastructure and instruments. 
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Many interpolation techniques have been tested for spatial 
interpolation of daily meteorological data (e.g., Dodson and 
Marks 1997; Thornton et al. 1997; Bolstad et al. 1998; Cou-
rault and Monestiez 1999; Shen et al. 2001; Xia et al. 2001; 
Jarvis and Stuart, 2001; Hasenauer et al. 2003; Garen and 
Marks 2005).

Choosing among the vast range of interpolation tech-
niques to use in weather data estimation is a complex and 
sensitive process. The software, Geographic Information 
System (ArcGIS), is useful in this case as it allows users 
to compare the different interpolation techniques, includ-
ing both deterministic [Inverse Distance Weighting (IDW), 
Spline, Natural Neighbor (NN), Local Polynomial (LP), 
Global Polynomial (GP), Radius Basis Function (RBF)] and 
geostatistical [Kriging and Co-Kriging (CK)] (Xiao et al. 
2016). Deterministic techniques are directly based on the 
surrounding data points. Geostatistical theory as applied to 
interpolation is based on a stochastic model, which allows 
for optimal estimations at any location in a selected area 
(Wamwling 2003).

The applicability and accuracy of deterministic and 
geostatistical interpolation methods have been the focus of 
numerous studies. Mutua and Kuria (2012) evaluated krig-
ing, CK, GP, and IDW methods for precipitation interpo-
lation based on root mean square error (RMSE) values in 
Kenya’s Nyando River basin and concluded that the Krig-
ing and CK methods to be the most accurate. Delbari et al. 
(2013) applied different univariate [IDW and Ordinary Krig-
ing (OK)] and multivariate [linear regression, Ordinary Co-
Kriging (O-CK), Simple Kriging (SK) with varying local 
mean and Kriging with an External Drift (KED)] interpola-
tion methods to map monthly and annual rainfall in northeast 
Iran. Results showed that OK provided the most accurate 
estimates. De Amorim et al. (2016) studied spatial interpo-
lation methods involving IDW, OK, Multivariate Regres-
sion with interpolation of residuals by IDW (MRegIDW) 
and Multivariate Regression with interpolation of residuals 
by OK (MRegOK) for the estimation of precipitation dis-
tribution in Distrito Federal, Brazil. Their research showed 
MRegOK had the lowest errors and highest correlation 
and Nash–Sutcliffe efficiency criteria. Fadavi et al. (2016) 
investigated several interpolation methods, including IDW, 
Kriging, Co-K, Kriging-Regression (K-R), multiple regres-
sion and Spline in the regionalization of daily Tmin data from 
30 meteorological stations in 1992 and 54 meteorological 
stations in 2007 in Isfahan, Iran. They found that multiple 
regression and K-R were the most accurate methods. Fadavi 
and Bazarafshan (2016) also compared regional estimation 
methods for daily Tmax including IDW, Kriging, Co-K, K-R, 
multiple regression and Spline in Isfahan. They found that 
multiple regression, OK and K-R had better performances 
than other methods. The potential of deterministic and 
geostatistical rainfall interpolation was examined under 

high rainfall variability and dry spells in Kenya’s Central 
Highlands by Kisaka et al. (2016). The kriging interpola-
tion method emerged as the most appropriate geostatisti-
cal interpolation technique and was found to be suitable for 
spatial rainfall map generation in the study region. Das et al. 
(2017) concluded that the IDW method was the best spatial 
interpolation method in West Bengal, India. Xu et al. (2018) 
used P-BSHADE for temperature spatial interpolation based 
on sparse historical stations in China. Results were com-
pared with kriging, IDW and combined Spline with Kriging 
(TPS-KRG), and it was found that the P-BSHADE method 
had the smallest error.

Interpolation techniques are algorithms used to solve the 
problem of missing geo-based data. Although these tech-
niques encounter some limitations, including estimating 
errors, they are still useful. These techniques are used to 
predict unrecorded climatic data at each station in a catch-
ment (e.g., semi-arid catchments, etc.) containing sufficient 
weather stations and climatic variable records such as pre-
cipitation and temperature. These predicted data are then 
used to study water resources management in the catchment 
area through hydrologic models.

The uncertainties associated with interpolation techniques 
are particularly important in arid and semi-arid watersheds 
where unstable weather is affected by seasonal variation, a 
large difference between maximum and minimum tempera-
tures and a vast diversity of topography. Generally, finding 
techniques that have the best conformity to a region’s spe-
cific conditions, and which can be accurately used in com-
puting interpolated data to match with regional character-
istics, is difficult. In addition, a method that performs well 
at one site may perform poorly at another and therefore its 
effectiveness needs to be examined on a site-by-site basis.

Due to the occurrence of multiple droughts and a frequent 
lack of sufficient meteorological data in semi-arid areas, a 
study was deemed necessary to determine which interpola-
tion methods could be used for water resources manage-
ment. As droughts, common to semi-arid areas, result in 
large changes in temperature and precipitation patterns in 
specific locations, previous studies on mapping would not 
necessarily be appropriate.

Although some methods such as IDW, NN, Regularized 
Spline (RS), Tension Spline (TS), OK and Universal Krig-
ing (UK) have been individually used around the world, a 
comparison of these methods has never been performed in 
semi-arid areas simultaneously to determine the best inter-
polation method for mapping temperature and precipitation 
(Karamouz et al. 2007; Zareian et al. 2015; Eslamian et al. 
2017).

The accuracy of climatic maps of mean annual minimum 
temperature ( Tmin ), maximum temperature ( Tmax ), and pre-
cipitation prepared using six deterministic and geostatis-
tic spatial interpolation methods was compared. The best 
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method was then selected for each climatic variable in the 
Zayandeh-Rud River basin, Iran, a large semi-arid area with 
high variations in temperature and rainfall. The selection 
of a site-appropriate method and its relative accuracy were 
determined by statistical indices (e.g., Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), etc.) derived 
through a cross-validation technique.

Study area

The study was carried out in the 26,917 km2 Zayandeh-
Rud River basin located in semi-arid central Iran (lat. 
31°15′–33°45′, long 50°02′–53° 20′; Fig. 1). The Zayandeh-
Rud River is about 350 km long and is the most important 
river in the basin. It flows from the Zagros Mountains in the 

east of Chaharmahal province (3974 m A.M.S.L.) toward the 
Gav-Khouni Marsh in the east of Isfahan province (1470 m 
A.M.S.L.) (Zareian et al. 2015).

Basin precipitation varies from about 50 mm year−1 in 
the eastern plains to about 1500 mm year−1 in the western 
mountainous region and has an average of 140 mm year−1. 
The average monthly temperature for the basin ranges 
from 3 °C (in January) to 30 °C (in July) and the average 
annual temperature is 14.5 °C. The Zayandeh-Rud River 
had an average flow of about 850 × 106 m3 year−1 between 
1970 and 2009 (Madani and Marino 2009). Further char-
acteristics of this region and the distribution of selected 
weather stations within the basin are shown in Table 1 and 
Fig. 1, respectively.

Fig. 1   The location of the Zayandeh-Rud River basin and distribution of selected weather stations
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Methods

As the Zayandeh-Rud basin has a semi-arid climate and is 
a complicated and strategic region from the point of view 
of its water resources, continuous monitoring of those 
resources is key to sustainable water management. Thus, 
data obtained by the regionalized meteorological techniques 
could be very useful.

Data and meteorological stations

In the present study, average monthly precipitation and 
average monthly minimum and maximum temperature data 
(1970–2014) were recorded by 18 and 27 meteorological 
stations, respectively. The accuracy of several interpolation 
methods was compared via a cross-validation technique.

Spatial interpolation techniques

Within the ArcGIS environment, spatial distribution maps 
allowing for the analysis of spatial variation and zoning in 

precipitation, Tmin , and Tmax values were created through 
geostatistical (kriging) and deterministic (IDW, NN, and 
Spline) methods.

Inverse Distance Weighting (IDW) method

The IDW technique assumes the value at an unsampled 
point can be approximated by a weighted average of values 
at measured points within a local neighborhood surround-
ing the unsampled location. The local neighborhood radius 
can be defined by the range of a fixed number of points or a 
fixed distance surrounding the unsampled point. The value 
of any point can be calculated as shown by Burrough and 
McDonnell (1998).

This method places a greater weight on points closer (vs. 
farther) to unsampled points and accordingly these have 
a greater effect on interpolation calculations. The weight 
parameter controls the effect of measured point values on the 
interpolated value based on their distance from the unsam-
pled point (Erdoğan 2009).

Table 1   Characteristics of the 
selected weather stations

No. Station name Longitude Latitude Elevation Station type

1 Badijan 50° 19′ 33° 04′ 2300 Climatology
2 Chadegan 50° 37′ 32° 46′ 2100 Climatology
3 Chelgerd 50° 07′ 32° 27′ 2372 Rain gauge
4 Damaneh-Faridan 50° 28′ 33° 01 2300 Climatology
5 Esfahan 51° 41′ 32° 38′ 1550 Synoptic
6 Eskandari 50° 25′ 32° 49′ 2141 Rain gauge
7 Fereydoon-Shahr 50° 06′ 32° 55′ 2490 Rain gauge
8 Fin 51° 22′ 33° 56′ 1050 Rain gauge
9 Ghalehshahrokh 50° 27′ 32° 39′ 2081 Evaporation gauge
10 Hamgin 51° 27′ 31° 55′ 2150 Climatology
11 Jafarabad 51° 37′ 32° 49′ 1582 Rain gauge
12 Khonsar 50° 19′ 33° 13′ 2300 Climatology
13 Koohpayeh 52° 26′ 32° 45′ 1876 Evaporation gauge
14 Maghsoudbeik 50° 00′ 31° 48′ 1976 Evaporation gauge
15 Mahyar 51° 48′ 32° 16′ 1660 Evaporation gauge
16 Morchekhort 51° 28′ 33° 04′ 1669 Evaporation gauge
17 Neyestanak 52° 48′ 32° 58′ 1910 Evaporation gauge
18 Polkaleh 51° 13′ 32° 22′ 1758 Rain gauge
19 Polzamankhan 50° 24′ 32° 30′ 1857 Evaporation gauge
20 Sadezayandroud 50° 44′ 32° 43′ 2130 Evaporation gauge
21 Shahrekord 50° 51′ 32° 16′ 2049 Synoptic
22 Singerd 50° 25′ 32° 46′ 2100 Climatology
23 Tiran 51° 09′ 32° 42′ 1840 Evaporation gauge
24 Varzaneh 52° 37′ 32° 24′ 1250 Synoptic
25 Vazvan 51° 11′ 33° 25′ 1981 Evaporation gauge
26 Zefrefelavarjan 51° 30′ 32° 30′ 1622 Evaporation gauge
27 Ziyar 51° 56′ 32° 30′ 1530 Rain gauge
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Natural neighbor (NN) method

The NN method is the most general and robust method of 
interpolation. Based on a local weighted average approach, 
the NN method uses a Voronoi diagram to determine the rel-
ative contribution of measured points. Weights are defined 
as a ratio of the area “stolen” from unsampled points in the 
Voronoi and Delaunay diagrams by adding an interpolated 
point divided by the area assigned to the new point. The 
general relationship of interpolation by the natural neighbor-
hood method is defined by Sibson (1981) and Watson and 
Phillip (1987).

Kriging method

The existence of a spatial structure, where measured points 
close to each other are more similar than those that are 
far apart (spatial autocorrelation), is a prerequisite for the 
application of geostatistics. These use semi-variograms as 
a descriptive tool to specify the spatial pattern of a feature 
(Goovaerts 1999). The semi-variance is a value of spatial 
dependence between measured points calculated on the basis 
of the distance between them (Tatalovich et al. 2006). The 
semi-variogram model that best fits the data is used to gener-
ate optimum interpolation weights (Burrough and McDon-
nell 2000a). Therefore, kriging is a geostatistical interpola-
tion method that considers the spatial correlation between 
measured points to predict attribute values at unsampled 
locations using information related to other attributes (Goo-
vaerts 1999).

After analysis of the experimental semi-variogram, 
a compatible model that is fitted by a parametric smooth 
model implying stationarity, isotropy and the best-fitting 
parametric model, is used to build up the auto-covariance 
matrix of the regression residuals (in UK). In this case, OK 
and SK models can be defined as described by Attorre et al. 
(2007).

When the measured points are modeled as the sum of 
constant trend and intrinsic stationary error, a more diverse 
batch of models is obtained. In the UK model (Ver Hoef 
1993), such a trend can be modeled as a linear function in 
explanatory variables (i.e., climatic, geographical and topo-
graphical covariates).

While kriging is well known to be the best linear unbiased 
(spatial) predictor (BLUP), its applications can be limited 
by the existence of problems of nonstationarity in real-world 
data-sets. Accordingly, some authors (e.g., Agnew and 
Palutikof 2000; Ninyerola et al. 2000; Antonić et al. 2001), 
instead of using the UK with a trend function modeled via a 
set of covariates, have proposed a simpler approach based on 
RK, i.e., kriging after de-trending, such that the trend func-
tion and estimated residuals are modeled separately.

Ordinary Kriging (OK) and Universal Kriging (UK) methods

OK and UK are two common univariate kriging methods 
and two typically general linear regression models. The UK 
method assumes that spatial variation in measured point 
values includes a drift or structural component that can be 
arrived at through the variation of locations, allowing the 
locational information to then be incorporated into the krig-
ing process. Unlike the OK method, where the weights of 
data points are determined by a stationary random function 
model, the weights under the UK method are taken from 
a nonstationary random function model (Burrough and 
McDonnell 2000). The OK method requires a constant but 
unknown mean, whereas the UK method assumes a spatially 
varying mean, which has proven helpful when it is necessary 
to account for trends observed in exploratory data analysis 
(Krivoruchko and Gotway 2004).

Spline method

Spline interpolation consists of the approximation of a 
function by means of a series of polynomials over adjacent 
intervals, with continuous derivatives at the end point of the 
intervals. The method is based on two basic assumptions: 
(i) The interpolating function should pass through the data 
points; (ii) it should be as smooth as possible.

Two types of spline techniques (TS and RS) were tested 
in the present study. The TS method defines a function that 
passes through the input data points concurrently and mini-
mizes the curving energy function (Franke 1982; Mitas and 
Mitasova 1988).

Among the types of spline that can be used (see Merwade 
et al. 2006), the RS method improves the analytical proper-
ties of splines by adding and applying third-order and higher 
order derivatives.

Sensitivity analysis

Sensitivity analysis was used to determine how independ-
ent parameter values would affect particular dependent 
parameters under a given set of assumptions. Their usage 
depended on one or more input parameters within specific 
boundaries, such as the search neighborhood, and power and 
weight of smoothness that changes the prediction of a varia-
ble obtained by interpolation methods. Sensitive parameters 
were determined separately for each interpolation method in 
order to predict variables accurately.
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Evaluation and comparison criteria

Cross‑validation

Cross-validation is a common method for validating the 
accuracy of interpolation techniques (Voltz and Webster 
1990). In this technique, information regarding one point is 
removed temporarily, the removed information is estimated 
from the remaining data points, and the difference between 
the actual and estimated values is calculated. This operation 
is repeated for the remainder of the points (Davis 1987).

Comparative analysis of interpolation techniques

Six different interpolation methods were validated inde-
pendently for monthly Tmin , Tmax , and precipitation using 
cross-validation. Validation was performed for each month 
from 1970 to 2014, and the accuracy of the interpolation 
method was evaluated on the basis of Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), Mean Bias 
Error (MBE) and the coefficient of determination (R2).
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interpolated values of the variable studied, and xmeas is the 
average of measured values of the variable studied.

Results and discussion

Sensitivity analysis

The optimum values of parameters for all spatial interpola-
tion methods were obtained by implementing sensitivity 
analysis. These parameters were selected using the RMSE 
index, except for the NN method, which does not require 
user-specified parameters (e.g., search neighborhood, 
power (P), and weight of smoothness) to participate in 
interpolations (Figs. 2, 3 and 4). The search neighborhood 
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Fig. 2   Variations in RMSE for 
Tmin with a number of points 
(N) for IDW, b power (P) for 
IDW, c number of points for 
RS, d weight of third-order 
derivatives for RS, e number of 
points (n) for TS, f weight of 
first-order derivatives for TS, 
g number of points for OK, h 
number of points for UK
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Fig. 3   Variations in RMSE for 
Tmax with a number of points 
(N) for IDW, b power (P) for 
IDW, c number of points for 
RS, d weight of third-order 
derivatives for RS, e number of 
points (N) for TS, f weight of 
first-order derivatives for TS, 
g number of points for OK, h 
number of points for UK

Fig. 4   Variations in RMSE for 
precipitation with a number of 
points (N) for IDW, b power 
(P) for IDW, c number of points 
for RS, d weight of third-order 
derivatives for RS, e number of 
points (N) for TS, f weight of 
first-order derivatives for TS, 
g number of points for OK, h 
number of points for UK
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was determined by the number of points (N) for all meth-
ods. The selection of the optimal parameter in interpola-
tion by each of the methods, except for NN, can have a 
significant effect on the estimation error. It is important to 
note that these parameters are valid only for the interpola-
tion of data points in a specific area and may be different 
for data points from other regions. Sensitivity analysis 
results are presented for the Tmin , Tmax , and precipitation 
variables in Table 2.

For Tmin , the RMSE decreased as the value of N 
increased for all methods except OK (Fig. 2). For the IDW 
method, as P increased, the error rate first decreased and 
then increased significantly. For the RS and TS methods, 
the error rate increased and then decreased as the value of 
the weight parameter increased.

For Tmax , the two methods of the spline family showed 
that increasing N decreased the error rate; otherwise an 
increase in N led to an increase in the error rate (Fig. 3). For 
the IDW method, increasing the value of P led to an initial 
decline in estimation error, followed by an increase. Increas-
ing the weight parameter under the RS and TS methods led 
to a respective increase and decrease in the error rate.

For precipitation, increasing N reduced the estimation 
error rate for the TS method, while for the OK method the 
same increase in N first decreased and then increased the 
estimation error (Fig. 4). Increasing the value of P when 
using the IDW method led to a slow decrease in the estima-
tion error. Moreover, for the spline model family, an increase 
in the weight parameter led to an increase in the error rate.

Accuracy of interpolations

The interpolators applied for Tmin , Tmax and precipitation 
were compared by cross-validation based on R2, MAE, 

MBE and RMSE. The errors for these techniques were 
estimated by applying an optimal power function. The 
ranking of all interpolation techniques is shown for Tmin , 
Tmax , and precipitation in Tables 3, 4 and 5, respectively.

Table 2   Accuracy of spatial interpolation methods with optimal 
interpolation parameters for T

min
 , T

max
 , and precipitation as assessed 

by RMSE

N = number of points, P = power, σ = weight factor of tension spline, 
τ = weight factor of regularized spline. The natural neighbor (NN) 
method does not include user-defined parameters

Interpolation method RMSE

Name Optimal parameters Minimum Maximum Average SD

Variable interpolated
T
min

 (°C)
 IDW N = 12, P = 2 2.3707 2.8421 2.4818 0.1802
 NN – – – – –
 RS N = 12, τ = 0.1 2.4716 2.5151 2.4883 0.0186
 TS N = 12, σ = 0.5 2.3275 2.3354 2.3304 0.0022
 OK N = 5 2.2607 2.3726 2.3502 0.0501
 UK N = 12 2.2079 2.3607 2.2385 0.0683
T
max

 (°C)
 IDW N = 5, P = 2 1.5661 1.8309 1.6437 0.1020
 NN – – – – –
 RS N = 12, τ = 0.1 1.9264 1.9995 1.9497 0.0299
 TS N = 12, σ = 0.5 1.7139 1.7419 1.7207 0.0078
 OK N = 5 1.5593 1.5814 1.5769 0.0099
 UK N = 5 1.6562 1.8497 1.8110 0.0866

Precipitation (mm)
 IDW N = 5, P = 4 0.9252 0.9965 0.9649 0.0223
 NN – – – – –
 RS N = 5, τ = 0.1 1.0667 1.2040 1.1315 0.0447
 TS N = 20, σ = 0.1 0.8905 0.9106 0.9039 0.0092
 OK N = 12 0.8952 0.9012 0.8994 0.0027
 UK N = 5 0.8616 0.9553 0.9212 0.0471

Table 3   Evaluation of 
interpolation method accuracy 
using cross-validation for 
monthly mean T

min
 from 1970 

to 2014

N = number of points, P = power, σ = weight factor of tension spline, τ = weight factor of regularized spline. 
The natural neighbor (NN) method does not include user-defined parameters

Method Parameter Overall rank R2 # MAE # MBE # RMSE #

IDW N = 12, P = 2 11 0.934 2 1.942 10 1.558 11 2.370 10
NN – 10 0.932 3 1.902 9 1.477 10 2.356 9
RS N = 12, τ = 0.1 8 0.897 11 1.978 11 1.101 1 2.471 11
TS N = 12, σ = 0.5 4 0.917 10 1.870 8 1.172 4 2.327 8
OK (Spherical) N = 5 7 0.929 8 1.833 6 1.313 8 2.260 4
OK (Circular) N = 5 6 0.930 7 1.832 5 1.302 7 2.260 5
OK (Exponential) N = 5 3 0.930 5 1.805 1 1.234 5 2.232 2
OK (Gaussian) N = 5 1 0.929 9 1.827 3 1.113 2 2.254 3
OK (Linear) N = 5 5 0.930 6 1.829 4 1.268 6 2.264 6
UK (Linear Drift) N = 12 2 0.941 1 1.821 2 1.168 3 2.207 1
UK (Quadratic Drift) N = 12 9 0.931 4 1.861 7 1.358 9 2.292 7
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Table 4   Evaluation of 
interpolation method accuracy 
using cross-validation for 
monthly mean T

max
 from 1970 

to 2014

N = number of points, P = power, σ = weight factor of tension spline, τ = weight factor of regularized spline. 
The natural neighbor (NN) method does not include user-defined parameters

Method Parameter Overall rank R2 # MAE # MBE # RMSE #

IDW N = 5, P = 2 9 0.970 6 1.289 8 0.625 9 1.955 11
NN – 1 0.972 1 1.178 1 0.431 1 1.521 1
RS N = 12, τ = 0.1 11 0.955 11 1.478 11 0.632 10 1.926 10
TS N = 12, σ = 0.5 8 0.964 10 1.342 10 0.520 4 1.714 9
OK (Spherical) N = 5 7 0.971 5 1.240 5 0.543 7 1.559 4
OK (Circular) N = 5 5 0.971 4 1.240 4 0.540 6 1.559 5
OK (Exponential) N = 5 6 0.971 3 1.237 3 0.545 8 1.554 2
OK (Gaussian) N = 5 2 0.969 8 1.256 6 0.459 2 1.626 6
OK (Linear) N = 5 4 0.971 2 1.236 2 0.532 5 1.555 3
UK (Linear Drift) N = 5 3 0.968 9 1.286 7 0.477 3 1.656 7
UK (Quadratic Drift) N = 12 10 0.970 7 1.334 9 0.726 11 1.681 8

Table 5   Evaluation of 
interpolation method accuracy 
using cross-validation for 
monthly mean precipitation 
from 1970 to 2014

N = number of points, P = power, σ = weight factor of tension spline, τ = weight factor of regularized spline. 
The natural neighbor (NN) method does not include user-defined parameters

Method Parameter Overall rank R2 # MAE # MBE # RMSE #

IDW N = 5, P = 4 10 0.496 2 0.567 9 0.456 10 0.938 9
NN – 1 0.506 1 0.241 1 0.105 1 0.425 1
RS N = 5, τ = 0.1 11 0.360 11 0.647 11 0.456 11 1.067 11
TS N = 20, σ = 0.1 4 0.462 8 0.536 4 0.399 4 0.891 4
OK (Spherical) N = 12 8 0.483 6 0.548 7 0.424 7 0.898 8
OK (Circular) N = 12 6 0.485 4 0.548 6 0.423 6 0.897 6
OK (Exponential) N = 12 5 0.488 3 0.546 5 0.424 8 0.895 5
OK (Gaussian) N = 12 9 0.449 9 0.568 10 0.437 9 0.943 10
OK (Linear) N = 12 7 0.482 7 0.548 8 0.423 5 0.897 7
UK (Linear Drift) N = 5 3 0.484 5 0.520 3 0.381 3 0.862 3
UK (Quadratic Drift) N = 12 2 0.423 10 0.500 2 0.354 2 0.840 2

Fig. 5   Variation of monthly MAE for Tmin using different interpolation methods
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For monthly average Tmin data, the OK method imple-
menting a Gaussian semi-variogram (MAE = 1.827 °C) 
and the UK method with a Linear Drift semi-variogram 
(MAE = 1.821  °C), were the most accurate methods 
over 45  years (1970–2014) of data, achieving the 1st 
and 2nd ranks, respectively (Table  3). The interpola-
tion techniques that showed the weakest results were NN 
(MAE = 1.902 °C) and IDW (MAE = 1.942 °C), which 
ranked 10th and 11th among all methods. For the spline 
family of methods, tension type interpolation functions 
outperformed regularized functions. Daily differences 
between the maximum and minimum temperatures are 
strongly influenced by factors such as frequent changes in 

daily weather, rapid changes in surface temperature and 
the lack of air humidity, which are common in summer and 
winter compared to other seasons. Therefore, all interpola-
tion methods showed the highest estimation errors for Tmin 
in the summer and winter months and the lowest errors in 
the spring (Fig. 5).

In contrast to the monthly average Tmin data, the NN 
method (MAE = 1.178) was the most accurate interpola-
tion method for Tmax (Table 4; Fig. 6). In a manner simi-
lar to Tmin , the OK method with Gaussian semi-variogram 
(MAE = 1.256) and the UK method with Linear Drift 
semi-variogram (MAE = 1.286) were also among the more 
accurate methods. In general, kriging methods provided 

Fig. 6   Variation of monthly MAE for Tmax using different interpolation methods

Fig. 7   Variation of monthly MAE for precipitation using different interpolation methods
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acceptable results, except for UK with a Quadratic Drift 
semi-variogram, which, along with SR were among the 
weaker methods. All interpolation methods presented a 
higher estimation error in winter and lower errors in spring 
and autumn (Fig. 6).

The results of interpolations of mean monthly precipita-
tion showed that the IDW and RS methods were relatively 
weak compared to other interpolation techniques (Table 5). 
All three evaluation criteria ranked them 10th and 11th in 
accuracy. Among kriging interpolation techniques, OK with 
Exponential semi-variogram (MAE = 0.546) and UK with 
Linear with Quadratic Drift semi-variogram (MAE = 0.5) 
showed the greatest accuracy. Overall, the NN method with 
the least error value (MAE = 0.241) gave the best estimates 
among all methods followed by UK with Quadratic Drift 
(MAE = 0.5) and UK with Linear Drift semi-variogram 
(MAE = 0.52). It is evident that in all months of the year, 

the NN method had the lowest MAE among the methods 
(Fig. 7).

Most of the basin’s precipitation occurs during spring and 
autumn, from October to June. This is related to the seasonal 
variation in temperature and precipitation, a result of clouds 
generated in Europe and northern Africa, which bring heavy 
rains. On the other hand, in the summer, the basin receives 
little precipitation except for high elevation areas in the west 
where the mountains are located.

Accordingly, higher estimation errors occurred in the 
winter and lower errors in the spring and autumn, while 
in the summer months all interpolation methods studied 
showed very small estimation errors (Fig. 7).

Fig. 8   Optimal monthly mean zoning using climatic data (in January) in the study area: a Tmin, b Tmax and c precipitation
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Mapping of climatic variables

The spatial distribution patterns of optimally interpolated 
monthly Tmin , Tmax , and precipitation are shown for the 
month of January (Fig. 8). Plots for Tmin and Tmax (Fig. 8a, b) 
illustrated a temperature gradient from west to east with both 
variables lowest in the west and highest in the central and 
eastern portions of the study area. Precipitation increased 
gradually from the west and southwest to the eastern part of 
the basin (Fig. 8c). The results obtained in this study con-
firmed the results of past studies in this area such as Fadavi 
and Bazarafshan (2016) and Fadavi et al. (2016).

Conclusions

The present research was carried out to determine the most 
accurate spatial monthly patterns for three meteorologi-
cal variables ( Tmin , Tmax and precipitation) using six spa-
tial interpolation techniques including IDW, NN, RS, TS, 
OK and UK in the Zayandeh-Rud River basin of Iran using 
45 years of data (1970–2014). Among the different spatial 
interpolation methods, the IDW method was found to be 
the most sensitive to interpolation variables including Tmin , 
Tmax , and precipitation. Therefore, choosing correct values of 
parameters (N and P) is a critical step in the overall process 
of IDW interpolation.

The best method for spatial pattern analysis of the three 
climatic variables was identified by applying different error 
criteria. Among all methods studied, OK with Gaussian 
semi-variogram was identified as an appropriate technique 
for spatial analysis and interpolation of Tmin and NN was 
found to be the most accurate technique for both Tmax and 
precipitation.
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