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Abstract
This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra–

Parson coefficient (VDP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to

generate porosity fields through a linear interpolation technique based on Carman–Kozeny equation. The proposed method

of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling

randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting

schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displace-

ment shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of

numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this

work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO),

and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow

transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical

solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using

simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit

saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and

numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed

detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation

lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted

into visual artifact banding phenomenon unlike the proposed method and USRM. In all, the proposed permeability and

porosity fields generation coupled with the numerical simulator developed will aid in developing efficient mobility control

schemes to improve on poor volumetric sweep efficiency in porous media.
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Introduction

In reality, it is impossible to physically sample at every

infinitesimal point in space in a geological porous media

for reservoir fluid flow analyses. Hence, Monte Carlo

simulations in geostatistics and numerical reservoir simu-

lation are commonly used to create numerous numbers of

realizations over a grid mesh to predict future reservoir

fluid flow performance and uncertainty quantification.

However, Dubrule (1988) and Haldorsen and Damsleth

(1990) carried out a number of stochastic modeling on

discrete (Markov fields, two-point histograms, truncated

random functions, and Boolean schemes), continuous

(fractals, universal and indicator kriging, random Gaussian

fields) and hybrid approach of both techniques. Moreover,

the continuous type of stochastic models are generally

suitable for modeling the spatial distribution of petro-

physical properties with an assumption of more or less

stationarity (Haldorsen and Damsleth 1990). But, Gaussian

(Deutsch and Journel 1992) and continuous spectral

methods (Shinozuka and Jan 1972) are the most widely

used approximate algorithms for generating numerical

geological model architectures. However, TBM (Matheron

1973) as one of the oldest methods is also used for simu-

lating spatially correlated multidimensional random field

which is still rarely used in geostatistical and numerical

simulation applications (Emery and Lantuéjoul 2006). The

TBM and USRM (Sabelfeld 1991) was considered in this

study for immiscible fluid flow transport. Furthermore, the

characterization of heterogeneous petroleum reservoirs

using geostatistical tools and stochastic simulation methods

are often preferred to traditional interpolation techniques in

which hydrocarbon fluids are transported. With regards to

this assertion, Lake and Malik (1993) compared deter-

ministic and conditional simulation results and came to the

conclusion that, conditional simulation must be tailored to

specific geological environment to be in a reliable agree-

ment with deterministic simulation. All these techniques

permit accurate capture of internal heterogeneous fine-

scale details and quantification of uncertainties for reliable

reserve estimation (De Lucia et al. 2011).

Correlation length defines the spatial correlation that

exists between pore spaces in porous media which provide

details of correlated reservoir heterogeneity for quantita-

tive analyses (Bijeljic et al. 2013; Babaei and Joekar-Ni-

asar 2016). In addition, the importance of correlation

length for multiphase fluid flow simulation was demon-

strated by Kalia and Balakotaiah (2009) in their study.

Also, correlation length was incorporated into pore net-

work models to describe correlated reservoir heterogene-

ity impact on two-phase flows (Knackstedt et al. 2001;

Leng 2013; Babaei and Joekar-Niasar 2016). Araktingi

and Orr (1993) also reported that, permeability field dis-

tribution and correlation length have a significant effect

on the fingering pattern in porous media. Johnson (1956)

also pointed out that reservoir heterogeneity has a strong

negative impact on oil recovery. It is also important to

note that, most petroleum porous media used for reservoir

modeling lack heterogeneity, thereby preventing capturing

of real subsurface instabilities (Islam et al. 2010). Craig

(1971) noticed that the existence of fingering as a sub-

surface instability on different length scales in petroleum

reservoirs appears to be one of the unresolved challenges

in the petroleum industry. One enhanced oil recovery

(EOR) method of great potential in overcoming water

mobility is through polymer flooding (Daripa et al. 1988;

Delamaide 2014) which increases injected fluid viscosity

by preventing viscous fingering. Despite the reliability of

polymer flooding in improving sweep efficiency, its per-

formance still requires optimization for flow stability, but

not treated in this work.

Nevertheless, the generation of these stochastic porous

media realizations require high-resolution schemes, not to

misinterpret numerical dispersion as subsurface geological

features inherent in porous media. According to Zhang and

Al Kobaisi (2017), despite many years of intensive inves-

tigation into simultaneous flow of water and oil in petro-

leum reservoirs, yet, it still poses serious challenges for

reliable and accurate numerical reservoir simulation.

Meanwhile, thorough investigation of the weakness of

commonly used upstream mobility weighting schemes in

conventional black oil simulators oftentimes result into

substantial amount of spurious oscillations and unphysical

solutions (Taggart and Pinczewski 1985). Even, properly

constrained two-point upstream weighting scheme pro-

posed as an alternative method is not monotonicity-pre-

serving (Rubin and Blunt 1991) and such a limitation has

also motivated the present work. Furthermore, higher order

differencing schemes (central differencing scheme (CD),

quadratic upstream interpolation for convective kinematics

(QUICK), etc.) have been developed and implemented for

discretizing convective terms in multiphase fluid flow

simulation. But then, the implementation of boundary

conditions, over and undershoot in numerical solutions are

a source of concern for high-order schemes which led to

the development of second-order TVD schemes to obtain

oscillation-free solutions of higher order schemes (Ver-

steeg and Malalasekera 2007).The insight gathered from

these studies is that, the implementation of high-resolution

second-order schemes into fully implicit method (FIM)

conventional simulators to capture and characterize sub-

surface fluid flow dynamics and transport is a challenge in

reservoir modeling (Rubin and Blunt 1991; Marcu 2004).

In view of the above developments, the first objective of

this paper involves finite volume (FV) stochastic simulation
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using Dykstra–Parson coefficient and autocorrelation

lengths to generate 2Dplausible stochastic permeability field

values which were also used to generate porosity fields

through a linear interpolation technique based on Carman–

Kozeny equation. The proposed method was compared to

other well-knownmethods of generating permeability fields,

such as TBM and USRM which are scarcely used for fluid

flow simulation. The second objective of thiswork is to apply

some robust and powerful high-resolution schemes to

attenuate large wiggles in low order schemes to capture

accurately immiscible fluid flow subsurface details. In this

study, SUPERBEE flux limiter (Roe 1985), MUSCL

scheme (Van Leer 1979) and WENO scheme (Liu et al.

1994) were tested on a one-dimensional waterflood. Also, a

validation test with classical BL analytical solution (Buckley

and Leverett 1942) to detect overshoot and undershoot in

numerical solutions was conducted.

Third, a comparative analysis was carried out between

two-phase flow linearization schemes (simultaneous solu-

tion, SEQ and iterative IMPES) to find the most efficient

and stable scheme with regards to ill-conditioning of the

Jacobian matrix that may arise. However, Newton–Raph-

son method is the most commonly used algorithm for

solving coupled nonlinear system of equations (Mon-

teagudo and Firoozabadi 2007a, b). But, computational

cost and memory requirement become expensive when the

immiscible displacement problem is very large with

restrictions. Byer (2000) stated in his study that, precon-

dition approaches can be employed to simulate petroleum

reservoirs by increasing the convergence rate of the New-

ton-type techniques. Another technique to improve this

convergence rate is to apply regularization step under

additional constraints on the discretization parameters

(Radu et al. 2006), and automatic differentiation also speed

up the Newton method. The problem associated with the

Newton–Raphson method (NRM) is that, it is quadratic

with local convergence rate. This notwithstanding, NRM

also strongly depends on the initial estimate (List and Radu

2016) as well as computation of derivatives have motivated

this study to test other linearization schemes.

Therefore, the system of nonlinear time-dependent partial

differential equations were solved numerically (temporal

and spatial discretization) using FIM (unconditional stable,

large timestep size), iterative IMPES (conditionally stable,

less computational cost and memory requirement with

smaller timestep size) which is more stable than classical

IMPES (Chen 2007; Kou and Sun 2010), and sequential

solution method (MacDonald 1970) (solving pressure and

saturation implicitly but not simultaneously in two conser-

vative steps) were applied to solve the basic fluid flow

equations. It is important to mention that both iterative

IMPES and SEQ methods are easier to implement compu-

tationally (Pacheco et al. 2016). The significance of

correlation lengths on immiscible fluid flow transport in

correlated stochastic porous media were also explored in this

study. In summary, this study will serve as an indispensable

tool in understanding spatial heterogeneity and the formu-

lation of stabilized mobility control schemes to enhance

better volumetric sweep efficiency in porous media.

This paper is structured into the following five sections.

‘‘Methodology’’ in section describes the physical model

formulation, generation of permeability and porosity fields

with illustrative examples using the proposed method,

TBM and USRM techniques. The mathematical model and

high-resolution schemes for oil and water fluid flow

transport governing equations were formulated. ‘‘Computer

model development’’ in section talks about the computer

model development workflow and implementation strategy

for reservoir description. Then, ‘‘Numerical results and

discussion’’ in section dwells on numerical examples,

results and discussion. Finally, ‘‘Conclusions’’ in section

states key major conclusions drawn from the study.

Methodology

Physical model description

The 2D horizontal plane model consists of water injected at

the left boundary with the right boundary producing water

and oil (Fig. 1) similar to a direct line drive. In the reser-

voir physical model, the domain was initially saturated

with oil without water saturation. The injector and producer

horizontal wells were both perforated along the whole

width of the structured computational model for linear flow

pattern. The reservoir length is principal to flow direction

and the reservoir width direction is perpendicular to flow

direction. The side walls of the porous medium in Fig. 1

are impermeable to fluid flow. The rock and fluid properties

used are summarized in Table 1 for the numerical experi-

ments. The model consists of 100 9 100 9 1 cell volumes

with cell faces and cell centers discretized by finite volume

method (FVM) which is mass conservative.

Stochastic modeling techniques for porous
media architecture

The following procedures below were used to generate the

2D stochastic correlated permeability (dynamic property)

field realizations, whereas these permeability field values

were in turn used to generate 2D porosity field spatial

variability (volumetric property) through a linear interpo-

lation technique based on Carman–Kozeny equation. The

proposed method of permeability field images generated

were based on the idea of signal processing methodology to

create random Gaussian field models. In addition, the
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proposed method spelt out here is compared to widely

known TBM and USRM for analyzing permeability maps

and fluid flow simulations through them.

Methodology of the proposed permeability field

1. Rectangular grid mesh tessellation of the petro-

physical properties (permeability and porosity fields)

were created as shown in Fig. 1.

2. Dykstra and Parsons (1950) coefficient (VDP) is the

most common static measure of permeability vari-

ation as expressed in Eq. (1) which was used for

perturbation. When VDP = 0, then the reservoir is

homogeneous, while VDP = 1, the reservoir is highly

heterogeneous.

Fig. 1 2D Geometry of the

discretized reservoir model

(100 9 100 9 1 gridblocks)

Table 1 Numerical model

validation data
Reservoir parameters Data values English units

Oil viscosity (lo) 10 9 10-3 Pa.s

Water viscosity (lo) 1 9 10-3 Pa.s

Number of cell volume (Nx) 100

Number of cell volume (Ny) 100

Reservoir length (Lx) 50 m

Reservoir width (Ly) 30 m

Reservoir initial pressure (Pi) 1 9 105 Pa

Well injection pressure (Pinj) 2 9 105 Pa

Water saturation (Sw) 0 Fraction

Oil saturation (So) 1 Fraction

Average porosity (/) 0.20 Fraction

Average permeability (Kaverage) 2 9 10-12 m2

Correlation length (kx) 0.0–0.05 m

Correlation length (ky) 0.0–0.05 m

End point oil relative permeability (Kro) 1

End point water relative permeability (Krw) 1

Corey water exponent (nw) 2

Corey water exponent (no) 2

Pressure accuracy 0.0001

Saturation accuracy 0.0001

Dykstra–Parsons coefficient (VDP) 0.0–0.9
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VDP ¼ log �k � log kr

log �k

¼ standard deviation of Log kð Þ
Average of Log kð Þ ; ð1Þ

where �k is the median permeability or permeability

value with 50 percent probability and kr is the per-

meability at 84.1 percent of the cumulative sample

and r is the standard deviation.

3. However, from the definition of VDP (variance of the

log-normal permeability distribution) in Eq. (1), an

estimator relationship between VDP and sample

standard deviation (r) of Log (k) is rearranged as

defined in Eq. (2) as:

r ¼ � log 1� VDPð Þ: ð2Þ

4. Then, sample mean (l) for log-normal randomly

distributed field was estimated as written in Eq. (3)

as:

Log kaverage
� �

¼ lþ 1=2r2; ð3Þ

where kaverage is the average permeability.

5. The uncorrelated Gaussian random permeability

field distribution (which amounts to adding a white

noise to the simulated random field) was generated

by using Eq. (4), but this noise needed to be filtered

out by convolution with Gaussian kernel:

R ¼ r: randn Nx;Ny

� �
; ð4Þ

where R is the uncorrelated Gaussian random func-

tion distribution, Nx and Ny are the number of cells in

x and y direction, respectively, randn function for

generating random numbers drawn from a normal

distribution.

6. With the obtained standard deviation [Eq. (2)] and a

known average permeability, theGaussian log-normal

uncorrelated permeability field distribution generated

from step 5 with white noise was pass through a

Gaussian filter (smooth dataset). In two dimensions (x,

y), the mathematical expression for the product of two

Gaussian functions for the Gaussian filter impulse

response (Gaussian surface) is given by Eq. (5)

(Haddad and Akansu 1991; Mark et al. 2008) as:

GF x; yð Þ ¼ 1

2pr2
� e

� x2þy2

2r2

� �
; ð5Þ

where GF is the gaussian filter in two dimensions,

x and y define the distance from the origin in the

horizontal and vertical axis.

7. A convolution (faltning) with Gaussian filtering

algorithm was used to achieve a correlated hydraulic

conductivity field from the uncorrelated hydraulic

conductivity field generated in step 5. This convo-

lution was efficiently performed using Matlab (2016)

discrete 2D fast Fourier transform (FFT) [Eq. (6)],

and 2D inverse fast Fourier transform (IFFT)

[Eq. (7)] as well as normalization of prefactors:

Ykþ1;jþ1 ¼
Xa�1

p¼0

Xb�1

q¼0

xpk
a xqj

b Xpþ1;qþ1; ð6Þ

xa andxb are complex roots of unity,xa = e-2pi/a,

xb = e-2pi/b, where a-by-b ismatrix, i is the imaginary

unit, k and p are indices that run from 0 to a - 1, j and

q are indexes that run from 0 to b - 1.

Xk;j ¼
1

a

Xa

p¼1

1

b

Xb

q¼1

xpk
a xqj

b Yp;q; ð7Þ

xa and xb are complex roots of unity, xa = e2pi/a,

xb = e2pi/b, where k runs from 1 to a, and j runs from

1 to b.

8. The results of R in step 5 and the Gaussian filter (GF)

in step 6 are transformed and evaluated by 2D FFT

and the results are multiplied as indicated in Eq. (8).

The FFT transformation is back transformed using

2D IFFT to obtain convoluted Gaussian correlated

field. In furtherance, the correlated surface generated

with convolution, 2D FFT, 2D IFFT and normaliza-

tion of prefactors through another filter is expressed

in Eq. (8) (Bergström 2012). However, according to

Garcia and Stoll (1984), proper care must be taken in

choosing appropriate prefactors during IFFT (FFT

back transformation) to ensure satisfied relations of

spatially correlated Gaussian random fields.

f ¼ 2
ffiffiffi
p

p �
Lxffiffiffiffiffiffiffiffiffiffi
Nx�Ny

p
ffiffiffi
kx
ky

q

2

64

3

75

� Xk;j Ykþ1;jþ1 Rð Þ � Ykþ1;jþ1 Fð Þ
� �

; ð8Þ

where Lx is the length of computational domain, kx
and ky represents autocorrelation lengths in both

x and y directions, respectively.

9. The correlation lengths (kx and ky) in Eq. (8) represent
the maximum distance at which two points display a

correlation used in generating the spatial variability of

the geological media. If one autocorrelation length is

used, then the medium is termed homogeneous. The

final permeability field is generated by computing the
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summation of sample mean [Eq. (3)] and the real part

of Eq. (8) raised to an exponent (K = e[l?real(f)])

(Eftekhari and Schüller 2015).

10. The porosity field through a linear interpolation

scheme is generated based on the permeability field

values created using Dykstra–Parsons coefficient and

autocorrelation lengths by employing Carman–

Kozeny relation expressed in Eq. (9) (Lie 2014) as:

K ¼ 1

8sA2
v

/3

1� /ð Þ2
; ð9Þ

where / is the porosity which is a function of per-

meability, s is tortuosity, Av is the specific surface

area.

Uniform sampling randomization method

USRM was used to generate homogeneous random per-

meability field compared to our proposed method and for

fluid flow simulation. However, the uniform sampling

variant of the randomization is made up of superposition of

independent (Gaussian random variables of mean zero and

unit variance) random sine modes (Radu et al. 2011). In

this method (second-order homogeneous), isotropic corre-

lation description is given by a function consisting of

Euclidian norm and correlation length. This randomization

method also exhibits good ergodic properties during sim-

ulation process of generating log-hydraulic conductivity

field realizations. However, details about the mathematical

implementation of this algorithm over a uniform grid can

be found in Sabelfeld (1991) and Radu et al. (2011).

Turning bands simulation method

TBM is one of the earliest multidimensional random

number generator simulation method used to generate

spatially correlated permeability fields with its accuracy

depending on the number of lines used. Whenever insuf-

ficient number of lines are used, it results into striping

(artifact banding) in the simulated map (Emery and Lan-

tuéjoul 2006). TBM performs simulation along unidimen-

sional lines instead of synthesizing the multidimensional

field directly with computational efficiency over a space

domain and more efficient than LU decomposition algo-

rithm (Gotway and Rutherford 1994). A non-conditional

realization can be generated for visual inspections. The

detailed and comprehensive mathematical algorithm of

TBM for Gaussian random fields implemented in this study

can be found in (Matheron 1973; Mantoglou and Wilson

1982; Emery and Lantuéjoul 2006).

Mathematical modeling

Mathematical model basic assumptions

1. Immiscible fluids and rock properties are

incompressible.

2. The solid matrix is non-deformable

3. Molecular diffusion, surface tension and capillary

pressure were ignored.

4. The fluids are Newtonian and gravitational force is

ignored.

5. Chemical reactions are not included and no phases

change.

6. Viscous forces dominate, and capillary effects were

neglected.

Immiscible two-phase flow transport in porous media

Applying macroscopic Darcy law as a momentum transport

equation for saturated flow of oil and water in porous

media for each control volume (CV) is written in Eq. (10)

as:

u~a ¼ � kkra

la
rpa; ð10Þ

where u~ is the velocity vector, kra is the relative perme-

ability of a phase, k is absolute permeability tensor, l is the

viscosity of fluid, p is the reservoir pressure, r is the

gradient operator, a is the oil and water phase. Total fluid

mobility is the summation (kT) of water phase mobility

(kw) and oil phase mobility (ko) as defined in Eq. (11) as:

kT ¼ k xð Þ krw Sw x; tð Þð Þ
lw

þ kro So x; tð Þð Þ
lo

� �
; ð11Þ

where Sw(x, t) and So(x, t) are saturation of water and oil

phase, respectively, defined in space and time. A dis-

placement stability criterion for unstable flow is when

mobility ratio is greater than one (upstream mobility

greater than downstream mobility), and vice versa. The

total Darcy velocity (uT) is the summation of water and oil

velocities given in Eq. (12) as:

uT ¼ �kTrp: ð12Þ

Therefore, for an incompressible fluid flow, the conti-

nuity equation is read by Eq. (13) as:

r:uT ¼ 0: ð13Þ

Substituting Eqs. (11) and (12) into Eq. (13) leads to

Eq. (14) as:
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r: � k
krw Swð Þ
lw

þ kro Swð Þ
lo

	 

rp

� �
¼ 0: ð14Þ

Linearizing Eq. (14) using Taylor series expansion resulted

into Eq. (15) as:

r: � k
krw Swið Þ

lw
þ kro Swið Þ

lo

	 

rp

� �

þr: k
okrw Swið Þ
lwoSw

þ okro Swið Þ
looSw

	 

rpiSw

� �

¼ r: k
okrw Swið Þ
lwoSw

þ okro Swið Þ
looSw

	 

rpiSwi

� �
;

ð15Þ

where Swi is the initial water saturation, Sw is the new

values of water saturation, pi is the initial reservoir pres-

sure, k is the absolute permeability, kro and krw are relative

permeability of oil and water, respectively.The relative

permeability function in Eq. (15) for immiscible fluid flow

transport was modeled using Corey (1954) correlation

illustrated in Eqs. (16) and (17) for oil and water, respec-

tively as:

kro ¼
1� So

1� Swi

� �no
1� So � Swi

1� Swi

	 
� �no
; ð16Þ

krw ¼ Sw � Swi

1� Swi

	 
� �nw
; ð17Þ

where Swi is the initial water saturation, no is the Corey

constant parameter for oil, nw is the Corey constant

parameter for water.The nonlinear flow equation in

Eq. (15) for pressure gradient field has the following dis-

cretization terms in Eq. (18) as:

� Diffusion term k
krw Swið Þ

lw
þ kro Swið Þ

lo

	 

; p

� �

þ Convection term u
krw Swið Þ

lw
þ kro Swið Þ

lo

	 

; p

� �

¼ Divergence term k
krw Swið Þ

lw
þ kro Swið Þ

lo

	 

;rpi

� �

ð18Þ

Whenever the pressure gradient is known from Eq. (18),

then water velocity from Eq. (12) can be estimated to be

used in the water transport Eq. (19). For simultaneous oil

and water flow transport in a stochastic porous medium, the

conservation equation of the water transport is specified in

Eq. (19) as hyperbolic saturation equation:

/
oSw

ot
þr: � kkrw Swð Þ

lw
rp

	 

¼ 0: ð19Þ

Again, linearizing Eq. (19) using Taylor series expansion

for a function of two independent variables yielded

Eq. (20) as:

u
oSw

ot
þr: � kkrw Swið Þ

lw
rp

	 


þr: � k

lw

okrw Swið Þ
oSw

rpiSw

	 


¼ r: � k

lw

okrw Swið Þ
oSw

rpiSwi

	 

ð20Þ

But the total saturation of both oil and water flow in porous

media is defined in Eq. (21) as:

So þ Sw ¼ 1: ð21Þ

The nonlinear water transport flow equation in Eq. (20) has

the following discretization terms in Eq. (22) as:

Transient term Dt; Swð Þ

� Diffusion term � kkrw Swið Þ
lw

rp

	 

; Sw

� �
þ

Convection term u � k

lw

okrw Swið Þ
oSw

rpi

	 

; Sw

� �

¼ Divergence term � k

lw

okrw Swið Þ
oSw

rpi

	 

; Swi

� �
:

ð22Þ

With regards to discretization terms in Eqs. (20) and (22),

these result into a system of coupled linear simultaneous

equations expressed in Eq. (23). The primary unknowns in

Eq. (23) are pressure and saturation for the simultaneous

solution (SS) method (Douglas et al. 1959; Eftekhari and

Schüller 2015):

Jpm þMbcp JSwm
Jpn JSwn þMbcSw

� �
P

Sw

� �

¼ RHSm þ RHSbcp
RHSn þ RHSbcSw

� �
; ð23Þ

where J is the Jacobian matrix, m denotes the continuity

equation for pressure while n indicates water saturation

equation, Mbc terms denotes boundary conditions matrix

terms for pressure and water saturation equations, P is

pressure, Sw is water saturation, RHS indicates right-hand

side of the coupled equations, RHSbc term signifies right-

hand side boundary conditions matrix terms for pressure

and water saturation equations.

Solution technique to immiscible fluid flow in porous
media transport

Newton–Raphson method (NRM) The method used to

solve the system of linearized equations in Eq. (23) is

Newton–Raphson powerful iterative method which is

quadratic but only locally convergent with computation of

derivatives (Bergamashi and Putti 1999). However, at

every timestep, Eq. (23) needs to be solved in a loop until

new values converge to initial values (Farnstrom and

Ertekin 1987). This is because the convergence of the
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Newton–Raphson algorithm is not guaranteed when the

initial guess is not close enough to the solution, which

implies a restriction on the timestep size (computational

cost and memory requirement when problem size increa-

ses). The tractable iterative algorithm implemented in this

study is solved concurrently and expressed in Eqs. (24) and

(25), respectively as:

Xkþ1 ¼ Xk �
f Xnð Þ
f 0 Xnð Þ ; ð24Þ

Pnþ1

Snþ1
w

" #

¼
Po

Swo

� �
�

o Jpm þMbcp

� �

oP

o JSwmð Þ
oSw

o Jpn
� �

oP

o JSwn þMbcSwð Þ
o Swð Þ

2

6664

3

7775

�1

Po;Swoð Þ

�
Jpm þMbcp

� �
Po þ JSw1ð ÞSwo � RHSm þRHSbcp

� �

Jpn
� �

Po þ JSwm þMbcSwð ÞSwo � RHSn þRHSbcSwð Þ

" #

:

ð25Þ

It is important to state here that the FIM Newton–

Raphson iterative method for two-phase fluid flow in

stochastic porous media was compared in terms of con-

vergence rate and stability to iterative IMPES and SEQ

linearization schemes. The details of these linearization

schemes implemented in this study can be found in

(Lacroix et al. 2003; Pacheco et al. 2016).

Methodology of high-resolution models
for immiscible fluid flow transport

Here, it is the discretisation of the convective flux term that

requires special attention to represent fluid flow patterns,

since our goal is to find a scheme with a higher order of

accuracy without wiggles for high-resolution (Harten 1983)

shock-capture. Additionally, to estimate the average value

of water saturation at cell faces over the mesh structure as

shown in Fig. 1 based on velocity direction. Equation (19)

describing incompressible fluid flow in porous media is

rewritten in Eq. (26) as:

/
oSw

ot
þr: fwuTð Þ ¼ 0; ð26Þ

where f swð Þ ¼ kw
kT

is the fractional flow of water.

The spatial domain (Fig. 1) is divided into finite vol-

ume cells (ith) and taking volume integral over the total

volume of a cell (vi) from Eq. (26) is expressed in

Eq. (27) as:
Z

vi

os

ot
dvþ

Z

vi

r:f sð Þdv ¼ 0: ð27Þ

Also, the volume integrals in the partial differential equa-

tion in Eq. (27) contain a divergence term which is

converted into surface integrals by employing the diver-

gence theorem given in Eq. (28) as:
I

v

r:fdv ¼
I

S

fdS: ð28Þ

Integrating the first term in Eq. (27) yields volume average

and applying divergence theorem in Eq. (28) to Eq. (27)

second term results into Eq. (29) as:

vi
d�si
dt

þ
I

Si

f sð Þ: ndS ¼ 0; ð29Þ

where n is a unit vector normal to the surface and pointing

outward, Si denotes the total surface area of the cell.

The final general conservative result obtained in

Eq. (30) is equivalent to Eq. (26) as:

d�si
dt

þ 1

vi

I

Si

f sð Þ:ndS ¼ 0 ð30Þ

The application of high-resolution scheme consists of

adding a diffusive term to second-order Lax–Wendroff

scheme (Wendroff 1960). Equation 31 describes incom-

pressible flow of a linear convection equation in a one-

dimensional porous media and assuming that the flow is

from left to right which can be extended to two dimensions

with the same flow properties. Therefore, the numerical

approximations to scalar conservation hyperbolic equation

by recalling Eq. (26) is given by:

os

ot
þ of sð Þ

ox
¼ 0;

s x; 0ð Þ ¼ s0 xð Þ;
ð31Þ

where the flux f(s) is a known function of s as the saturation

of water phase.

The upwind differencing (transportiveness, conserva-

tiveness, boundedness and accurate) or ‘donor cell’ dif-

ferencing scheme takes into account flow direction when

determining cell face value. Applying first order upwind

scheme to Eq. (31) leads to a numerical scheme written in

a conservative form as Eq. (32) as:

snþ1
i ¼ sni � g Dsnþ1

i�1=2

	 

; ð32Þ

where si
n is the nodal values.

Meanwhile, the conservative form of Lax–Wendroff

scheme for a nonlinear equation yields Eq. (33) as:

snþ1
i ¼ sni �

g
2

Dsnþ1
i�1=2 þ Dsnþ1

iþ1=2

� �

þ g2

2
Dsnþ1

iþ1=2 � Dsnþ1
i�1=2

� �
; ð33Þ
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where upstream face/edge, Dsiþ1=2 ¼ si � si�1; down-

stream face/edge Dsi�1=2 ¼ si � si�1 of the ith cell, courant

number (mesh ratio) g ¼ Dt
Dx

Therefore, reorganizing equation Eq. (33) results into

Eq. (34) as:

snþ1
i ¼ sni � gDsnþ1

i�1=2 �
1

2
g 1� gð Þ Dsnþ1

iþ1=2 �Dsnþ1

i�1=2

	 

: ð34Þ

From Eq. (33) which represents Lax–Wendroff

scheme amounts to adding an anti-diffusion flux to an

upwind scheme. However, this anti-diffusion term makes

Lax–Wendroff scheme second-order accurate, although it

creates non-physical oscillations in the presence of shocks

and discontinuity. TVD is a property that is used in the

discretisation of equations governing multiphase fluid flow

in porous media. Hence, high-order resolution schemes

(SUPERBEE, WENO and MUSCL) were imposed to limit

anti-diffusion flux to obtain second-order high-resolution

scheme between fluxes of a high-order scheme and that of a

low order scheme. Therefore, the flux limiter is a function

of the ratio of two consecutive gradients applied to

Eq. (34). This application resulted into Eq. (35) as TVD

fluid flow equation:

snþ1
i ¼ sni � gDsnþ1

i�1=2

� 1

2
g 1� gð Þ w rnþ1

iþ1=2

� �
Dsnþ1

iþ1=2 �w rnþ1
i�1=2

� �
Dsnþ1

i�1=2

h i
;

ð35Þ

where w is the flux limiter function taken to be non-neg-

ative so as to maintain the sign of the anti-diffusive flux.

The ratio of the second-order term is also expressed in

Eq. (36), where w rnþ1
iþ1=2

� �
is chosen so that it is approxi-

mately w(1) = 1 in smooth regions of the profile, giving

accurate results. In regions where an unrestrained second-

order contribution would produce oscillations (where the

value of the second derivative is large), this term is allowed

to vary in a manner which precisely eliminates their for-

mation and rnþ1

iþ1=2

	 

is chosen to be a ratio of the suc-

cessive second-order terms and a function of consecutive

gradients.

wnþ1
iþ1=2 ¼ w rnþ1

iþ1=2

� �
; rnþ1

iþ1=2 ¼
Dsnþ1

i�1=2

Dsnþ1
iþ1=2

ð36Þ

According to Roe (1985), accurate solutions are

obtained without spurious oscillations using TVD flux

limiters that satisfies Sweby (1984) constraints. The com-

putational codes developed in this work implements Sweby

(1984) monotonicity-preserving sufficient conditions nec-

essary for a scheme to be TVD in terms of the r - w
relationship. This implies that, they are designed to pass

through TVD regions to guarantee stability of the scheme.

Thus, the requirement for second-order accuracy in terms

of the relationship for linear upwind terms are as follows

(Brantson et al. 2018):

1. If 0\ r\ 1 the upper limit is w(r) = 2r, for TVD

schemes w(r) B 2r

2. If r C 1 the upper limit is w(r) = 2r, for TVD schemes

w(r) B 2r

3. For the relationship in terms of w = w(r), a second-

order accurate scheme should pass through the point

(1, 1) in the r - w diagram.

The TVD flux limiter scheme applied to first order

scheme sharp concavity profile changes is known by Roe

(1985) as SUPERBEE applied to Eq. (35) expressed in

Eq. (37) as:

w rð Þ ¼max 0; min 2r;1ð Þ; min r;2ð Þ½ �; lim
r!1

w rð Þ ¼ 2 ð37Þ

The weighted essentially non-oscillatory (WENO)

schemes can numerically approximate solutions of hyper-

bolic conservation laws and other convection dominated

problems with high-order accuracy in smooth regions and

essentially non-oscillatory transition for solution disconti-

nuities. WENO construction (Eq. (38)) is an improvement

on essentially non-oscillatory (ENO) applied to Eq. (35).

Equation 38 describes the implementation of the

scheme used in this study by Liu et al. (1994) as:

w rð Þ ¼ max 0; minðr þ bÞ½ � ; ð38Þ

The MUSCL scheme is also tested as a second-order

TVD scheme to obtain spatial accuracy in the smooth parts

of the numerical solution defined in Eq. (39) as applied to

Eq. (35):

w rð Þ ¼ max 0;min 2rð ; min 0:5 1þ rð Þ; 2ð Þ½ � ; ð39Þ

where w(r) is the flux limiter function, b is the biasing

parameter.

Monotonicity-preserving second-order schemes have the

property that the total variation of the discrete solution

should diminish with time. Hence, the term TVD. The total

variation (TV) is stated in Eq. (40) for the hyperbolic

advective term in Eq. (31) as:

TV ¼
Z

of sð Þ
ox

ox ¼ 0: ð40Þ

The TV in saturation is non-increasing and the TV for a

discrete case solution is defined in Eq. (41) as:

TV snþ1
i

� �
¼

X

i

snþ1
iþ1 � snþ1

i

 : ð41Þ

A numerical method at every timestep is said to be

TVD, if Eq. (42) is satisfied as:

TV snþ1
i

� �
�TV sni

� �
; ð42Þ

Acta Geophysica (2018) 66:243–266 251

123



where n and n ? 1 are previous and current timestep,

respectively.

Initial and boundary conditions

To complete the formulation of the model, the initial and

boundary conditions are required by imposing restrictive

conditions. The following initial and boundary constraints

were specified for the simultaneous two-phase flow in a

stochastic porous media for the modeling process.

So ¼ 1; Sw ¼ 0, where So is saturation of oil and Sw is

saturation of water.

For an advancement of pressure and saturation solution

in time until final simulation is reached is given by:

t = to ? Dt, where t is the new timestep, to is the initial

timestep = 0, Dt is the timestep size.

The boundary conditions were specified for both inflow

(left) and outflow (right) of the stochastic porous medium

using ghost border cells approach. In this current study,

Dirichlet pressure boundary was specified for the left

(constant injection pressure) and right-hand side (constant

pressure boundary) of the porous medium. While Dirichlet

constant water saturation boundary condition was specified

for the left-hand side (LHS) of the perforated porous

medium. The lateral walls of the computational domain are

impermeable with no flow boundary conditions.

Computer model development

The mathematical models obtained from the previous

sections require high-speed digital computer for imple-

mentation due to the size of the Jacobian matrix. In this

paper, the steps used to develop the computer model is

shown in Fig. 15 (Appendix). In Fig. 15, the workflow

consists of internal nonlinear solver loop and external time

loop under different flow conditions.

Numerical results and discussion

This section presents results, discussion and implementa-

tion of stochastic porous media modeling approaches as

well as the linearization schemes. All simulations were

conducted on a standard laptop (Samsung NP8500GM

notebook with an intel i5 processor and 16 GB RAM) in

Matlab (2016) programming environment.

Numerical reservoir simulator validation

BL analytical displacement (ideal case) was used to vali-

date the high-order resolution schemes (SUPERBEE,

WENO and MUSCL schemes) by considering one-di-

mensional linear (1 m) petroleum reservoir (40 gridblocks)

in a homogeneous medium. This is because, BL is free

from numerical dispersion. A comparative analysis was

made between saturation distributions provided by the

various schemes to check significant numerical dispersion

(smearing) effect (Fig. 2) and the stability of the schemes.

There was a good agreement of identical solution between

the analytical solution, SUPERBEE, WENO and MUSCL

schemes with lower numerical smearing than upwind

scheme without no flux limiting scheme (ahead of other

schemes) in capturing the shock front. This can be attrib-

uted to the fact that, despite upwind scheme being most

stable and unconditionally bounded scheme, it gives false

diffusion when transport properties are not aligned with

gridlines and its low first order accuracy (Brantson et al.

2018). It is also important to state that, there was no over or

undershoot in the numerical solutions confirming the

robustness of the high-order resolution schemes for cap-

turing fluid flow transport in porous media with accept-

able level of numerical dispersion. It can clearly be seen

from Fig. 2 that, Newton–Raphson method used converges

despite being quadratic with a local convergence for a

unidirectional flow. It is noteworthy to mention that the

augmentation of grid cells (mesh resolution) will further

reduce the level of numerical dispersion (Marcu 2004).

Numerical convergence criteria
for the linearization schemes

The same one-dimensional model used as classical BL

solution benchmark was solved by FIMmethod compared to
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iterative IMPES and SEQ methods for numerical conver-

gence rate analyses. These schemes were compared in terms

of results accuracy, stability and computational time. The

computation of residuals is the basic measure of a lin-

earization scheme’s solution convergence by quantifying the

system of conserved equations errors in the solution field.

The convergence rate of the solution is monitored by

checking the water saturation residuals of the numerically

solved governing equations as an indicator. Also, the mini-

mum allowable saturation (difference between current iter-

ation and last saturation iteration in any cell volume) and

specified residual tolerance limit was set to 0.01 (Eftekhari

and Schüller 2015) and 10-3 (Radu et al. 2015), respectively,

before the start of the numerical simulation. Figure 3a shows

a snapshot of the three linearization schemes tested in this

study with their obtained water saturation residuals plot. It is

also a known fact that any iterative numerical solution will

never be exactly zero, but can be within an acceptable tol-

erance limit. Although the three linearization schemes were

within the specified tolerance limit for capturing shock front.

It can be observed from the residual monitors in Fig. 3a that,

the three linearization schemes residuals reduce as simula-

tion progresses. However, as the residuals decrease rapidly

because of solution convergence, the water saturation

residuals change less between iteration levels without any

imbalance in the system. Furthermore, the lower the residual

value is, the more numerically accurate the solution for

conserved quantities. It can be inferred from Fig. 3a that the

saturation error estimates decrease as the number of itera-

tions and timesteps increases. The linearization schemes

residual monitors exhibit monotonic conserved convergence

after about 200 iterations with stable numerical solutions. In

addition, the residuals of SS method achieve more stability

with lower residuals as compared to iterative IMPES and

SEQ techniques. Similarly, the residuals drop and level off

and become stable for each scheme. The SEQ method

combines the advantage of SS and IMPES methods to

attained stability and efficiency (Watts and Shaw 2005) as

seen in Fig. 3a. But, it also has the problem of handling

complicated capillary pressure curves which was ignored in

our study. Numerical comparison of iterative IMPES, SS

method and SEQ techniques for field scale numerical sim-

ulation of oil reservoirs for both saturated and undersaturated

states were also performed by Chen et al. (2006). In sum-

mary, despite NRM being quadratic with local convergence,

the numerical solutions were within acceptable tolerance

limit.

Linearization schemes computational time

Another indicator test is the computational time taken by

each linearization scheme for the 1D waterflood simula-

tion. The three linearization schemes were tested on a

unidirectional flow by recording the simulation CPU time.

When the same number of grid nodes (100) were used for

the same number of iterations (800), Fig. 3b indicates that

the iterative IMPES scheme uses less CPU time (less costly

method) in this study for simulating the fluid flow transport

compared to SS and SEQ methods. This is then followed

by SEQ method which also solves pressure and saturation

equations implicitly, but in sequence, which reduces

computational cost and memory (Chen et al. 2006) as seen

in Fig. 3b. Lastly, SS method has larger system of equa-

tions with larger CPU time despite its stability and

robustness (Fig. 3a). Therefore, it can be inferred that the

SS required excessive computational cost and memory

requirement. It can also be noticed from Fig. 3a, b that,

CPU time will increase correspondingly as cell volumes

increases for defined timestep.

Geostatistical simulation of permeability fields

This section compares the different stochastic methods for

generating equiprobable permeability fields with different

parametric setup in this study through geostatistical simu-

lation. The plausible realizations have different petro-

physical properties with different recovery factors when

subjected to reservoir fluid flow simulation. Herein, the

CPU simulation times for the geologic architectures were
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also recorded for each realization generated on the rect-

angular grid mesh (Fig. 1). The colorbar in each figure give

details about the ranges of permeability variations.

The proposed permeability map

In this part, plausible stochastic permeability field real-

izations were generated when correlation lengths were the

same in both horizontal and vertical direction with different

VDP values. Figure 4a with VDP of 0.2 indicates fairly

homogeneous field, but when VDP was increased to 0.5, the

heterogeneity of the field increases as compared to Fig. 4a.

In addition, Fig. 4c displayed a highly spatial heteroge-

neous field with VDP of 0.8 unlike Fig. 4a, b for reservoir

fluid flow simulation.

Uniform sampling randomization method permeability
map

Three permeability map realizations were generated with

uniform sampling randomization method (USRM) with

statistically distributed samples of homogeneous fields.

Figure 5a is highly permeable than Fig. 5b, c with Fig. 5c

having slight heterogeneity in the random field. The uni-

form sampling variant of the uniform sampling random-

ization method is made up of superposition of random sine

modes (Radu et al. 2011 and references therein). In the

numerical simulation of the random field, exponential

correlation exhibits good ergodic properties of the log-

hydraulic conductivity field. All the realizations generated

here are more homogeneous as compared to the realiza-

tions (Fig. 4) using our proposed method.

TBM permeability map

TBM is a highly efficient multidimensional simulation

method that was used in this study to generate 2D

equiprobable permeability field realizations through a ser-

ies of one-dimensional simulation along lines with an

exponential covariance model. Here, the model type that

was implemented was exponential covariance model for

stationary Gaussian random fields. From Fig. 6a, b, a visual

impression and appreciation of artifact banding disconti-

nuities occurred in the simulated maps when finite number

of lines of 15 (Journel and Huijbregts 1978; Mantoglou and

Wilson 1982) and 64 (Gneiting 1999) were used, respec-

tively. This can be attributed to the fact that the lines were

insufficient to generate the permeability maps. Hence, not

ideal realizations for fluid flow simulation. But in Fig. 6c

where the number of lines were increased to 1000

(Tompson et al. 1989; Freulon and de Fouquet 1991), no

artifact banding/stripping occurred in the random field with

improvement in the ergodic properties of the simulated

map. Emery and Lantuéjoul (2006) also obtained artifact

banding with 15 lines, but with 1000 lines, the realization

texture obtained improved with no perceptible artifacts as

seen in our study (Fig. 6c). Comparatively, no artifacts

were also observed in our proposed method and USRM. To

validate the quality of the simulated permeability field

(Fig. 6c) to be used for fluid flow simulation due to the

problem of artifact banding beyond visual check. The

simulated variogram was compared to the theoretical var-

iogram algorithm plotted against distance when 1000 lines

were used. It can be noticed from Fig. 6d that the average

simulated statistics match the theoretical model almost

perfectly.

CPU run-time for the simulated permeability maps

The three permeability map methods analyzed in this study

CPU times were comparatively compared for the realiza-

tions generated. This is because, memory storage require-

ment becomes important when large number of random

fields are to be generated with speed and accuracy. Fig-

ure 7 shows that USRM has the least CPU run-time in

seconds followed by our proposed method and lastly the

TBM technique, when a single realization was produced

with each method. TBM has the highest CPU run-time due

to CPU time devoted to post-processing the realization to

be generated (Emery and Lantuéjoul 2006), but its simu-

lation along lines is usually fast. In all, the three approaches

achieved fast efficient simulation time at good computa-

tional cost.

Homogeneous immiscible displacement

Under homogeneous stable base case model for immiscible

displacement scheme in this research, all rock (porosity and

permeability values equal to the mean values) and fluid

properties were kept constant (isotropic) in the computa-

tional domain. This implies horizontal permeability is

equal to vertical permeability. Figure 8a shows non-per-

turbed field with no subsurface instability (flat interface)

with stable recovery rate about 27% in 60 days. The

plumes of unstable structures (Fig. 8b, c) were generated

when a random distribution of permeability was introduced

only at the inlet face (restricted to the ghost border cells

near the injection well) of the porous medium at (t = 0 s),

while the non-perturbed parts of the porous medium remain

homogeneous. The merits of this method (spatial restriction

to perturbation) of perturbing the initial saturation field was

also applied by Riaz and Tchelepi (2006), Islam et al.

(2010), Henderson et al. (2015), and Bouquet et al. (2017)

in their studies for oil displacement in reservoirs. It can

also be seen in Fig. 8b, c that, the oil displacement was

piston-like, where oil in front of the shock was pushed out
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Fig. 4 Proposed permeability map a (VDP = 0.2, kx = 0.04 m, ky = 0.04 m); b (VDP = 0.5, kx = 0.04 m, ky = 0.04 m); c (VDP = 0.8,

kx = 0.04 m, ky = 0.04 m)

Acta Geophysica (2018) 66:243–266 255

123



Fig. 5 Uniform sampling

randomization simulation

method permeability maps (a,
b and c, E(K) = 2 9 10-12 m2,

r2 = 0.130, kx= 1 m, ky = 1 m)
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Fig. 6 TBM permeability map a
15 lines b 64 lines c 1000 lines
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of the domain having water behind shock with small sub-

surface instabilities. It can be detected from Fig. 8c that,

instabilities initiated grow as oil was pushed out of the

domain due to sufficient saturation fringe in the numerical

simulation process (Bouquet et al. 2017). Eftekhari and

Schüller (2015) also stated that VDP of 0.01 which makes

about 3% perturbation in a permeability field does not

result into flow channeling, but can trigger viscous fin-

gering initiations. The recovery factor for the piston-like

quasi-homogeneous (Fig. 8c) displacement was approxi-

mately 24% in about 60 days as seen in Fig. 9, but less

than Fig. 8a recovery factor due to fingering phenomenon.

Heterogeneous surface instabilities

Proposed method fluid flow simulation

This section dwells on heterogeneous permeability field

fluid flow simulation through the three techniques used to

generate the permeability fields. The porosity field is a

function of permeability which was generated based on

Carman–Kozeny relation as shown in Fig. 10. Figure 4a, c

permeability realizations were used to simulate fluid flow

through the stochastic field to observe subsurface insta-

bilities. Figure 11a, b illustrate subsurface instabilities

larger than the quasi-homogeneous base case (Fig. 8b, c).

These instabilities were mainly characterized with tip

splitting (bifurcation), spreading and coalescence of finger-

like structures. However, these instabilities merge together

as they are driven toward the wake of larger fingers

because of the larger ones moving faster and preventing the

growth of smaller ones. The specific spatial paths taken by

the instabilities correspond to paths of local higher

permeability zone. Hence, channeling phenomenon is

susceptible in such high permeability zones (Doorwar and

Mohanty 2016). Erandi et al. (2015) and Luo et al. (2017)

also observed in their research that, fingering regime of a

layer can be completely disrupted by modest levels of

heterogeneity leading to channeling regime. Therefore,

when Fig. 4a permeability field (VDP = 0.2) was used for

fluid flow simulation (Fig. 11a), the recovery factor was

23% in approximately 60 days. This recovery factor is

almost close to Fig. 8c recovery factor of 24% denoting

homogeneity for both cases, despite observation of fin-

gering phenomenon. The displacement (Fig. 11a) is also

piston-like with larger surface instabilities of viscous fin-

gers due to weak perturbation with no significant impact of

fingers’ behavior.

On the other hand, the characterization of reservoir

heterogeneity by permeability variation of most reservoirs

falls within the range of 0.5–0.9 (Willhite 1986). Fig-

ure 11b shows a heterogeneous permeability map (Fig. 4c)

with VDP = 0.8. It can be inferred from Fig. 11b that, the

subsurface instabilities were more severe as compared to

when VDP = 0.0 (Fig. 8a–c) and VDP = 0.2 (Fig. 11a).

Additionally, it can be noticed from Fig. 11b that, at the

start of the simulation, the finger tips were more unsta-

ble and propagate further forward with the strong media

heterogeneity causing the splitting phenomenon with con-

tinuous repetition till water breakthrough. This erratic

behavior was observed as more mobile fingers ahead of

their neighboring fingers outruns and shielded less mobile

ones from further growth (Fig. 11b). Tip splitting and

spreading pattern were also seen in (Fig. 11a, b) as pressure

gradient is also larger near the tip of the finger causing the

finger to split leading to different flow paths. The oil

recovery factor due to subsurface instabilities can be seen

in Fig. 9 when VDP = 0.8 with 13% recovery rate in

approximately 60 days. Therefore, the higher the perme-

ability variation in porous media, the lesser the amount of

oil recovered with increment in recovery time. Similarly,

Fig. 11b depicts skeletal viscous fingers similar to Brow-

nian trees of diffusion limited aggregation (DLA) formed

possessing self-similarity nature of fractals (Zhang and Liu

1998).

Uniform sampling randomization method fluid flow
simulation

In this part, the dynamic fluid flow simulation was simu-

lated through Fig. 5c which was generated through USRM

which has slight heterogeneity than Fig. 5a, b. The fingers

behavior shown in Fig. 12 are similar to the homogeneous

case demonstrated in Fig. 8c with unstable piston-like

displacement characteristics. In Fig. 12, there is no bypass

of oil unlike Fig. 11b due to permeability variation. The
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Fig. 8 Homogeneous water

saturation maps (VDP = 0.0,

kx = 0.04 m

(a) t = 5.2261 9 106 s

(b) t = 2.5398 9 106 s, (c)
t = 5.1877 9 106 s)
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obtained recovery rate for Fig. 12 is 24% in approximately

60 days in Fig. 9 similar to VDP = 0.0 and VDP = 0.2 which

are indication of a more homogeneous system.

Turning bands method fluid flow simulation

Figure 6c TBM permeability field with good ergodic

properties was employed for numerical simulation experi-

ment to observe subsurface instabilities during water

injection process. Furthermore, bypass of unswept regions

were seen in Fig. 13 similar to Fig. 11b unlike Figs. 8a–c

and 12 with no such phenomenon. Spreading and tip

splitting were the dominant features seen on the water

saturation map (Fig. 13). The recovery factor for Fig. 13

was 16% in 60 days as shown in Fig. 9 was higher than

that of Fig. 11b due to higher permeability field values in

Fig. 6c, but less than the recovery rate for Fig. 8c.

Water breakthrough time and the impact
of correlation lengths on immiscible fluid flow
distribution

Herein, correlated correlation lengths of 0.03 m (Fig. 14a)

and 0.05 m (Fig. 14b) (below and above 0.04 m used in

our analyses) same in both vertical and horizontal direction

were employed with the proposed method to generate

permeability realizations with VDP of 0.5 to observe their

impact on fluid flow simulation in subsurface. The various

subsurface instabilities of spreading, shielding, merging,

tip-splitting can clearly be visualized from both Fig. 14a, b

with unswept regions coupled with unstable displacement.

The sweep efficiency in Fig. 14a is better than in Fig. 14b

with less residual oil saturation. One crucial observation

noticed from both plots is that, there are islands of oil

(bypass) surrounded by the invading fluid leading to

breakthrough in both Fig. 14a, b. Inference drawn from

Fig. 14b indicates that, increase in correlation lengths

yielded more viscous fingers than in Fig. 14a. The oil

recovered due to variation in correlation lengths for

Fig. 14a and b are 32% and 27% when water breakthrough

in 103 and 84 days, respectively, which had significant

impact on fluid distribution in the stochastic media. The

sensitivity of correlation lengths in reservoir fluid flow

simulation should be considered when predicting future

performance of petroleum reservoirs.
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Fig. 11 Heterogeneous

permeability field water

saturation maps a (VDP = 0.2,

t = 5.1985 9 106 s),

b (VDP = 0.8,

t = 5.1893 9 106 s)

Fig. 12 Uniform sampling

randomization method

saturation field

(t = 5.1972 9 106 s)
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Fig. 13 Turning bands method

water saturation map

(t = 5.1972 9 106 s)

Fig. 14 Water saturation

breakthrough time maps

a (VDP = 0.5, kx = 0.03 m,

ky = 0.03 m,

t = 7.233953 9 106 s),

b (VDP = 0.5, kx = 0.05 m,

ky = 0.05 m,

t = 8.823839 9 106 s)
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Conclusions

In this present work, a two-dimensional numerical reser-

voir simulator developed was used to generate stochastic

porous media for simulating subsurface instabilities during

immiscible fluid flow displacement process. The following

conclusions were made from the study:

• A proposed stochastic modeling approach for generat-

ing petroleum porous media (permeability and porosity

fields) was incorporated into reservoir fluid flow

simulation to improve production forecast in heteroge-

neous formations.

• The TBM and USRM techniques used for generating

equiprobable spatial permeability fields were incorpo-

rated into reservoir fluid flow simulation. But banding

artifacts were observed in the TBM permeability fields

when finite number of lines were used.

• The linearization schemes of SS method, iterative

IMPES and SEQ method were used for solving the two-

phase problem without any non-physical solutions

around shocks and discontinuities.

• High-resolution schemes of SUPERBEE flux limiter,

WENO and MUSCL employed in the numerical

simulator were monotonicity-preserving and fit well

to the BL analytical solution with minimal smearing.

• A comparison was made between homogeneous and

heterogeneous stochastic porous media in terms of

recovery factor with less oil recovered in the hetero-

geneous formations due to interactions between hetero-

geneity and viscous fingering unlike the homogeneous

formation media.

• Quantitative subsurface instabilities including shield-

ing, coalescence, spreading, successive tip splitting,

channeling and skeletal fingers were observed on the

permeability fields of the proposed method, TBM and

USRM techniques.

• Finger widths which are often much smaller than

typical reservoir simulation grid blocks were captured

through numerical simulation.

• The effect of correlation lengths on immiscible fluid

flow transport was investigated with larger correlation

lengths yielding more significant viscous fingering

effects.

Unit conversion

1 Darcy = 9.86923 9 10-13 m2
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