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Abstract

The present analysis has been made on the influence of distinct form of inhomogeneity in a composite structure comprised
of double superficial layers lying over a half-space, on the phase velocity of SH-type wave propagating through it.
Propagation of SH-type wave in the said structure has been examined in four distinct cases of inhomogeneity viz. when
inhomogeneity in double superficial layer is due to exponential variation in density only (Case I); when inhomogeneity in
double superficial layers is due to exponential variation in rigidity only (Case II); when inhomogeneity in double superficial
layer is due to exponential variation in rigidity, density and initial stress (Case III) and when inhomogeneity in double
superficial layer is due to linear variation in rigidity, density and initial stress (Case IV). Closed-form expression of
dispersion relation has been accomplished for all four aforementioned cases through extensive application of Debye
asymptotic analysis. Deduced dispersion relations for all the cases are found in well-agreement to the classical Love-wave
equation. Numerical computation has been carried out to graphically demonstrate the effect of inhomogeneity parameters,
initial stress parameters as well as width ratio associated with double superficial layers in the composite structure for each
of the four aforesaid cases on dispersion curve. Meticulous examination of distinct cases of inhomogeneity and initial stress
in context of considered problem has been carried out with detailed analysis in a comparative approach.

Keywords Composite layered structure - Initial stress - Inhomogeneity - SH-type wave - Debye Asymptotic Approach

Introduction

Excavation of large quantity of raw materials, such as
minerals, crude oils, coal, natural gases, etc., from inside of
the earth surface is to accomplish the need of mounting
population as well as the demand of growing industries,
which contribute a lot to the increase in the frequency of
earthquake. An earthquake is rapid and transient vibrations
of earth produced by the sudden release of energy stored in
an elastically strained rock and send waves of elastic
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energy throughout the earth. The investigations concerned
with seismic waves generated during an earthquake are
invaluable to study the interior of the Earth as well as to
understand and predict the seismic behavior at the different
margin of the earth. Also, the study of behavior of surface
waves in layered structures is of prime importance due to
its possible applications in geophysical prospecting,
mechanical engineering, civil engineering construction and
many other engineering branches. A detailed discussion
and contribution to surface waves in layered medium are
available in Ewing et al. (1957). The investigation made by
many authors concerning the behavior of surface waves in
layered medium can be quoted from Bullen (1963),
Achenbach (1973), Pilant (1979), Bath (1968), Carcione
(1992) and Pujol (2003).

Our Earth is extensively more complicated than the
models presented earlier. Therefore, a more realistic
representation of the Earth as a medium is required
through which seismic waves propagate. The very well-
known fact is that inhomogeneity lies in most of the
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elastic bodies and also inside the earth where it is
basically one dimensional which varies with depth. The
continuous change in the material properties (rigidity and
density) of the medium with the space co-ordinates (e.g.
in the vertical direction of depth or thickness) contributes
to inhomogeneity and it affects the waves (seismic)
characteristics  significantly propagating through the
medium. Inhomogeneity inside earth or a body exists in
various types and may be represented by distinct math-
ematical functions viz. linear, quadratic, exponential,
trigonometric, etc. However, through the study of expo-
nential type of inhomogeneity in a problem, effect of
linear and quadratic type of heterogeneity may be real-
ized in a problem when value of inhomogeneity param-
eter is very small. Also, Bullen (1940) suggested that the
density varies at different rates with different layers
within the Earth. The study of propagation of Love
waves in a double superficial layer over heterogeneous
medium by taking variation in rigidity has been studied
by Sato (1952). Mal (1962) obtained the frequency
equation for Love waves due to abrupt thickening of the
crustal layer. Sinha (1967) investigated the propagation
of love waves in a non-homogeneous layer of finite
depth sandwiched between two semi-infinite isotropic
media. Bhattacharya (1962, 1969) discussed the disper-
sion curves for Love-type wave propagation in a trans-
versely isotropic crustal layer with an irregularity in
thickness and further studied the possibility of the
propagation of Love type waves in an intermediate
heterogeneous layer lying between two semi-infinite
isotropic homogeneous elastic layers. Chattopadhyay
(1975) studied the propagation of Love-type wave con-
sidering nonhomogeneous intermediate layer lying
between two semi-infinite homogeneous elastic media.
Singh et al. (1976) investigated the propagation of Love
waves in heterogeneous layered media. Kar (1977)
studied the propagation of love type waves in a non-
homogeneous internal stratum of finite thickness lying
between two semi-infinite isotropic media. Sahu et al.
(2014) further considered propagation of SH-waves in
viscoelastic heterogeneous layer over half space with
self-weight. Later on, Kumari et al. (2015) discussed
influence of heterogeneity on the propagation behavior of
Love-type waves in a layered isotropic media. Singh
et al. (2015) considered the dispersion of shear wave
propagating in vertically heterogeneous double layers
overlying an initially stressed isotropic half-space.
Recently, Chatterjee et al. (2016) showed that the initial
stress has great influence on wave velocity; however,
Kumari et al. (2016) has performed the modelling of
magnetoelastic shear waves due to point source in a
viscoelastic crustal layer over an inhomogeneous vVis-
coelastic half space.
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Our earth is considered to be an initially stressed
medium because of a quantity of initial stress get raised
due to many physical causes for example resulting from
difference of temperature, process of quenching, shot
peening and cold working, pressure due to over burden
layer, differential external forces, gravity variations, etc.
Thus it is a matter of great interest to study the propa-
gation of waves in a medium under the influence of
initial stresses. As discussed by Biot (1940) initial stress
has a prominent influence on the propagation of elastic
waves. Biot (1963) extended the surface instability of an
elastic body under initial stress in finite strain to aniso-
tropic elasticity. Further mechanics of incremental
deformation has also been discussed (Biot 1965). Vari-
ous works includes wave propagation in an initially
stressed media can be cited (Dey and Addy 1978;
Chattopadhyay et al. 2010; Kumari et al. 2017). Several
authors have considered different forms of inhomo-
geneity and other geological parameter in their elasto-
dynamic problems but the form of inhomogeneity in
density as well as rigidity considered in the present study
for its extensive mathematical analysis has not been
attempted by any author till date.

In the present study an attempt has been made to
highlight the impact of four different forms of inhomo-
geneity in a composite structure comprised of double
superficial layers lying over a half-space, on the phase
velocity of SH-type wave propagating through it. Four
distinct cases of inhomogeneity which are taken into
consideration are Case I (when inhomogeneity in double
superficial layer is due to exponential variation in den-
sity only), Case II (when inhomogeneity in double
superficial layers is due to exponential variation in
rigidity only), Case III (when inhomogeneity in double
superficial layer is due to exponential variation in
rigidity, density and initial stress) and Case IV (when
inhomogeneity in double superficial layer is due to linear
variation in rigidity, density and initial stress). Disper-
sion relations for all four aforementioned cases are
deduced through extensive application of Debye
asymptotic analysis and are found in well-agreement to
the classical Love-wave equation. Numerical computa-
tion and graphical demonstration have been carried out
to unravel the effect of inhomogeneity parameters, initial
stress parameters as well as width ratio associated with
double superficial layers in the composite structure on
dispersion curve for all four said cases. Comparative
study has been carried out for the distinct cases of
inhomogeneity and initial stress in context of present
problem with detailed analysis.
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Formulation and solution of the problem

The geometry of the current study consists of two isotropic
heterogeneous initially stressed elastic layers (M, and M,
respectively) lying over homogeneous isotropic elastic
half-space (M;). The two media M; and M, are of finite
width A and h, respectively. It is assumed that superficial
layers (M) and (M;) are acted upon by the horizontal
initial stress P; and P,, respectively. The rectangular
coordinate system is chosen in such a way that x-axis is in
the direction of wave propagation and along the common
interface of medium M; and M,.The z-axis is pointing
vertically downward, as shown in Fig. 1. Let u;, v; and w;
denote the components of displacement for medium
M, M, and M3 where (j = 1,2,3), respectively. Now, for
the SH-type wave propagating in x-direction causing dis-
placement only in the y-direction, the displacement com-
ponents may be considered as

up=w; =0, vy=v(x,z,t) for j=1,2,3. (1)

Let us consider g; y; and p;(j = 1, 2, 3) as the density
and rigidity of the layers and half-space (M;)(j = 1, 2, 3).
Inhomogeneity is a trivial characteristic in a material body
and it is found in various ways which are being represented
by different sort of mathematical function, for example
exponential, linear, trigonometric, etc. It is also noted that
variation in rigidity and density with respect to the space
variable, leading to cause inhomogeneity, is not found
similar in general. Further to explore the effects of inho-
mogeneity on shear type wave propagation in an extensive
manner, four distinct following cases have been studied.

Initially stressed
) Heterogeneous layer
§! (M)

G—
G—
o X
—
{—

Initially stressed
Heterogeneous layer
(M) "

[y

Homogeneous
half-space(M;)

\/\/\/\/\/V

4

Fig. 1 Geometry of the problem

Case I: when inhomogeneity is caused in double
superficial layers due to exponential variation
in density only

In this case, we intend to explore the effect of inhomo-
geneity caused in double superficial layer due to expo-
nential variations (with respect to space variable pointing
vertically downwards) of density only on the propagation
characteristics of SH type wave. Assumed inhomogeneity
in this case for the layers (M;) and (M,) may mathemati-
cally be expressed as

1 1) 2nz /s

w=u", py=pe? (j=1,2), (2)
where #(11) and uél) denote the constants with dimension of
rigidity; pgl) and pgl) denote the constants with dimension
of rigidity; n; and n, denote the inhomogeneity parameter,
associated with density of layer medium (M) and (M>),
respectively.

In view of Eq. (1), the non-vanishing equation of motion
in the absence of body forces for isotropic heterogeneous
initially stressed elastic layers M; and M, under initial stress

(Biot 1940) can be, respectively given for j = 1 and 2 as

o ( w\ 0 [ dv\ Py

— L — L L L= L 3
o ("J 6x> & <“f az> 2o PR ®)
whereas the non-vanishing equation of motion in the
absence of body forces for isotropic homogeneous elastic
half-space (M3) is given by

vy s *vs
“3W+“3a_z2:”3?' (4)

For plane wave propagating in the x-direction with

common velocity ¢ and wave number k, we may consider
the solution for Eqgs. (3) and (4) in the form

Vj(xvzv t) = VJ’(Z)eik()FCt)v (5)

where above solution corresponds to layers and half-space
(M), (M) and (M5) for j =1, 2 and 3.

In light of Egs. (3, 5), for uppermost heterogeneous
layer (M, )(for j = 1) result in

d’v c? P

dZZ1 s 1 2e2mz 1+ (ll) Vi =0, (6)
(8" 21

where " =\ [u") /p}1).

Now, setting X; = e™ %, Eq. (6) yields

v, 14dv, p?

——t——+ P - )i =0 7

o2 XX <1 x2)" @

where 6, = kc/nlﬁ(ll), Cg” = P1/2,u<11) and p; =
ky/1— C(ll)/nl.
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Solution of Eq. (7) may be obtained as
V] = A1Jp] (51en1z) + B]Y[,] (516”12), (8)

where J,, and Y, are the Bessel functions of the first kind
and second kind, respectively, of order p;, with A; and B,
being arbitrary constants.

Therefore, the expression of non-vanishing displace-
ment component for the uppermost heterogeneous layer
(M) may be written as

vi = [A1Jy, (81€"7) + By Y, (81€"%)] =0, (9)

In the similar fashion expression for non-vanishing
displacement component for the intermediate heteroge-
neous layer M, may be obtained as

vy = [C1,(8:26") + Dy Y, (52™7) |01, (10)
where J,, and Y, are the Bessel functions of the first kind
and second kind, respectively, of order p, with C; and D

being the arbitrary constants. Some newly introduced
symbols appearing in Eq. (10) are as follows:

B =\l 0 = ke fml) ) = P 21
and pr=ky/1— cg')/nz.

With aid of Eq. (5), Eq. (4) (for j = 3) associated with
M5 takes the form

avs 5,
d—Zz—krV3= 5 (11)
where r = /1 — (¢/f;)* and B, = \/13/p3.

Now, the appropriate solution for the Eq. (11) may be
written as

Vi = Ee ™t (12)

where E is an arbitrary constant.
Therefore, non-vanishing displacement component for
the lower half space M3 can be expressed as

vy = Eefkrzeik(xfct)' (13)

Boundary conditions

1. The upper surface of the uppermost heterogeneous
layer (M) is stress free, i.e.

d
W =0 at z=—h, (14)
0z

2. The stress and displacement components are continu-

ous at the common interface of the uppermost (M)
and intermediate heterogeneous layers (M,), i.e.

@ Springer

6v1 avz
— == at z=0 15
vi=v, at z=0, (16)

3. The stress and displacement components are continu-
ous at the common interface of the intermediate
heterogeneous layer (M;) and isotropic half space
(M3), i.e.

sz 61@

lor =g at 2=y, (17)

voa=v3 at z=hs. (18)

Using Eqgs. (9), (10) and (13) in the boundary conditions
(14-18)yields

AiJy (61e7""M) 4+ B, Y, (81¢7") =0, (19)
wV8iny [AIJ;,] (61) +BiY,, (51)]

— 1 0am | €1y, (62) + DY), (82)], (20)
AJy, (01) + BiYy, (01) = CiJp,(02) + D1Y,,(02), (21)
,u<21>52n2 {ClJ[’,2 (62¢™") + D, Y[',2 (528”2}12)}

= —kruzEe "™ (22)
C1J,,(02€"™) + D, Y,, (52e™") = Ee™*™. (23)

Eliminating arbitrary constants
Ay, By, C;, Dy and E from the Egs. (19-23) the dis-

persion relation is obtained as

Ry _ ﬂ§1)51n1 [Mgl)52n2R3 + krusRa)
R, ﬂ§1)52n2 [ﬂ(zl)5zn2Rs + krusRe)

(24)

where the new terms R;(j = 1, 2...6) appearing in Eq. (24)
contain Bessel functions and are defined in the “Appendix
I”.

Special case

When both of the superficial layers become homogeneous,
i.e. inhomogeneity is absent in the two superficial layers,
derived dispersion relation (24) must be further simplified
for n — 0 and n, — 0 and will be undertaken using
Debye asymptotic expansion.

Now, considering n; — 0 and n, — 0 leads to ; —
oo and 6, — oo. Further, it is to be noted that for large
values of v, we have the following Debye asymptotic
expansions (Watson 1958):

Jy(vsec ) ~ cos(vtan@—v@—z),

y7 tan 0 4
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2
Y, (vsec ) ~\/vntangsin(vtan9 —v0 — g)

Above asymptotic expansions can be used for the
function appearing in Eq. (24) to yield the following:

[‘]171 (5leinlhl)yﬂl (51) - YP] (éleinlhl )JPI (51 )}
~ —2sin[p (tan ¢; —tan ;) — pi(¢P; — ¢,)]
7p1y/tan ¢, tan ¢, ’
[‘Il’z (526n2h2)YP2 (52) - Y.Dz (52en2h2)‘lpz (52)]
~ —2sin[py(tan ¢5 — tan ¢y) — pa(¢p3 — dy)]
Tpr+/tan ¢ tan ¢y ’

75, (1), (81) = ¥y, (01, (1)
~ 2sin ¢, cos[pi (tan ¢, — tan ;) — pi(P; — ,)]
7p1y/tan @, tan ¢, ’
[ (02621, (52) ¥y ("), (52)]

~ 2 sin ¢4 cos|py(tan 5 — tan ¢,) — pa(dhs — ¢4)]
-J;] (51€—n1h1 )YPI (51) - Y;l (5le—n1h1 )Jm (51)}

" —2singy coslpr(1an gy — tan ) — pr(gh — )]
7p14/tan ¢, tan ¢p, '
1, (026" ) Y, (82) = Yy, (026" (52)]
 —2sind; cos[ps(tan ¢ — tan ¢y) — pa(Ps — ¢4)]
Tp2/tan ¢ tan ¢y ’
5, 1€ Yy (80) = Yy (Bre ) ; (01)]
~ —2sin ¢, sin ¢ sin[p (tan ¢, —tan ;) — pi (¢ — ¢,)]
7p1+/tan ¢, tan ¢, ’

B3, (82677, (62) = ¥}, (62¢), (62)]
~ —2sin ¢5sin ¢y sin[pa (tan 3 — tan ¢,) — pa(P3 — dy)]
Tp2+/tan s tan @, ’

where the relations for newly introduced functions
appearing in above expansions are provided in “Appendix
I”.

Using the above Debye asymptotic expansion, disper-
sion relation (24) reduces to

1 1 1 1 1
Ly 1 sy — (1553)? tan(ksy o)
tan(ks; "h) =~ 0, @ 0 M,

oy py sy sy 4y sy tan(ksy “hy)

where

sV = \/(c/ﬁ(ll))z — 14" and s =
Al

e/ B+

Equation obtained in (25) represents dispersion relation
for SH-type wave propagating in homogeneous double
superficial layers (M; and M), both under the effect of
initial stress, lying over an isotropic half- space (M3).

Case II: when inhomogeneity is caused in double
superficial layers due to exponential variation
in rigidity only

In this case inhomogeneity is considered in double super-
ficial layer due to exponential variation in rigidity only and
the effect of such inhomogeneity on the propagation
characteristics of SH-type wave is analyzed. Assumed

inhomogeneity in this case for the layers (M;) and (M)
may mathematically be expressed as

2) 2z 2 .
,uj = J< )eZijv pj = J( ) (J = 17 2)7 (26)
where u(12> and ,ugz) denote the constants with dimension of

rigidity, pgz) and péz)

of density; /; and /, denote the inhomogeneity parameter,
associated with rigidity of  layer medium
(M) and (M;), respectively.

In view of Egs. (1) and (26), the non-vanishing equation
of motion in the absence of body forces for isotropic
heterogeneous initially stressed elastic layers M| and M,
under initial stress (Biot 1940) can be, respectively, given

denote the constants with dimension

forj=1 and 2 as
Pj 62\/]' azvj a,uj a\/j 62vj
sttt =0, J=1,2
(“f 2) w2 ht e e 1T
(27)

and non-vanishing equation of motion in the absence of
body forces for isotropic homogeneous elastic half-space
(M3) is given by Eq. (4).
Now, we may consider the solution of Egs. (27), as (5).
Then equation of motion (27) with the aid of Eq. (5) for
the uppermost heterogeneous layer M; (for j = 1) results in

d? dv 2
—VZI e
dz dz (/3<1 ))2

(28)
where fi7 = [ul? ol and (P =Py [ 2.
On substituting Vi = /&V] with & = ¢ 9% and 51 = 21},

in Eq. (28), we obtain
1dv/  k? 21 2\ 1
il ()
(29)

d& ' Edg +S%
=0.

d*v; Rl ol
(7)€
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Further, using a transformation & = 2kcy/E / s1 [352) in
Eq. (29) following form may be instated:

da*v, 1dv| et
P U il o

where ¢; = \/1 + {k2(1 - C@)/l?}.

The solution of the Eq. (30) may be written as
Vi = Aady (1V/E) + BaYy, (1 V),

where y; = kc/llﬂ<12>, Jg, and Y, are the Bessel func-

tions of the first kind and second kind, respectively, of
order g; with A, and B, being the arbitrary constants, and,
therefore, non-vanishing displacement component for the
uppermost heterogeneous layer (M) may be written as

vi = e ATy, (1€ + BoY, (yye )t (31)

Adopting the similar mathematical treatment expression
for non-vanishing displacement component for the inter-
mediate heterogeneous layer (M,) may be obtained as

V2 = ¢ (Col (120 15) 4 DaXy (12 R, (32)

where J,, and Y,, are the Bessel functions of the first kind
and second kind, respectively, of order ¢, with C; and D,
being the arbitrary constants. Other new symbols appearing
in Eq. (32) are as follows:

B = \JiE [0, = ke J1BY,
& =p /2l g =1+ fe(1-) /8,

For this case also the non-vanishing displacement
component for the lower half space (M3) is given by
Eq. (13).

Using Egs. (13), (31) and (32) in the boundary condi-
tions (14-18), following equations may be instated:

[ll {AZ‘IQI (Vlellh]) + BZYCII (y]el]hl)}

st {aad, (™) 1 Bevy (e} =0,
1 [0 {A2dy, (7)) + BaYy, ()} + iy
{Aa01,(00) + B2y, () }] »
= 15 [1{ Cod s (72) + DaY (1)}
+1272{ Call, (72) + DY, (7).
Axdy, (1) + BaYy, (1) = Cadyy (72) + D2Yy, (72), (35)

@ Springer

15 [1{ Cadyy (72" + D2Y s (120 ”2)}

+10y2{ Col, (12 + DY (e ) ] (36)

= wyEkre "™

e*/2h2 [CZqu (,yze*lzhz) + DZqu (Vzeflzhz)] — Ee*krhz. (37)

Now, eliminating arbitrary constant A,, By, Cy, Dy, E
from the above Eqgs. (33-37), we arrive at the dispersion
relation for the present case as

uPBIRy + 01 (Rs + Ro) + 02Ru)
121 [Ry + 81Rs)
_ (Héz)l%e%”z — p3krly)[R11 4 02R12] + NEZ)l%eZIth‘SZ(RB + 02R4)
= (/,1;2)62]2}[212 — uskr)Ryy + ygz)e2l2h212(52R13

(38)

The newly introduced terms Rq1;(j = 1, 2,...8) in (38)
and are provided in terms of some relation of Bessel
Functions in “Appendix II”.

Special case

For the case, when both the superficial layers are homo-
geneous i.e. when /; — Oandl, — 0.

Now, for l; — 0, and [, — 0 we have y; — co and
y, — 00. Also, the terms Rey;(j =1, 2,...8) of derived
dispersion relation (38) are defined in terms of some rela-
tion of Bessel functions; the corresponding Debye
asymptotic approximations are provided in “Appendix 11”.
The employment of Debye asymptotic approximations in
derived dispersion relation (38) reduces it to

Numr,

tan(ks\hy) (39)

Denr,’

Numr,

= (ks /) [{ (02 — 1 skt
+ (,ttéz))zkzs%e%hz} tan(ksgz)hz) + ,u<22> ,u3k2rs§2)} ,
Denry = (ugz)ll + ,u§2> (ks(lz))z/ll)
[,ugz)kezlzhzs(zz) + ('u§2)126212h2 — pskr) tan(ksgz)hz)}

2
— H <<,ugz)lz> e2hh ,uf),u3krlz> tan(ksg)hz)

+ ,u%kzs%ez'zhz} + u(22> u3k2rs§2)} ,

SENCT I RE I
e/ -1

Since [; — 0 and

with

I, — 0, Eq. (39) finally becomes
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1 sy — (uSs$)? tan(sskh)

WP+ s (o)
(40)

tan(ks(12>h1) =

Equation (40) represents dispersion relation for the
propagation of SH-type wave in initially stressed homo-
geneous isotropic double superficial layer
(M;) and (M;) lying over an isotropic half-space (M3).

Case lll: when inhomogeneity is caused in double
superficial layer due to exponential variation
in rigidity, density and initial stress

The present case discusses the exponential form of varia-
tion (with depth) of rigidity, density and initial stress
associated with the uppermost and intermediate layers
M, and M, of the composite structure. To serve the

purpose, the following form of inhomogeneity are

assumed:

W = 'u]@)e;,-z7 pj = p](_3)eo',-z7 P = P( )e>/z (=1,2),
(41)

where ,uj(-3)(j =1, 2) are the constants with dimension of

rigidity, p”

sion of density, Pf)(j =1, 2) denote the constants with

(j = 1,2) represent the constant with dimen-

dimension of stress, ¢;(j = 1, 2) represents the inhomo-
geneity parameters associated with rigidity and initial
stress and ¢;(j = 1, 2) are the inhomogeneity parameter
associated with density, of the uppermost (M;) and inter-
mediate heterogeneous layer (M), respectively.

In light of Egs. (1) and (41), for j = 1, the non-vanishing
equation of motion for the upper heterogeneous layer (M)
of the considered composite structure, we have,

v, dV1 5 PP

¢y
d2+1 + B +2l-l1 1
:07

(42)
with the phase velocity /3(13) = ,u53) / 9(13) and
Considering 7; = e~2%, Eq. (42) becomes
d*Vi | 4m =2 1dVy
a7z 4nr 7y di
¢ (43)
1
Vi =0.
4h2 (@ /877 - 27:% ] :

where C?) = P(13> / 2,u§3) is the dimensionless initial stress

parameter associated with the uppermost layer (M)
Putting V; = 75'/*"Z, in Eq. (43), we obtain,

&z, 1dz

_+_—
d2;  FdA
2
k 1 2 11—\ 1
% - 512—‘v‘]€2 Czl — leo.
wp® ) 4 \an? 20 )47l
(44)

Substituting %, = (kc / hﬁ?))\/z_ , Eq. (44) leads to

d’z, 14z 2
ot [1—f—,32
A

—12_’_
T
with 53 = [(gl /20 + K2 (1

Z, =0, (45)

/)"

Therefore, the solution for Eq. (45) can be gained as
(46)

V= 2 As ) (@03Y2) + BsY, (2,717)), (46)

where J;, and Y, denote Bessel functions of the first
kind and second kind, respectively, of order s; with

Q) = kc/hlf)’?). A3 and Bj are arbitrary constants.
Hence, the displacement components for the upper
heterogeneous layer (M) is as follows

vi = e 92[As], (Q1e7M7) + ByY,, (Qre 7)) len),
(47)

In order to obtain displacement component for the
intermediate layer (M,), similar steps can be followed.
Therefore, displacement components for the intermediate
layer may be obtained as

V2 = e_gzz/z[C3Js4<QQ€_hzz) + D3 YS4 (.Qze_hzz)]eik(x_d),
(48)

with s5 = [(cy/2)* + K2(1 — g;3>>/hg]1/2, 2y = (cp—
), Q= kc/hzﬁ(;), dimensionless initial stress param-

eter Cf) =

4 /yf) / ,0<23> associated with intermediate layer (M;). Also,

J,, and Y, denote Bessel functions of the first kind and
second kind, respectively, of order s4. C3 and D5 are
the arbitrary constants.

The displacement components for the lower isotropic
half-space (M3), will be same as of the two previous cases,
given by Eq. (13).

Using Egs. (13), (47) and (48) in the boundary condi-
tions (14-18) for the present case, the following relations
may be obtained as

sz) / 2,uf>, dimensionless phase velocity /3(23) =
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A {%Jn (Que"™) + Qe (Qleh'h')}
O o o)

o (49)
,“(12> {A3{%JA‘1 (1) + th"];l (Q')}

+ B {2, (@) + @Y, (2)}]

= #§2> {C3 {%J.vz(gz) + thzJéz(Qz)}

+ Dy {%2 Y, (2) + thzxgz(gz)” .

A3l (1) + B3Y,, (1) = C3J,,(22) + D3Y,, (£2,),  (51)
,uze’;z’”/z {CS{%JSZ(Q2€7h2h2)

+Qaline M, (@ae )} 4 Ds
{% Y, (Qze_hzhz) + Qylipe oM Y;2 (Qge_r’zhz) H
= kru3Ee’k"h2,
e 2 {Cal, (Qe™™) + DsY, (Qae™) } = Ee™™.
(53)

The elimination of the
A3a B3; C37 D3

(ll(3)/lt(3)) (c1/2)°Ris+ {Qi e (Ris+Ri7)/2} + (21 71) Rig
L (¢1/2)Ri5+ Q1 hiR1s

arbitrary  constants
and E yield the following relation:

H;S)(Qz/z)sz + {Hé”@zgzhz(l?zo + Ry )/2} + /l?)(thz)szz + pi3kr€2haRoy

{M?)ew'2 (62/2)+ /13kr}ng + /1?)67’”’2 Q' haRy
(54)

Equation (54) represents dispersion relation for SH-type
wave propagating double superficial layers
(M;) and (M;), having exponential form of variation
associated with each of the rigidity, density and initial
stress of the two layers, lying over an isotropic half-space.
The terms R4y (j =1, 2,...8) appearing in Eq. (54) are
new and provided in the “Appendix II1”.

Special case

When the two layers (M;) and (M) become homoge-
neous, i.e. which  require ¢ — 0, G, — 0
and oy — 0, o, — 0, the dispersion equation for this
case can be obtained with the aid of Debye asymptotic
expansions.

Now, for ¢y — 0, ¢y =0 and o, — 0, g — 0, we
have 7; — oo and 7, — oo. The relations in terms of
Bessel functions are involved in the terms R14+j(j =
1, 2,...8) of deduced dispersion relation (54). Further in
view of Debye asymptotic expansions, stated in the “Ap-
pendix III”, the dispersion relation reduces to
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Ni
tan(ks(14>h1 )= 1

Denrsy’
where
Numry = ks§4)
[ugeh2h2{(g§/4) + k*s3} tan ksyhy — ,u2,u3k2rsz],

Denry = {(ci/4) + K57 } [ €™ ((c2/2) + ks2)
— 1 tokr tan ksy i)

(c1/2) [ugehzhz{(gg/@ + kzsg} tan ks, hy — ,u2u3k2rsz] ,

with s(13) = \/(c//)’(l3))2 -1+ C(13),
s = \/(c/ﬂ(23))2 —1+¢Y.

Sinceg; — 0 and
Eq. (54) becomes

¢, — 0 therefore, in this view,

1 st — (1555 ran(kss o)

3) (3).(3) .3 3) (3).3 3 :
ST+ 1 e )

(55)

tan(ks<13)h1) =

The above Eq. (55) constitutes the dispersion relation
for the SH-type wave propagating in initially stressed
homogeneous double layer (M; and M;) lying over an
isotropic half-space (M3).

Case IV: when inhomogeneity is caused in double
superficial layer due to linear variation
in rigidity, density and initial stress

The present study considers the linear form of variation
accompanying rigidity, density, initial stress of the upper-
most layer (M;) and intermediate layer (M;) and are sup-
posed as follows:

=452, o= p (1 + ),

(56)
Pi=PY(1+e2); j=1.2,

where j = 1 and j = 2 denotes distinct parameters corre-
sponding to uppermost and intermediate heterogeneous
layer (M;) and (M,), respectively.

Assuming

= (620 V) (=1,2) (57)

Then, with the aid of Eq. (1) and (57), for j = 1, the
reduced form of equation for the upper heterogeneous layer
(M) may be taken as
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azvl+ P azvl+
,ul azz :u'l 2 axz

(A1
4y \ dz 2 dz?

dz/ll
=P
(58)
In view of (56), Eq. (58) becomes
+ &1z
2 2
c 4) &1
1+EIZ (W) —1+§1 +Z Vi
=0, (59)
where /31 =, /,ul /p(14) and C§4) = <14>/2u§4) are phase

velocity and dimensionless initial stress parameter of the
uppermost heterogeneous layer (M;) of the composite
structure for the present case.

Substituting W in place (1 + &z) in Eq. (59), we obtain
, d*V,
aw?

W} + (a+bWHV, =0, (60)

with a=1/4,b
Further, using V;

= /R)(e /) ~ 1+,
= W4V in Eq. (52), it gives

,d*V, av, -
w3 sz Wlw—F[f](fl — 1)+ (a+bW;)V,=0.
(61)
Choosing ¢, = 1/2 and VEW, = i®,
d’v, av,

i A — @2V, =0, 62
d2<1)2 LT 1 (62)
Thus we can find the solution of Eq. (62) as

V) = Aglo(®1) + B4Ko(®)), (63)

Iy and K, being the modified Bessel function of the first
and third kinds, respectively, of zero order with arbitrary
constants A4 and By.

In view of (63), the solution for the upper heterogeneous
layer (M) may be obtained as

= (1/ Vi) ettt o) 1+ )} (64)

+ ByKo{ (11 /ie1 ) (1 + &12) }]e* =)

2
with 1, = k (c / YY) =1+ (Y

Similarly, solution for the intermediate heterogeneous
layer (M,) can be taken as

- (1/\/@) [Calo{(r2/ie2) (1 + £22)} (65)

+ DaKo{ (12 /ie2) (1 + £22) }]e* ),

with As; and By
2
RCGRI
The terms [3(24) =4/ ,ué“ / p?) and {, = P§4) / 2,u(24) rep-

resent phase velocity and initial stress parameter of the
intermediate heterogeneous layer (M,) for composite
structure.

The displacement components for the lower isotropic
half space (M3) will be given by Eq. (13).

In view of (13), (64) and (65), the boundary conditions
(14-18) yielding following relations may be obtained as

being arbitrary constants and

Aul) L (1 —elhl)} + B4K, [ (1 —slhl)} =0, (66)

\/> ,[A4I (11 /ie1) + B4K), (t]/wl)]

= ,u§4 1) [C4IO lz/lbg + D4K0(l‘2/l&2)} (67)

S [Auly (11 Jie) + BaKy (11 fier)]
\/TC4I [2/l82 +D4K ([2/[82)} (68)

W( +32h2)t2[C41{ (1+?2h2)}

+ DK 2 (14 st}

= —l,u3krE krh27

t t
Iy {Cdo{.—z(l + 82/12)} +D4Ko{-_2(l + 82h2)H
1& L)

— E*krhz .

.\)A

(69)

(70)

Eliminating the arbitrary constants A4, B4, C4, D4 and E
from the relations (66—70) gives the dispersion relation for
the propagation of SH-type wave in the considered
geometry (Case IV) as:

(4) )

1 Rz ) (1 + &xha)Ros + ipskrRos (71)
,u<24>t2 Roy4 u§4)t2(1 + &2h2)Ry7 + ipskrRog ’

where Ry j(j =1,2,...6) are provided in the “Appendix
v>.

Considering following relations

IU(Z) _ efl/iZmJJD(l-Z)7

1 A 72
K,(z) = Eine‘/ﬂ””[Jv(iz) +iY,(iz)]. (72)
the dispersion equation in (71) can be rewritten as
it Ry motr (1 + &) Rsy — pskrRs, (73)
oty Ryo  wota(1 + e2hy)R33 + pzkrRas’
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with all the new terms Rogi;j(j=1,2,..
provided in the “Appendix IV”.
Again, using following asymptotic expansion of Bessel

function, we have
(cos A+ sin d), Yo(4) ~

() ~—
NE ,
0 37 3

zi{(l 1)COSA+(1+ 1)sin}t}

3V TA 22 y! ’
2 1 1

3\/5{( ZA)SIH/L (1+2;v)cosi}.

Using above relations mentioned in (74), we have the
following results:

.6) of Eq. (73)

(cos A +sin 1),

=5
~

Jo(2)

[\.)

Yo(4) =~
(74)

Yo(22)lo(41) = Yo(2a)Jg (%)
-4 '
~ /i [2cos(4y) sin(4;) — 2 cos(4;) sin(4)],
(75)
Y5(22)Jo(A1) = Yo(41)Jo(2)
— [2sin(/) sin(4;) — 2 cos(4) cos(4a)],

S oniiia
Using results of (75), in Eq. (73), we obtain
u(14)t1 tan(4;) — tan(4y)
M(24)f2 1 + tan(/;) tan(4,)

,ug‘)tz(l + exhy){tan(43) — tan (A4)} + pzkr{1 + tan(23) tan(24

wkr{tan(43) — tan(l4)} — ,u2 12(1 + &hp){1 + tan(/3) tan(Ag

taking
&h) /e,

11:l1/81, )u2:l1(1—81h1)/81, i3=l‘2(1+
/2 = ty/ey,which further reduces to

18" pskrty = (1571)* (1 + eahy) tan(12ho)

M(14>/l§4)l1l2 + u(lz)mkrt] (1 + Ezhz) tan(l‘zhz) 7

(77)

tan(tlhl) =

Special case

When both of the upper and intermediate layers becomes
homogeneous, i.e. ¢ — 0, & — 0; then deduced disper-
sion relation in (77) yields

,u2 ,U3k}’t2 — (,ué )l‘z) tan(lzhz)

) @) (2)

tan(r hy) =
Wyl it T usrt tan(lzhz)

(78)

Validation with the classical case

In each case, if intermediate layer of composite structure
vanishes and corresponding initial stress associated with
upper layer is assumed to be absent, which mathematically

may be represented as i, — 0 and gﬁ‘) =0 in Case I,
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hy—»0 and (¥ =0inCaseIl,h, »0 and () =0

in Case M and h, — 0 and {\” =0 in Case IV. Then,
dispersion relation obtained in Egs. (25), (39), (55) and
(77), for Case I, Case II, Case III and Case IV associated
with each of the four distinct cases reduce to

2
tan | kh ¢ [3?) 2—1) _ - /by , (79)
N

forj=1,2,3, and 4, respectively. Equation (79) rep-
resents  classical Love  wave  equation  with

[3@ (: \/ugi)/p1> being the shear wave velocity associ-

ated with uppermost layer for Case j. This validates the
result accomplished in each of the four distinct cases in
view of classical results.

Analysis through numerical results

For the purpose of graphical depicture of the results,
numerical computation has been carried out for deduced
dispersion relations (24), (38), (54) and (73) for the prop-
agation of SH-type wave in composite structure with
inhomogeneous double superficial layers with initial stress
and an isotropic half-space for Cases I, II, III and IV,
respectively. Each of the considered cases deals with a
distinct with form of inhomogeneity viz. when inhomo-
geneity in double superficial layer is due to exponential
variation in density only (Case I); when inhomogeneity in
double superficial layers is due to exponential variation in
rigidity only (Case II); when inhomogeneity in double
superficial layer is due to exponential variation in rigidity,
density and initial stress (Case III) and when inhomo-
geneity in double superficial layer is due to linear variation
in rigidity, density and initial stress (Case IV). The effect
of the inhomogeneity parameters, initial stress parameters
and width ratio associated with the two layers in the
composite structure for each of the four aforesaid cases on
dispersion curve (representing the variation of dimension-

less phase velocity c/ﬁ(c/ﬁgi); =j=1,2,3,4), against

wavenumber, kh;) of SH-type wave has been analyzed and
their pictorial delineation has been accomplished through
Figs. 2a, b, 3a, b, 4a, b, 5a, b, 6a and b.

For simplicity of the graphical representation, we have
considered the following notations for all the figures as
below:

In Figs. 2a, 3a, 4a, 5a and 6a: (1) Case I: replacing ﬁgl)
by f. (2) Case II: replacing ﬂ(lz) by f.
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1"

In Figs. 2b, 3b, 4b, 5b and 6b: (1) Case III: replacing

ﬁ<13> by f. (2) Case IV: replacing /3(1“) by p.
Following data (Gubbins 1990) have been taken into the
account for numerical computation:

For the uppermost layer (M, ):
1 =1 = 1 = 1Y =3.23 x 10" N/m?,
o= 2 = o9 = i~ 2500 K,
for the intermediate layer (M;):

W =1 = 1) = 1Y = 6.54 x 10" N/m?,
2 3 4
oV =pP = pY = pi¥ = 3400 Kg/m?®,

for the lowermost half-space (M3):

3 =29.17 x 10! N/m?,  p; = 5563 Kg/m®.

Moreover, following values (unless otherwise stated)
have also been taken into consideration:

mh; =0.1,02,03; nh =0.1,0.2, 0.3;
lihy =0.1,0.2,0.3; L =0.1,0.2, 0.3;
c,h = 0.13, 0.15, 0.17;

¢ihy = 0.13, 0.15, 0.17;
o1hy = 0.01, 0.02, 0.03;

&hy = 0.13, 0.15, 0.17;
a2hy = 0.01, 0.02, 0.03;

a>hy = 0.01, 0.02, 0.03;
ehy = 0.13, 0.15, 0.17;
M =0,+02;

ethy = 0.13, 0.15, 0.17;
(M =0, £02;

(7 =0,402 ) =0402¢" =0 +02
& =0+02 " =0, £02; V=0 %02

To unravel the effect of different form of inhomogeneity
in uppermost layer due to consideration of Case I, II, III
and IV, Fig. 2a, b has been portrayed. In Fig. 2a curves 1, 2
and 3 reflect the effect of exponential inhomogeneity
parameter (njhy) of the uppermost layer associated with
Case I, whereas curves 4, 5 and 6 are concerned with
variation of exponential inhomogeneity parameter (/;4;) of
uppermost layer associated with Case II, on phase velocity
of SH-type wave. In view of the consideration of very
small value of n h, curve 1 corresponds to the situation of
linear heterogeneity, in close approximation, in density and
rigidity being constant in uppermost layer, whereas for
small value of [1h;, curve 4 realizes the situation of the
uppermost layer to be Gibson layer (Gibson 1967) in close
approximation, as it will correspond to the existence of
linear inhomogeneity in rigidity and constant density. It is
examined through this figure that exponential inhomo-
geneity parameter associated with density (nh;) encour-
ages the phase velocity; on the other hand, exponential
inhomogeneity parameter associated with rigidity (I1/)

(@) 2.0F " " " T T )
: Casel, my by =0.001

. CaseI, ny hl =02

: Casel, mp by =03

: CaseIl, Iy by =0.001

. CzseII, 11 hl =02

. CaseII: 11 hl =03

—
o
T

[ R e
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Fig. 2 Variation of dimensionless phase velocity (c/f8) of SH-type
wave against dimensionless wave number (kh, ) for different values of
distinct heterogeneity parameter of the uppermost layer (M;) a for

CaseI (f = ﬂ(,l)) and Case IT (ff = Bgz)) b for Case III (f = [153)) and
Case IV ( = i)

discourages the phase velocity of SH-type wave propa-
gating in the considered structure.

On the other hand, in Fig. 2b, curves 1, 2 and 3 manifest
the effect of exponential inhomogeneity parameter (ah;)
associated with rigidity and initial stress of uppermost
layer, whereas curves 4, 5 and 6 correspond to the variation
of distinct exponential inhomogeneity parameter associated
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Fig. 3 Variation of dimensionless phase velocity (c¢/ff) of SH-type
wave against dimensionless wave number (kh;) for different values
distinct heterogeneity parameter of the intermediate layer (M) a for

Case I (ff = ﬁ(ll)) and Case II (ff = [3(12)) b for Case III (f = ﬁ(l3>) and
Case IV (f = 5(14))

with the density of the uppermost layer on the phase
velocity of SH-type wave for Case III. Further, curves 7, 8
and 9 represent the influence of linear inhomogeneity
parameter associated with rigidity, density and initial stress
on the phase velocity of SH-type wave in Case IV. It is
exhibited in Fig. 2b that for Case III, exponential inho-
mogeneity parameter associated with rigidity and initial
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Fig. 4 Variation of dimensionless phase velocity (c/f) of SH-type
wave against dimensionless wave number (kh,) for different values
initial stress (comressive/tensile) parameter of the uppermost layer

(M) a for Case I (= [3(11)) and Case II (f = ﬁ(lz)) b for Case III
(B= ;") and Case IV (§ = ")

stress disfavors whereas distinct exponential inhomogene-
ity parameter associated with density favors significantly
the phase velocity of SH-type with increment in their
magnitude. This observed trend in phase velocity of SH-
type wave with concerned inhomogeneity parameter for
Case I1I is found to be fairly compliant with the trend found
for the associated inhomogeneity parameters in Case I and
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Fig. 5 Variation of dimensionless phase velocity (c/f8) of SH-type
wave against dimensionless wave number (kh ) for different values of
initial stress (comressive/tensile) parameter of the intermediate layer

(M) a for Case I (f = [3(11)) and Case II (f = ﬂgz)) b for Case III
p= [323)) and Case IV (f = ﬁ(14))

Case II. However, the magnitude-wise deviation is being
observed. Further, in Case IV, linear inhomogeneity (&;/;)
parameter associated with density, rigidity and initial stress
affects favorably the phase velocity of SH-type wave.
Meticulous examination of curves in Fig. 2a reveals that
the presence of Gibson layer as an uppermost layer in the
considered composite structure supports the phase velocity
of SH-type wave.

1.2¢
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1'0 C L 1 a1 a1 1 U T 1 P T |
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1

0.6 0.8

Fig. 6 Variation of dimensionless phase velocity (c/f8) of SH-type
wave against dimensionless wave number (kh;) for different values of

width ratio a for Case I (§ = ") and Case 11 (8 = ) b for Case
I (8 = ) and Case IV (B = V)

The influence of distinct form of inhomogeneity, which
has been taken into consideration in Cases I, II, III and IV,
for intermediate layer, is demonstrated graphically in
Figs. 3a, b. The variation of inhomogeneity parameter
associated with material property of intermediate layer for
Case I and Case II has been manifested through Fig. 3a,
whereas that for Case III and Case IV has been delineated
through Fig. 3b. Again curve 1 closely represents the linear
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heterogeneity in density and a constant rigidity in inter-
mediate layer as nyh, is taken very small, whereas curve 4
accounts for Gibson intermediate layer for [, being very
small. More precisely, in Fig. 3a, the curves 1, 2 and 3
show the pronounced discouraging influence of exponential
inhomogeneity parameter (nh;) associated with Case I of
intermediate layer on the phase velocity of SH-type wave.
On the contrary curves 4, 5 and 6 show the significant
encouraging effect of exponential inhomogeneity parame-
ter [, h, associated with Case II of intermediate layer on the
same. Again in Fig. 3b, curves 1, 2 and 3 reflect the
favorable effect of exponential inhomogeneity parameter
associated with rigidity and initial stress (g2h,) of inter-
mediate layer, on the phase velocity of SH-type wave, for
Case III. However, curves 4, 5 and 6 account for the dis-
couraging effect of exponential inhomogeneity parameter
associated with density of intermediate layer on the same
for Case III. Besides this, the curves 7, 8 and 9 indicate the
substantial increasing effect of linear inhomogeneity (&/,)
parameter associated with rigidity, density and initial stress
for intermediate layer on the phase velocity of SH-type
wave in Case IV. Subtle analysis establishes that presence
of Gibson layer as intermediate layer in the considered
composite structures discourages the phase velocity of SH-
type wave.

To demonstrate the effect of compressive as well as
tensile initial stress acting in the uppermost layer for Case I
and Case II Fig. 4a is portrayed, whereas for Case III and
Case IV, Fig. 4b is plotted. In Fig. 4a, b, curves 1 and 4
correspond to the presence of tensile initial stress; curves 2
and 5 correspond to the presence of no initial stress; and
curves 3 and 6 indicate the presence of compressive initial
stress in the uppermost layer for the Case I and II,
respectively. On the other hand, in Fig. 4b, curves 1 and 4
represent the presence of tensile initial stress; curves 2 and
5 represent no initial stress; and curves 3 and 6 account for
compressive initial stress, associated with the uppermost
layer, of Case III and Case IV. It is established through
Fig. 4a, b that initial stress acting in uppermost layer has a
disfavoring influence on phase velocity of SH-type wave in
all four aforementioned cases. Specifically, as compressive
initial stress grows in the uppermost layer, phase velocity
of SH-type wave gets decreased, whereas as tensile initial
stress increases in the uppermost layer, phase velocity of
SH-type wave get increased in all four cases.

Figure 5a, b manifests the impact of dimensionless ini-
tial stress parameter associated with intermediate layer of
composite structure for Case I & Case II and Case III &
Case 1V, respectively. The association of the case with the
numbering of curves in Fig. 5a, b follows the same fashion,
which is followed in Fig. 4a, b but for intermediate layer. It
is examined that for intermediate layer, with the growth of
compressive initial stress, phase velocity of SH-type wave
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diminishes, whereas with the growth of tensile initial stress
in the same leads to the increase in phase velocity of SH-
type wave in all four considered cases. Although the same
trend has been exhibited for initial stress acting in the
uppermost layer and intermediate layer for all four said
cases yet the effect in terms of magnitude may easily be
observed.

Effect of width ratio associated with double superficial
layer in the considered composite structure on the phase
velocity of SH-type wave is described graphically for Case
I (Curves 1, 2, 3, 4) and Case II (Curves 5, 6, 7, 8) in
Fig. 6a and for Case III (Curves 1, 2, 3, 4) and Case IV
(Curves 5, 6, 7, 8) in Fig. 6b. In Fig. 6a, b, curve 1 cor-
responds to Case I and Case III, respectively, when there
exists only uppermost layer over half-space (i.e. interme-
diate layer is absent); curve 2 is associated with the Case I
and Case III, respectively, when thickness of the uppermost
layer greater than the intermediate layer; curve 3 associated
with the Case I and III, respectively, when thickness of the
uppermost layer is equal to the thickness of the interme-
diate one; curve 4 is associated with the Case I and III,
respectively, when thickness of the uppermost layer is
smaller than the thickness of the intermediate one; curve 5
corresponds to Case II and IV, respectively, when there
intermediate layer is absent in the considered composite
structure; curve 6 corresponds to Case II and IV, respec-
tively, when thickness of the uppermost layer greater than
the intermediate layer; curve 7 indicates Case Il and IV,
respectively, when thickness of the uppermost layer is
equal to the thickness of the intermediate one and curve 8
is associated with the Case II and IV, respectively, when
thickness of the uppermost layer is smaller than the
thickness of the intermediate one. It is reported from these
two figures that phase velocity of SH-type wave decreases
with the increase in the width ratio of double superficial
layers for all aforesaid cases. Subtle examination of these
curves in both the figures suggest that phase velocity of
SH-type is maximum, when intermediate layer is absent in
the considered composite structure and minimum when
thickness of uppermost layer is less than that of interme-
diate one among all considered cases of width ratio.

The comparative study of all the figures concludes that
the phase velocity of SH-type wave is maximum when
heterogeneity is considered in composite structure as per
case IV and minimum when it is considered as per case III,
among all four studied cases. Besides this, phase velocity is
found to be more when heterogeneity is considered as per
case I as compared to the situation when it is according to
the case II. The meticulous examination of these fig-
ures establishes that the influence of heterogeneity
parameter associated with density dominates over the
effect of heterogeneity parameter associated with rigidity
on the phase velocity of SH-type wave. In addition to this,
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it may be concluded that the linear heterogeneity in the
material properties of the medium favors more to the phase
velocity as compared to the exponential heterogeneity in
material property of the medium. This may be cause due to
the reason that extent of heterogeneity is more in case of
exponential heterogeneity as compared to linear hetero-
geneity and as prevalence of heterogeneity is more in a
medium, phase velocity is greater.

Conclusion

Analysis on the influence of different form of inhomo-
geneity in a composite structure comprised of double
superficial layers lying over a half-space, on the phase
velocity of propagating SH-type wave has been accom-
plished through present study using Debye asymptotic
analysis. Propagation of SH-type wave in a composite
structure has been examined in four distinct cases of
inhomogeneity viz. when inhomogeneity in double super-
ficial layer is due to exponential variation in density only
(Case I); when inhomogeneity in double superficial layers
is due to exponential variation in rigidity only (Case II);
when inhomogeneity in double superficial layer is due to
exponential variation in rigidity, density and initial stress
(Case III) and when inhomogeneity in double superficial
layer is due to linear variation in rigidity, density and initial
stress (Case IV). Closed-form expression of dispersion
relation has been obtained for all four aforementioned
cases. Numerical computation has been carried out to
graphically demonstrate the effect of inhomogeneity
parameters, initial stress parameters as well as width ratio
associated with double superficial layers in the composite
structure for each of the four aforesaid cases on dispersion
curve. Meticulous examination of distinct cases of inho-
mogeneity and initial stress in context of considered
problem has been carried out with extensive analysis in a
comparative approach. Following points may be encapsu-
lated through the analysis undertaken in present paper:

1. Dispersion equations of SH-type wave have been
deduced in closed-form through analytical treatment
with extensive application of Debye asymptotic analysis
for all four said cases and they are found in well-
agreement with the classical Love-wave equation as well.

2. The substantial effect of wave number has been
reported on phase velocity of SH-type wave in all
four said cases. Phase velocity decreases significantly
with the increase in wave number.

3. It may be stated through the comparative study of Case
I and Case II that, the influence of heterogeneity
parameters associated with rigidity is of opposite
nature to the influence of heterogeneity parameters

associated with density, accompanying either of the
superficial layers M;and M, are of the conflicting
nature. More precisely, the influence of heterogeneity
parameter present in the upper layer follows a com-
pletely opposite trend in contrast to that of the
intermediate layer for each of Case I and Case II.
Comparative study of Case Il and Case IV empha-
sized that linear form of inhomogeneity (Case III)
assumed in both the superficial layers favors the phase
velocity of SH-type wave, However, the inhomogene-
ity contributing to exponential variation in correspond-
ing density of each of the two superficial layers
disfavors the phase velocity of SH-type wave. On the
other hand, the exponential form of inhomogeneity
existing in the upper layer and intermediate layer,
accompanying rigidity and that of initial stress favors
and disfavors the phase velocity significantly.

It can be stated through minute contemplation of all four
cases that the phase velocity of SH-type wave is
maximum when heterogeneity is considered in com-
posite structure as per case IV and minimum when it is
considered as per case III, among all four studied cases.
Besides this, phase velocity is found to be more when
heterogeneity is considered as per case I as compared to
the situation when it is according to the case II

The meticulous examination carried out in comparative
manner establishes that the influence of heterogeneity
parameter associated with density dominates over the
effect of heterogeneity parameter associated with rigid-
ity on the phase velocity of SH-type wave. In addition to
this, it may also be concluded that the linear hetero-
geneity in the material properties of the medium favors
more the phase velocity as compared to the exponential
heterogeneity in material property of the medium.

It is revealed that the presence of Gibson layer as an
uppermost layer in the considered composite structure
encourages, whereas presence of Gibson layer as an
intermediate layer in the considered composite struc-
ture discourages the phase velocity of SH-type wave.
It is established that as compressive initial stress grows
in the uppermost as well as intermediate layer, phase
velocity of SH-type wave gets decreased, whereas as
tensile initial stress increases in the uppermost as well
as intermediate layer, phase velocity of SH-type wave
gets increased in all four said cases.

It is reported that phase velocity of SH-type wave
decreases with the increase in the width ratio of double
superficial layers for all aforesaid cases. Subtle examina-
tion establishes that phase velocity of SH-type is max-
imum, when intermediate layer is absent in the considered
composite structure and minimum when thickness of
uppermost layer is less than that of intermediate one
among all considered cases of width ratio.
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The earth is considered to be consisting of a sequence of
horizontal layers bearing different elastic properties. The — p2tan¢; = -1+ Cz )
study of propagation of seismic waves is done extensively

to predict and understand the behavior of the earth’s inte- ¢ nzhz
. . P2 tan ¢4 1 —1 + Q/Q )
rior. Therefore, the present study may find its worthy ,3(2 )2 ))2
applications in the sphere of seismology, engineering
geology, earthquake engineering and geophysics: specifi- £ /1= Cz
cally, in the problems affiliated to waves and vibrations (3 — bs) ~nohy
through heterogeneous media. ( (1))2 -1+ Cz
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