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Abstract The use of seismic direct hydrocarbon indi-

cators is very common in exploration and reservoir

development to minimise exploration risk and to opti-

mise the location of production wells. DHIs can be

enhanced using AVO methods to calculate seismic

attributes that approximate relative elastic properties. In

this study, we analyse the sensitivity to pore fluid

changes of a range of elastic properties by combining

rock physics studies and statistical techniques and

determine which provide the best basis for DHIs.

Gassmann fluid substitution is applied to the well log

data and various elastic properties are evaluated by

measuring the degree of separation that they achieve

between gas sands and wet sands. The method has been

applied successfully to well log data from proven

reservoirs in three different siliciclastic environments of

Cambrian, Jurassic, and Cretaceous ages. We have

quantified the sensitivity of various elastic properties

such as acoustic and extended elastic (EEI) impedances,

elastic moduli (Ksat and Ksat–l), lambda–mu–rho method

(kq and lq), P-to-S-wave velocity ratio (VP/VS), and

Poisson’s ratio (r) at fully gas/water saturation scenar-

ios. The results are strongly dependent on the local

geological settings and our modeling demonstrates that

for Cambrian and Cretaceous reservoirs, Ksat–l, EEI, VP/

VS, and r are more sensitive to pore fluids (gas/water).

For the Jurassic reservoir, the sensitivity of all elastic

and seismic properties to pore fluid reduces due to high

overburden pressure and the resultant low porosity. Fluid

indicators are evaluated using two metrics: a fluid indi-

cator coefficient based on a Gaussian model and an

overlap coefficient which makes no assumptions about a

distribution model. This study will provide a potential

way to identify gas sand zones in future exploration.

Keywords Statistical rock physics � Extended elastic

impedance � Probability density function � 1D marginal

distribution � Histogram � Chi angle

Introduction

Statistical rock physics analysis is normally employed to

combine physical equations and statistical methods in

reservoir characterization studies constrained by seismic

data. One of the aims of statistics combined with rock

physics is to map and predict the heterogeneities and

complexities in petrophysical measurements and seismic

attributes due to reservoir fluids. Therefore, the utiliza-

tion of statistics in rock physics is getting to be more

and more recurrent (Avseth et al. 2005; Tarantola 2005;

Doyen 2007; Grana and Rossa 2010; Connolly and

Hughes 2014; Grana 2014; Baddari et al. 2016). The

uncertainties caused by the natural heterogeneities aris-

ing in real data can be estimating by building
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probabilistic frameworks around the theoretical or

empirical relationships between reservoir and elastic

properties. Grana et al. (2015) used statistical methods

for facies classification by plotting Gaussian likelihoods

(1D marginal distribution) and 2D confidence intervals

(2D joint distributions) for various lithologies such as

shale, limestone, and sandstone. Connolly (1999) exhi-

bits the litho-fluid discrimination at shale/brine sand and

shale/oil sand interfaces by portraying Gaussian proba-

bility function for acoustic (AI) and elastic (EI) impe-

dances for shale, brine, and oil sands. These methods

show that probability density functions of hydrocarbon

and brine sand facies can help to define the direct

hydrocarbon indicators sensitivity to pore fluids.

The use of direct hydrocarbon indicators (DHIs) from

seismic data is very common in hydrocarbon prospecting

and exploration strategies. Many seismic attributes have

been proposed to enhance DHIs, most based on AVO

behaviour (Aki and Richards 1980). These includes

lambda–mu–rho (LMR) method (Goodway et al. 1997),

pore space modulus (Hedlin 2000), difference in bulk (Ksat)

and shear (l) modulus (Batzle et al. 2001), elastic impe-

dance (Connolly 1999) later modified as extended elastic

impedance (Whitcombe et al. 2002), generalized fluid term

(Russell et al. 2003), Poisson impedance (Quakenbush

et al. 2006), and P-wave attenuation and dispersion (Khalid

and Ahmed 2016). However, their discrimination strength

varies reservoir to reservoir depending on local geological

settings and control to the field data (Castagna and Smith

1994; Ahmed et al. 2015). Dillon et al. (2003) defined the

fluid indicator coefficient (FIC) as the difference in mean

values of attributes related to each pore fluid divided by the

standard deviation of hydrocarbons saturated attribute.

Higher FIC value is representative of better litho-fluid

discrimination and has edge of taking into consideration as

universally (best indicator) for all fluid-saturated rocks

(Ahmed et al. 2016).

The objective of this work is to find the best direct

hydrocarbon indicators (DHIs) for three siliciclastic reser-

voirs: the Khewra sandstone (Cambrian), the Datta For-

mation (Jurassic), and the Lower Goru Formation

(Cretaceous), all onshore Pakistan. The fluid substitution

analysis is performed using the well data and considers two

different pore fluids, gas, and brine. In the current study,

we first have applied Gassmann fluid substitution (1951)

and then compute probability density functions (pdfs) of

the different rock physics properties to determine the

optimum fluid indicators. Histograms of data sets super-

imposed by probability density functions are also displayed

to verify the effectiveness of Gaussians models. We cal-

culate the fluid indicator coefficients (FICs) to quantify the

results. FICs and overlap coefficients are used also to find

the best chi angles for extended elastic impedance for each

reservoir.

Geological descriptions of reservoir rocks

The total sedimentary basinal area of Pakistan is about

827,000 km2 and of which 10–20% has been explored. Up

to June 2009, 221 out of 742 drilled exploration wells were

hydrocarbon discoveries and 934 million barrels oil and 54

trillion cubic feet of gas have been exploited so far (Hy-

drocarbon Development Institute of Pakistan 2008; Pak-

istan Petroleum Information Service 2009).

Tectonically Pakistan is divided into three main basins:

Baluchistan, Pishin, and Indus Basins, of which the Indus

Basin is the largest and the only hydrocarbon producing

basin in Pakistan. The Indus basin is subdivided into Upper

(Kohat and Potwar sub Basins) and Lower (Central and

Southern) Indus Basins (Kadri 1995). The Lower Indus

Basin has the highest rate of discoveries in a succession of

reservoir rock in small tilted fault blocks (Jamil et al.

2012).

For our current study, the Cambrian Khewra sandstone

and the Jurassic Datta Formation are located in the Upper

Indus Basin, while the Cretaceous Lower Goru Formation

is from the Lower Indus Basin Pakistan (Fig. 1).

The Cambrian Khewra sandstone is an assemblage of

thick clastic sediments well exposed in the Salt Range,

Potwar area (sub-Basin in Upper Indus Basin). The Salt

Range and its adjacent areas show the continental system

tract and Baqri and Baloch (1991) has inferred deltaic

environment of deposition for the Khewra sandstone. The

Khewra Sandstone is proven reservoir in the Upper Indus

Basin and has produced hydrocarbons at different fields as

Rajian, Chak Naurang, and Adhi fields. The Khewra

sandstone is also well developed in Punjab Platform (PPF)

and encountered in different wells such as Bijnot-1 with

average porosity 15%, Fort Abbas-1 (porosity about 14%),

Suji-1 (porosity is about 10%), and with 6% porosity in

Bahawalpur East 1 (Raza et al. 2008). However, no

hydrocarbon discovery has been made in the southeastern

part of PPF, and therefore, the reservoir characteristics

have not been studied in detail.

The Lower Jurassic Datta Formation constitutes a sig-

nificant reservoir horizon in the western Potwar and Kohat

sub-Basin, where it is encountered in several oil–gas wells

at the depth of more than 4 km (Kadri 1995; Shams et al.

2005). It shows a prograding deltaic facies sequence, and

on the basis of proportion of sandstone detrital minerals,

Datta Formation has been classified as quartzarenites. The
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Fig. 1 Tectonic map of Pakistan. The distribution of reservoir rock in the Upper and Lower Indus Basin is also highlighted
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Datta Formation is principally comprised of fine-to-coarse-

grained sand particles interstratificated with shales.

Therefore, it has both source and reservoir rock potential.

In Dhulian, the Meyal, and Toot fields located in the Pot-

war Plateau, Datta Formation has produced more than 15

hundred million barrels of oil, while the successful

exploratory wells of Chanda and Mela fields in Datta sands

in Kohat sub-Basin have made it more significant (Zaidi

et al. 2013).

Clastic sediments of the Lower Goru Formation of Early

Cretaceous are high-volume producers of oil, gas, and

condensate in different parts of the Lower Indus Basin

(Fig. 1). The Lower Goru Formation is a major plays that

has contributed almost 14% of total oil and gas discoveries

(Hussain et al. 2017). The Lower Indus Basin has a high

success rates from a series of discoveries in comparatively

small faulted blocks in the Lower Goru Formation.

Recently, efforts are being made to target the stratigraphic

traps in the Lower Goru Formation with some marginal

success in the Lower Indus Basin. The sands of Lower

Goru are primarily deposited in (lower shoreface to inner

shelf settings) shallow marine environment and, therefore,

have excellent reservoir characteristics (Baig et al. 2016).

Methods and theory

In this section, the mathematical theory of rock physics

model and statistical algorithm to compute probability

density function is described. The rock physics model

permits us to calculate the elastic properties and seismic

velocities from material properties such as mineralogical

composition, porosity, fluid saturations and types, etc.

derived from well logs by petrophysical evaluation. The

effect of reservoir fluids on elastic parameters (elastic

moduli) is determined by applying fluid substitution. Once

we have calculated the elastic properties, seismic veloci-

ties, and density as a function of pore fluid types using fluid

substitution modeling, the probability density function of

the fluid indicators is estimated. The quantitative method-

ological framework consists of three parts: (1) petrophys-

ical evaluation of reservoir zones; (2) fluid substitution

workflow and numerical formulation of computed fluid

indicators; and (3) probability density function (pdf) and

calculation of fluid indicator coefficients.

Petrophysical characterization of reservoir rocks at

Cambrian, Jurassic, and Cretaceous stages has been per-

formed using available wireline log measurements of three

different wells drilled in these three successions. The input

wireline logs data used for present work consist of caliper,

natural gamma ray (GR), density (RHOB), sonic transit

time (DT), latero log shallow (LLS) and deep (LLD),

spontaneous potential (SP), neutron porosity (NPHI), etc.

along with temperature data, geological formation tops,

and mud filtrate resistivities. Using numerical formulas

described below, the derived logs of shale volume (Vsh)

P-wave velocity (VP), S-wave velocity (VS), porosity (/),
and water saturation (Sw) are computed. These input log

measurements and derived logs are presented in results

(Fig. 3).

Natural gamma ray measurements are used to identify-

ing and quantify shale volume. First, using GR measure-

ments, linear gamma ray index (IGR) is estimated, and then,

substituting linear gamma ray index further into non-linear

shale volume presented by Clavier et al. (1984), shale

volume is estimated. These formulas are given below:

IGR ¼ GRlog � GRmin

GRmax � GRmin

ð1Þ

Vsh ¼ 1:7� ð3:38� ðIGR þ 0:7Þ2Þ0:5; ð2Þ

where GRlog, GRmin, and GRmax are gamma ray log,

gamma ray minimum, and maximum values in the zone of

interest, respectively.

P-wave velocity log (VP) is derived using sonic transit

time (Dt) into the relation specified below:

VP ðft=sÞ ¼ 1

Dt � 10�6
: ð3Þ

The shear wave logs are not available for these wells,

and therefore, various researchers (Krief et al. 1990;

Gholami et al. 2014) defined algorithm to predict VS. S-

wave velocity is measured from P-wave velocity using

Castagna’s equation (Castagna et al. 1985):

VP ¼ 1:16VS þ 1:36: ð4Þ

Porosity (/) log is computed by averaging density and

neutron log derived porosities (Schlumberger 1997) and

water saturation is estimated using the formulas given by

Archie’s approach (Archie 1942) and Indonesian equation

(Poupon and Levaux 1971) used for clean (Eq. 5) and shaly

sands (Eq. 6), respectively:

Sw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:62

/2:15
� Rw

Rt

s

; ð5Þ

and

1

Rt

¼ S2w
F � Rw

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2�Vsh

sh

FRwRsh

s

S2w
V2�Vcl

sh S2w
Rsh

; ð6Þ

where Sw, Rt, Rsh, and Rw are water saturation, observed

total resistivity, shale resistivity, and formation water

resistivity, respectively. Archie unites formation resistivity
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factor (F) with the resistivity index (Ri = Rw/Rt). The

formation resistivity factor given by Humble’s formula

(F = 0.62//2.15) is the best average for sandstone reser-

voirs (Rider 2002).

Fluid substitution is an essential step in seismic attri-

butes analysis and it allows us to understand how porous

rock behaves seismically when its pore fluid changes.

Gassmann’s equation (1951) gives a very simple relation to

model pore fluid type and saturation effect on saturated

bulk modulus (Ksat). Equations (7a) and (8) present the

convenient form of Gassmann’s relations:

Ksat ¼ Kd � DKd ð7aÞ

DKd ¼
Ko 1� Kd

Ko

� �2

1� /� Kd

Ko
þ / Ko

Kf

; ð7bÞ

and

lsat ¼ ld ¼ l; ð8Þ

where Kd, Ko, and Kf are bulk moduli of dry rock, matrix,

and fluids, respectively, and / is the effective porosity of

reservoir rock. ld and lsat are the dry and saturated rock

shear moduli, respectively, and are not affected by pore

fluid. DKd represents the increment of bulk modulus due to

fluid saturation. The bulk moduli of dry rock, matrix, and

fluids are computed using the set of equations discussed by

Batzle and Wang (1992) and Kumar (2006), while the

effective porosity is estimated from well logs such as

density and neutron. By performing the fluid substitution

modeling at reservoir zones defined by well logs, two sets

of saturated bulk modulus and effective density (q) at two
different scenarios (when fully saturated either with water

or gas) are calculated. This may further be used to calculate

the seismic velocities of P (VP)- and S (VS)-wave velocities

which are directly linked with bulk and shear modulus,

respectively, and given by the following relations as

VP ¼ Ksat þ 4=3l
q

� �1
2

ð9Þ

and

VS ¼ l
q

� �1
2

; ð10Þ

where the effective density (q) is the function of porosity

(/), matrix density (qo), and fluid density (qfl) and is

q = / qfl ? (1 - /) qo.
Using the seismic velocities and saturated bulk modulus,

other rock physics properties such as acoustic impedance

(VP 9 q), Poisson’s ratio ððV2
P � 2V2

SÞ=2ðV2
P � V2

SÞÞ, and
lambda (Ksat–2l/3) are estimated.

Elastic impedance (EI), introduced by Connolly (1999),

is the generalization of AI for non-zero incident angle and

is given by the equation below:

EI ¼ VPðVðtan2 hÞ
P V

ð�8K sin2 hÞ
S qð1�4K sin2 hÞÞ

� �

; ð11Þ

where K is a constant equal to the average value of V2
S=V

2
P .

The original EI formula (Eq. 11) had dimensions, and

hence average values, that changed with angle (theta). This

problem was subsequently fixed by Whitcombe (2002) in

his short note ‘Elastic Impedance Normalization’. He

introduced normalisation constants, so average EI values

remained the same as AI. The extended elastic impedance

(EEI) equation published by Whitcombe et al. (2002) also

includes normalisation constants and is given as

EEI ðvÞ ¼ VPoqo

� VP

VPo

� �ðcos vþsin vÞ
VS

VSo

� �ð�8K sin vÞ q
qo

� �ðcos v�4K sin vÞ
" #

;

ð12Þ

where VPo, VSo, and qo are the constants introduced to keep

the dimensionality the same as AI and are set as the

average values of P-wave velocity, S-wave velocity, and

effective density of reservoir zone, respectively. We have

calculated an average value of K from the normalisation

constants and used single value instead of the variable

K. The variable angle is now replaced with chi angle (v)
which varies between -90� and ?90� and defined as the

rotation angle in intercept–gradient space.

The normal distribution also called Gaussian distribu-

tion is an extremely important continuous probability dis-

tribution very frequently used in theory and practice. If x is

the random variable, the equation of the probability density

function (pdf) of Gaussian distribution is given as

f ðxÞ ¼ 1

s
ffiffiffiffiffiffi

2p
p e

� 1

2s2
ðx�aÞ2 : ð13aÞ

Here, f(x) is the probability density function, which

gives the height of the curve at point ‘x’ (random variable)

and a is the mean of distribution and both can take on any

finite value such as �1 xh i1. Whereas s and s2 are the

standard deviation and variance, respectively, and both

must have some positive values.

To get the easier form of Gaussian distribution equation,

it can be first rearranged as

f ðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffi

2ps2
p e�

1
2

x�a
sð Þ2 : ð13bÞ
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This can be rearranged as

f ðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffi

2ps2
p e

x�a
sð Þ2

� ��1
2

: ð13cÞ

If we consider z equal to how many standard deviations

away from mean ‘(x - a)/s’, then the equation of the

probability density function (pdf) of Gaussian distribution

can be written in simplified form as

f ðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2ez2
p : ð13dÞ

The variance (s2) is the average of the squared deviation

from mean and is calculated using following relation:

s2 ¼
P

ðxi � aÞ2

n� 1
: ð13eÞ

Here, x is random variable with subscript i (may be 1, 2,

3, and so on), a is the mean of all available data points

(random variables), and n - 1 is sample size (n is total

number random variables).

To quantify the sensitivity of each property to pore

fluids, we have calculated fluid indicator coefficients

(FICs). FIC is the difference between the average of the

elastic property of the fully brine-saturated zone (Mbrine)

and of the fully gas-saturated zone (Mgas) divided by the

standard deviation (s) of the gas-saturated zone (Dillon

et al. 2003):

FIC ¼ Meanbrine �Meangas

sgas
: ð14Þ

The fluid indicator coefficient assumes that elastic

properties for the two pore fluids are normally distributed.

To test this assumption, we also measure the overlap

coefficients (or Szymkiewicz–Simpson coefficient) which

describes the overlap between two probability distributions

without requirement of a normal distribution. Suppose X

and Y are two data sets (brine sand facies and gas sand

facies), then overlap coefficient is defined by dividing the

Table 1 Average of numerical values of several petrophysical properties at gross thickness levels for three sandstone reservoirs

Khewra sandstone (Cambrian) Datta formation (Jurassic) Lower Goru formation (Cretaceous)

Depth (m) 2650 4735 2924.5

Reservoir thickness (m) 30 25 12

Effective porosity 0.16 0.12 0.10

Archie Sw (%) 25.09 34.73 58.09

Indonesian Sw (%) 22.09 19.99 45.89

Shale volume (%) 29 21 23

Fig. 2 Histograms with Gaussian distribution curves of gamma ray

values overlaid for a Cambrian succession, b Jurassic sand, and

c Cretaceous sandstone. The shale cut-off line for each reservoir is

different and the value of shale volume varies from 21 to 29%. Shale

has higher values on gamma ray logs and lies within 70–170 API.

Gaussian likelihoods functions for each facies (sand/shale) have been

computed separately

cFig. 3 Basic log measurements including gamma ray (GR), sponta-

neous potential (SP), sonic transit time (DT), density (RHOB),

neutron (NPHI), latero log shallow (LLS), and petrophysically

derived logs such as shale volume (Vsh), P- and S-wave velocities,

effective porosity, and water saturation (Sw) curves are shown. These

curves are computed in the reservoir zone of the entire three cases

understudy a Cambrian succession, b Jurassic sand, and c Cretaceous
sandstone. All the three reservoirs mainly composed of sandstones

(shale volume varies between 21 and 29%), reasonably good effective

porosity (about 10–16%) and high hydrocarbon saturation (55–78%).

The water saturation is computed by both Archie and Indonesian

equations
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size of intersection to the smaller of the size of two data

sets as

Overlap ðX; YÞ ¼ X \ Y jj
min Xj j; Yj jð Þ : ð15Þ

The intersection can be found by taking the minimum of

the two sets for each histogram bin then summing that over

all bins and then dividing that by the total number of

samples for one of the sets (sets are both the same size in

this case). The Szymkiewicz–Simpson coefficient will

equal to one if X is a subset of Y.

Statistical classification of facies and reservoir
fluids (gas/water)

The above-described methodology is applied to the input

well log data and the results are discussed under different

sections.

Facies classification and petrophysical evaluation

One of the essential steps in reservoir characterization is

lithologically based facies classification to recognize the

principal rock types at well locations. In the absence of

depositional and sedimentological models, core analysis,

and outcrop studies, the well log curves (gamma ray and

spontaneous potential) are generally used to define litho-

logic facies (Grana et al. 2015). Rocks with clayey min-

erals have high values of gamma ray log as compared to

clastic and carbonate rocks. The reservoir units comprise of

shale and sandstone (intercalation), and therefore, gamma

ray logs for each reservoir can be used to quantify the

shale, as described in Table 1 and Fig. 2. All three reser-

voir rocks are mainly composed of sandstone with small

amount of clays. Histograms and the overlying frequency

(Gaussian) distribution curves for shale and sand (yellow)

zones are plotted in Fig. 2.

Qualitative and quantitative evaluation of the well logs

is performed and presented in Fig. 3 and Table 1. Fig-

ure 3a–c describes the input log measurements including

gamma ray, sonic, density, spontaneous potential, laterolog

shallow and deep, neutron porosity and derived curves of

shale volume, effective porosity, and water/hydrocarbons

saturation curves Cambrian, Jurassic, and Cretaceous

reservoirs, respectively. The saturation of water in reser-

voir rock is an important parameter that is used for the

evaluation of oil and gas reservoirs and many relations are

available to compute it from well logs (Malureanu et al.

2016). Both the Archie (Archie 1942) and Indonesian

(Poupon and Levaux 1971) equations are used to estimate

the water saturation for the Cambrian succession (Fig. 3a),

Jurassic sandstone (Fig. 3b), and the Cretaceous reservoir

(Fig. 3c). From Fig. 3 and Table 1, it is clear that the

Archie equation overestimates the water saturation in

shaley sandstones. The amount of water saturation (Sw)

rises, where the shale proportion increases, because as

shale volume increases, the true formation resistivity drops

and Sw gets larger. Numerical values of petrophysical

parameters such as effective porosity, permeability, shale

volume, and water saturations for Cambrian-to-Cretaceous

reservoir are given in Table 1.

Direct hydrocarbon indicators

In this section, the performance of various elastic proper-

ties that may be used as the basis for direct hydrocarbon

indicators involved in exploration geophysics is examined.

Using Gassmann’s equation and fluid substitution algo-

rithm described above, the behaviours log curves of dif-

ferent fluid indicators are calculated at two scenarios:

100% brine and 100% gas saturations are shown in

Fig. 4a–c. We analyse the effectiveness of the following

DHIs: EEI, AI, Ksat, Ksat–l, kq, lq, VP/VS, and r for

Cambrian (Fig. 4a), Jurassic (Fig. 4b), and Cretaceous

(Fig. 4c) reservoirs. Seismic AVO methods can be used to

estimate relative attributes proportional to each of these

with the exception of Ksat–l which would require a full

inversion method to estimate absolute values of Ksat and l.
Most of these elastic property curves show good separation

for Cambrian and Cretaceous sandstones. The probability

density functions derived from these are generated and

discussed next.

Extended elastic and acoustic impedances

We first compare the effect of fluid substitution on acoustic

and extended elastic impedances. When using EEI for fluid

identification, it important to select the best chi angle.

Earlier publications have used correlation coefficient to

optimise chi angle (v); however, in the current work, we

have selected the best EEI angles using the fluid indicator

coefficient and the overlap coefficient as described above.

The results of this analysis, which are discussed in more

detail below, show that a chi angle of 26� is optimal for the

Cambrian reservoirs and 25� for the Jurassic and Creta-

ceous reservoirs. The histograms of data points overlying

with Gaussian frequency curves for all three reservoir

sands for gas- and brine-saturated facies are plotted in
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Fig. 4 Derived direct hydrocarbon indicator curves of extended

elastic (EEI) and acoustic (AI) impedances, elastic moduli (Ksat, Ksat–

l, kq, and lq), and P-to-S-wave velocity ratio (VP/VS) and Poisson’s

ratio (r) computed after performing fluid replacement modeling at

reservoir zone of Cambrian (a), Jurassic (b), and Cretaceous (c).
These DHIs are computed at two different saturation levels of 100%

gas and 100% brine

Acta Geophys. (2017) 65:991–1007 999
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Fig. 5 Gaussian frequency curves (GFCs) and underlying histograms

of acoustic (a–c) and extended elastic impedances (d–f) are plotted

for Cambrian, Jurassic, and Cretaceous sands by assuming gas/water

fluids. Strong overlapping of gas and brine sand GFCs (pdfs) indicates

that is not a good discriminator. EEI provides maximum

differentiation between pore fluids as compared to acoustic

impedance. Probability density functions and underlying data fre-

quencies for EEIs are plotted at different chi angles for all cases. The

best values of chi angles are selected after testing range of values

Fig. 6 Gaussian functions of extended elastic impedance for brine

and gas populations at different chi angles (v) are plotted. After

testing range of values of chi angles, the best chi angle for Cambrian

sand (v * 26�) is defined, and at v * 26�, extended elastic

impedance shows complete separation between brine and gas facies.

The overlap coefficient for EEI at each chi angle is also given and has

zero values at v * 26�
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Fig. 5. There is less area of overlap between gas- and

water-saturated sand facies for EEI than AI. It clearly

indicates that in all three cases, the extended elastic

impedance is more sensitive to pore fluid types and

changing saturations. However, the ability to separate the

gas–water sand facies varies for each geological setting

because of variations of reservoir porosity, mineralogical

composition, compaction, etc. From Fig. 5a–f, it clear that

EEI is always better than AI in all three reservoirs Cam-

brian, Jurassic, and Cretaceous sands. The Gaussian

function and histograms for extended elastic impedance are

computed and plotted at chi angle 26� (for Cambrian sand)

and 25� (for Jurassic and Cretaceous sands), as shown in

Fig. 5d–f.

An example of how chi angle works to describe the best

option to separate fluids is shown in Fig. 6 for Cambrian

case. At v * 26�, Gaussian models have almost overlap

coefficients equal to zero indicating the best option for

Cambrian sand. The best options verified by plotting chi

angles against fluid indicator coefficients and overlap

Fig. 7 1D state-conditional GFCs and underlying histograms of

saturated bulk modulus (a–c) and difference in saturated bulk

modulus and shear modulus (d–f) assuming that the three reservoirs

are either saturated with gas (red) or water (blue). Both attributes do

not give good separation for Jurassic sandstone and show strong

overlapping of GFCs. Ksat–l gives very good results in case of

Cambrian and Cretaceous sands
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coefficients (a discussion has been made in the last section

of paper).

Elastic moduli

Numerous combinations of rock properties such as elastic

properties and their combinations with effective density

and shear modulus subtracted from saturated bulk modulus

are tested. The bulk volume deformation yielded by the

passage of a compressional wave causes a change in

volume of pore that results in a pressure rise of reservoir

fluids (gas/water). This may stiffen the reservoir rock and

cause a variation in the saturated bulk modulus. In Fig. 7,

Gaussian frequency curves and histograms of data sets of

saturated bulk modulus (Ksat) and Ksat–l (also called Batzle

indicator, as given by Batzle et al. 2001) for the Cambrian,

Jurassic, and Cretaceous reservoirs are plotted. Sensitivity

of Ksat to pore fluids (Fig. 7a–c) is moderate for the

Cambrian sands and weak in the other two cases. Differing

pore fluids has no effect on shear deformation; however,

Fig. 8 Probability distribution curves and histograms of data points

of kq (a–c) and lq (d–f) values for wet (blue) and gas (red) sands for

three different reservoirs which have geological ages from Cambrian

to Cretaceous are shown. Gaussian curves show strong overlapping

for lq data points, while kq is a good gas indicator which specially

shows excellent discrimination in Cambrian reservoirs
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when shear modulus is subtracted from saturated bulk

modulus (Ksat–l), its pore fluid discrimination strength is

increased (Fig. 7d–f). Ksat–l is an excellent fluid discrim-

ination indicator for the Cambrian sand and also works

well for Cretaceous reservoirs. GFCs and histograms of

both elastic properties (Ksat and Ksat–l) strongly overlap in

case of Jurassic sandstone (Fig. 7b, e) and, therefore, do

not work as fluid indicators. From Fig. 7, it is clearly

visualized that there are some cases, where the data are a

bit skewed and the Gaussian model may not be the best, but

overall data fit Gaussian model and it is a reasonable

approach.

The so-called lambda–mu–rho method (Goodway et al.

1997) has been used extensively for fluid and lithology

discrimination. Figure 8 shows the Gaussian frequency

curves for the product of density with lambda (kq) and with
shear modulus (lq). From Fig. 8a–c, it can be inferred that

kq is an excellent gas indicator for Cambrian succession

and works to some extent for the Jurassic and Cretaceous

sands, although there is strong overlapping of Gaussian

Fig. 9 Gaussian likelihoods of P-to-S-wave velocities (VP/VS) and

Poisson’s ratio (r) for brine (blue) and gas (red) saturated and

underlying histograms of data sets of Cambrian, Jurassic, and

Cretaceous sand plays are plotted. Strong overlapping clouds of 1D

marginal distribution (b, e) show poor separation of gas anomalies
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distributions and histograms of data points for the wet and

gas sands (Fig. 8d–f). Shear modulus within the product of

lq does not change with fluid saturation and the GFCs only

change due to the change in density.

P-to-S-wave velocities and Poisson’s ratio

P-to-S-wave velocities ratio (VP/VS) and Poisson’s ratio

(r) are often considered as helpful tools to distinguish

gas-related anomalies. For an isotropic medium, r is

directly related to VP/VS and shows very similar trends.

In Fig. 9, Gaussian frequency curves for both velocity

ratio and Poisson’s ratio of gas and wet zones are plotted

and show very similar trend in all three reservoir plays.

Both indicators also have very similar sensitivity to fluid

discrimination as diagnosed graphically (Fig. 9) and

numerically (Table 2). The small overlapping of Gaus-

sian distribution curves for VP/VS and r shows that they

have a good chance of distinguishing wet sandstones and

gas sandstones in Cambrian (Fig. 9a, d) and Cretaceous

sand plays (Fig. 9c, f). However, in case of Jurassic

reservoir (Fig. 9b, e), both these seismic parameters have

poor chance to separate the gas sand zones as probability

distribution curves strongly overlapped. However, VP/VS

is more sensitive to fluid content than r for all three

reservoirs modeled in this study.

Fluid indicator coefficients and overlap coefficients

Fluid indicator coefficients help to analyse the sensitivity

for each fluid term to discriminate reservoir fluids (gas/

brine) quantitatively. These fluid indicator coefficients for

Cambrian-to-Cretaceous sandstones are plotted in

Fig. 10a–c and their numerical values for each property are

summarized in Table 2. It can be observed that FIC values

of each fluid strongly depend on local geological settings

and, therefore, vary in all three reservoirs. In the case of the

Cambrian sand (Fig. 10a; Table 2), Ksat–l, VP/VS, r, and
EEI (v) have much higher FICs than all other fluid indi-

cators which imply that these ones can easily be utilized to

distinguish gas zones. Among the four seismic and elastic

properties, EEI (v) is most sensitive to pore fluid types. For

Jurassic sand, except EEI (v), all other rock physics indi-

cators have very poor sensitivity to pore fluid content and

have lower FICs values, as described in Fig. 10b and

Table 2. The reason behind lower FICs may be that the

Jurassic reservoir lies at the depth of 4735 m and formation

pressure is 56.20 MPa. At lower pressure (higher porosity),

we can have a good chance to identify and differentiate the

gas-saturated sandstones. The values of FICs for Jurassic

sand vary between 0.06 and 1.49 and EEI (v) and kq have

relatively higher values, as shown in Table 2. The perfor-

mance of DHIs in Cretaceous sand is demonstrated in

Fig. 10c and Table 2. Note that acoustic and elastic

Table 2 Numerical values of

means, standard deviations, and

fluid indicator coefficients

(FICs) for each hydrocarbon

indicator calculated at in-situ

conditions are given. The fluid

indicators are evaluated for

three different reservoirs of

Cambrian, Jurassic, and

Cretaceous sandstones. Higher

the values of fluid coefficients

indicate better discrimination

VP/VS Ksat r lq kq Ksat–l AI EEI (v)

Khewra sandstone (Cambrian)

Mean water 1.66 23.86 0.21 39.93 30.96 7.32 10.51 10.55

Standard deviation water 0.02 1.70 0.01 4.96 1.98 0.59 0.53 0.098

Mean gas 1.63 21.88 0.19 38.07 24.98 5.35 10.04 10.03

Standard deviation gas 0.01 1.99 0.005 5.02 2.31 0.25 0.60 0.036

FICs 4.58 0.99 4.18 0.37 2.59 8.01 0.79 14.21

Datta sandstone (Jurassic)

Mean water 1.63 23.87 0.19 41.13 25.37 5.34 10.25 10.27

Standard deviation water 0.07 4.13 0.04 14.83 5.03 2.02 1.59 0.45

Mean gas 1.63 23.60 0.19 36.10 21.64 5.08 9.51 9.53

Standard deviation gas 0.06 4.28 0.03 15.26 6.11 1.91 1.84 0.48

FICs 0.09 0.06 0.08 0.32 0.61 0.13 0.40 1.49

Lower Goru (Cretaceous)

Mean water 1.60 27.53 0.18 54.94 31.68 5.39 11.86 11.55

Standard deviation water 0.02 3.06 0.01 8.96 3.20 0.66 0.92 0.146

Mean gas 1.59 26.30 0.17 53.32 27.76 4.16 11.55 11.53

Standard deviation gas 0.01 3.25 0.01 9.16 3.53 0.41 1.00 0.066

FICs 1.66 0.37 1.58 0.18 1.11 3.03 0.32 4.80
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properties EEI (v) and Ksat–l yielded excellent results to

discriminate the gas sand zone from water-saturated zone.

Some other properties such as VP/VS and r are obviously

more diagnostic than remaining.

As the name suggests, the overlap coefficients measure

the degree of overlap between two populations or proba-

bility distributions. A smaller overlap coefficient for the

two populations (wet sand and gas sand) indicates good

separation and vice versa. The overlap coefficients for each

property computed at two saturation limits for all the three

clastic reservoirs are plotted in Fig. 10d (Cambrian sand),

Fig. 10e (Jurassic sand), and Fig. 10f (Cretaceous sand)

and their numerical values are given in Table 3. The

overlap coefficient analysis and the FIC analysis are in

good agreement.

Chi angle (v) versus fluid indicator coefficients

and overlap coefficients

Extended elastic impedance is a function of chi, the rota-

tion angle in intercept–gradient space. The value of chi

must be optimised for whatever purpose EEI is being used

Fig. 10 FIC values of different attributes (a–c) for three reservoirs at
the same scale are plotted. Most of the fluid indicators have very low

values of fluid coefficients for Jurassic sands indicating that are less

sensitive to pore fluids (b). Higher the values of fluid coefficients

mean excellent distinguisher of hydrocarbons facies. The overlap

coefficients of brine and gas-saturated data sets for each attribute of

three reservoirs are computed (d–f). The fluid indicators having

higher FICs values show lower overlap coefficients

Table 3 Overlap coefficients (Szymkiewicz–Simpson coefficient) are given for each attribute of three reservoirs. Higher overlap coefficient

values of fluid indicators indicate that both water and gas facies have less chance to distinguish

Overlap coefficients VP/VS Ksat r lq kq Ksat–l AI EEI (v)

Cambrian sand 0.11 0.44 0.10 0.63 0.16 0.02 0.45 0.00

Jurassic sand 0.70 0.69 0.71 0.50 0.47 0.69 0.48 0.45

Cretaceous sand 0.31 0.51 0.31 0.50 0.31 0.12 0.40 0.05

Acta Geophys. (2017) 65:991–1007 1005

123



in the case of fluid discrimination. In this study, we opti-

mised chi by measuring the FICs and the overlap coeffi-

cients for a range of chi values. FIC values and overlap

coefficients for chi angles from 0�–45� are shown in

Fig. 11a, b, respectively. The optimum angles exhibit a

high FIC and a low overlap coefficient and both are in good

agreement.

Conclusions

Quantitative analysis of three siliciclastic reservoirs has

demonstrated that acoustic and elastic property reservoir

rocks are strongly affected by pore fluid types. However,

the sensitivity of the properties varies with the nature of the

reservoir depending on various reservoir properties. Fluid

indicator coefficients (FICs) and overlap coefficients pro-

vide an effective way of determining the degree of sensi-

tivity for a range of elastic properties. Relative changes in

elastic properties can be estimated using AVO techniques,

and hence, an analysis of FICs and overlap coefficients will

show which of these will be most useful as DHIs and will

indicate the potential quality of the DHIs for different

reservoirs. We have also demonstrated that fluid indicator

and overlap coefficients can be used to optimise the

extended elastic impedance chi angle for fluid

discrimination.

In all cases, the optimised EEI proved to bemost sensitive

to changes in pore fluid, but the sensitivity varied consider-

ably between the three reservoirs. The high porosity, shallow

Khewra sandstone of Cambrian age, was most sensitive and

the deeper, lower porosity Jurassic Datta sand the least

sensitive. This study can suggest optimalways to identify gas

sand zones when exploration is carried in the future for the

Cambrian, Jurassic, and Cretaceous reservoirs.
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