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Summary: Numerous methods have been published to segment the infarct tissue in the 
left ventricle, most of them either need manual work, post-processing, or suffer from poor 
reproducibility. We proposed an automatic segmentation method for segmenting the infarct tissue in 
left ventricle with myocardial infarction. Cardiac images of a total of 60 diseased hearts (55 human 
hearts and 5 porcine hearts) were used in this study. The epicardial and endocardial boundaries 
of the ventricles in every 2D slice of the cardiac magnetic resonance with late gadolinium 
enhancement images were manually segmented. The subsequent pipeline of infarct tissue 
segmentation is fully automatic. The segmentation results with the automatic algorithm proposed in 
this paper were compared to the consensus ground truth. The median of Dice overlap between our 
automatic method and the consensus ground truth is 0.79. We also compared the automatic method 
with the consensus ground truth using different image sources from different centers with different 
scan parameters and different scan machines. The results showed that the Dice overlap with the 
public dataset was 0.83, and the overall Dice overlap was 0.79. The results show that our method is 
robust with respect to different MRI image sources, which were scanned by different centers with 
different image collection parameters. The segmentation accuracy we obtained is comparable to 
or better than that of the conventional semi-automatic methods. Our segmentation method may be 
useful for processing large amount of dataset in clinic.   
Key words: myocardial infarction; cardiac magnetic resonance with late gadolinium enhancement; 
automatic scar segmentation

Myocardial infarction (MI), a condition charac-
terized by reduced viability of cardiac myocardium 
due to insufficient blood supply, is a leading cause of 
lethal ventricular tachyarrhythmia (VT) worldwide[1]. 
The presence of MI has an important prognostic and 
therapeutic value as a strong predictor of left ventricle 
remodeling and cardiac dysfunction[2]. Cardiac 
magnetic resonance with late gadolinium enhancement 
(CMR-LGE) has quickly become the standard imaging 
method for the identification of MI in the ventricle[3, 

4]. In the CMR-LGE images, the normal myocardium 
is represented by low signal intensity because of 
the fast gadolinium wash in and wash out, whereas 
the infarcted tissue is represented by high signal 
intensity. Experimental studies have shown that the 
contrast distribution accurately reflects pathology of 
myocardium[5].

CMR-LGE has become the gold standard for 
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assessing the location, transmurality, and composition 
of MI[6, 7]. Although it is a powerful tool to visualize 
the complexity of the MI structure, it does not 
provide insight into the electrical activity of the 
heart, particularly the location of the VT reentrant 
circuits. Recently, computational modeling of hearts 
with ischemic cardiomyopathy has emerged as a 
promising tool to guide patient-specific diagnosis and 
the treatment of associated rhythm disorders[8–10]. This 
patient-specific computational modeling method needs 
accurate reconstruction of myocardial scar geometry so 
as to predict the risk of arrhythmia and the locations of 
re-entrant circuits in patients hearts[9, 11].

There are numerous published methods for 
segmenting infarct tissues in the left ventricle. The most 
frequently used techniques are threshold-based, such as 
the full-width at half-maximum[12] and the n-standard 
deviations[13]. Yet these methods need manual work and 
poor reproducibility, and their segmentation results are 
not ideal. Several semi-automatic or automatic methods 
have been proposed[14, 15], most of which need manual 
work or post-processing, thereby hindering efficient 
image processing for a large number of patients. This 
study aims to propose an automatic and accurate 
segmentation method for segmenting the infarct tissue 
in left ventricle with MI. 

1 MATERIALS AND METHODS

1.1 Data Acquisition Database
This study used cardiac images from a total of 

60 diseased hearts. Three human and five porcine 
datasets were collected from the website Cardiac Atlas 
Challenge http://www.cardiacatlas.org/challenges/
ventricular-infarct-segmentation/. The human data 
(n=3) were from randomly selected patients who had 
a known history of ischemic cardiomyopathy and 
were under assessment for an implantable cardioverter 
defibrillator. The porcine data (n=5) were randomly 
selected from an experimental database of a pre-
clinical model of chronic myocardial ischemia, with 
induced lesions obtained by occluding either the left-
anterior descending or left-circumflex artery. The 
detailed information regarding image acquisition and 
segmentation can be found in the previous published 
literature[14]. 

The rest 52 patients were collected from 
Anzhen Hospital and the First Affiliated Hospital of 
Zhengzhou University, and this study was approved 
by the Institutional Review Board of Beijing Anzhen 
Hospital and the First Affiliated Hospital of Zhengzhou 
University. Informed consents were obtained from all the 
participants. The detailed image acquisition protocol can 
be found in the previous published literature[16]. Briefly, 
cardiac magnetic resonance scans were performed on 
a 1.5T scanner (Siemens Sonata 1.5T, Germany) with 

chest ECG gating and breathhold techniques. Contrast 
agent was injected via ulnar vein under high pressure, 
and the late imaging was performed 15 min after the 
injection. The scanning layer thickness was 8 mm or 
10 mm with FOV between 320 mm × 320 mm and 340 
mm × 340 mm. The final in-plane image resolution was 
between 1.4 mm and 1.75 mm.
1.2 Image Processing Pipelines

All analyses and measurements were carried out 
using custom software developed in Matlab (Mathwords 
Inc., USA). The epicardial and endocardial boundaries 
of the ventricles in every 2D slice of the CMR-LGE 
images were manually segmented by two experienced 
experts. The papillary muscles were excluded from the 
endocardium. The subsequent steps were completely 
automatic, summarized as follows.

Step 1: a classification method based on Gaussian 
mixture model (GMM) was used to segment the 
tissue inside the epi- and endo-cardium boundaries[17, 

18]. The GMM assumes a Gaussian distribution of the 
image intensity of each category of tissue, where each 
category has its own mean intensity and variance. 
The GMM method classifies the tissue into different 
categories by optimally fitting the image histogram 
based on employing an expectation-maximization 
approach. The outcome of the final classified image 
was obtained by assigning each pixel to its most 
likely category (fig. 1A). The final segmented tissues 
included three different categories which were non-
infarct tissue, gray zone and core scar. On the other 
hand, we tested the GMM method to get two different 
categories that included non-infarct and infarct tissue 
(the 2nd column in fig. 1B).

Step 2: the maximal component in each layer 
and the components with pixels more than M% of the 
maximal components were kept. The number M can 
be any number. We chose M=50 in this study because 
we found this number yielded optimal results (the 3rd 
column in fig. 1B).

Step 3: the connected components in each layer 
were calculated, and the components with bigger than 
N pixels were assigned as the final infarct tissue. The 
number N can be any number, we choose 15 in this 
study because we found this number could get the best 
results (4th column in fig. 1B).

Step 4: In order to further segment the infarct tissue 
detected by the GMM-based classification method into 
gray zone and core scar, the maximal (intersitymax) and 
minimal (intersitymin) values of the pixels in the infarct 
tissue were calculated, then the pixels > (intersitymax 
–intersitymin)×Valuethreshold were assigned as core scar, 
and the rest pixels in the infarct area were assigned as 
gray zone. The Valuethreshold was chosen from 10% to 
50% with 5% interval.
1.3 Evaluation Metrics for Segmentation

After analysis of the entire stack of ventricular 
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images, the Dice and volume difference metrics were 
used to evaluate the segmentations. The Dice score 
represents the overlap between the ground truth (the 
segmentation of infarct tissue performed by two experts 
with more than 10 years of CMR image segmentation 
experience) and the segmentation generated by the 
automatic algorithm used in this study. It is defined as 
follows:

Dice=
2(A∩M)

A+M

where A and M denoted automatic algorithm and 
manually segmented regions, respectively.

2 RESULTS

The segmentation results with the automatic 
algorithm proposed in this paper were compared with 
the consensus ground truth. Figure 1A shows the tissue 
classification example of LGE-MRI scanned from one 
human heart into two categories which are non-infarct 
tissue and infarct tissue using the GMM method. The 
first column of fig. 1B shows two slices of the original 
human LGE-MRI. The second column shows the tissue 
classification results using the GMM method with two 
categories. The third column shows the segmentation 
results after applying step 2 in the method section, most 
of the artifacts are removed. The fourth column shows 
the segmentation results after applying step 3, this step 
moves the small clusters of pixels which are artifacts 
formed by fat or blood pool in the apex or base.

Figure 2 shows the segmentation accuracy 
measured by the Dice metric from different image 
sources. We divided the image sources into three 
different categories: the public dataset including 3 
human and 5 porcine MRI scans, Anzhen_Zhengda 
dataset including 52 human MRI scans, and the whole 
dataset including the public and Anzhen_Zhengda 
dataset. The three individual Dice overlaps were as 
follows: All=0.79, Public=0.83, Anzhen_Zhengda=0.79.

Figure 3 shows the segmentation results of another 
human heart by GMM-based classification method 
with two and three categories. The first row of figure 3 
shows four slices of the original human LGE-MRI. The 
second and third rows show the tissue classification 
results using the GMM method with three and two 
categories, respectively. For the GMM method with 
two categories, we applied step 4 in the method section 
to further divide the infarct region into gray zone and 
core scar. We changed the threshold value in the fourth 
step from 10% to 50% with an interval of 5%, and we 
found that 30% was the best value for infarct tissue 
segmentation compared with the GMM method with 
three categories. The fourth row of fig. 3 shows the 
final segmentation after applying step 4.
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Fig. 1 Tissue classification example of LGE-MRI scanned from one human heart into two categories which are non-infarct tissue and
infarct tissue by using the GMM method

Fig. 2 Segmentation accuracy on 3 different datasets using the
GMM method with two categories
The public dataset includes 3 human and 5 porcine hearts. 
The Anzhen_Zhengda dataset includes 52 human hearts, 
and all datasets include the public and Anzhen_Zhengda 
dataset.
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Figures 4–5 and supplemental figures 1–2 showed 
detailed segmentation results of our proposed method 
in 3 patients and 1 porcine MRI scans. Supplemental 
figure 1 shows the segmentation result of one patient 
with high image resolution of 0.625×0.625×2 mm from 
the public dataset; the median value of Dice overlaps of 
these MRI scans was 0.94. The scar tissue segmented 
by our method was very close to the consensus 
ground truth. Figure 4 shows the segmentation result 
of another patient from the public dataset with low 

image resolution of 1.367×1.367×8 mm; the median 
value of Dice overlaps of these MRI scans was 0.73. 
We checked the scar segmentation in the consensus 
ground truth, and found that some pixels with low 
gray values were regarded as scar, and hence the Dice 
value was relatively lower than the high-resolution 
images. Supplemental figure 2 shows the segmentation 
results of one porcine heart from the public dataset 
with an image resolution of 1.718×1.718×6 mm. The 
median value of Dice overlaps of these MRI scans was 

Non-infarct tissue Infarct tissue Gray zone Core scar

Fig. 3 Segmentation results of the LGE-MRI scanned from a human heart by GMM-based classification method with two and three
categories

Fig. 4 Example segmentation of one human heart with low image resolution from the public dataset
The first row shows the consensus segmentation, and the second row shows the segmentation with our method.
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0.92. The pixels of the scar detected by our method 
match well with the consensus ground truth. Figure 
5 shows the segmentation results of one patient from 
Anzhen_Zhengda dataset with image resolution of 
1.367×1.367×9.6 mm. The median value of Dice 
overlaps of these MRI scans was 0.88. The scar 
boundaries detected by our method were similar to the 
consensus ground truth in each slice.

3 DISCUSSION

We proposed a method to automatically detect 
the scar in CMR-LGE images. After segmenting the 
boundary of left ventricle, the subsequent processing 
pipeline was fully automatic without manual work. 
Our method is robust to different MRI sources which 
were scanned by different centers with different image 
collection parameters. The in-plane resolution of 
different MRI scans varies from 0.63 mm to 1.87 mm 
and the out-of-plane image resolution from 2 mm to 
9.6 mm.    

The three categories classification divided the left 
ventricle myocardium into non-infarct tissue, gray zone 
and core scar. The two categories classification divided 
the left ventricle myocardium into non-infarct tissue and 
infarct tissue which included gray zone and core scar. 
For the non-infarct tissue segmentation, there is very 
minor difference between the two and three categories 
classification. The only major difference between the 
two and three categories classification was the infarct 
area. For the three categories classification, the gray 
zone (yellow color in fig. 3) and core scar (blue color in 
fig. 3) were different tissues. But for the two categories 
classification, the gray zone and core scar were merged 
into one tissue which was commonly classified as 
infarct tissue (green color in fig. 3). Numerous methods 
had been published to segment the infarct tissue in the 

left ventricle[14, 19, 20], including manual, semi-automatic 
and fully automatic method, and most of these methods 
were used to predict the whole infarct area, which were 
the same as the two categories classification used in 
this paper. The reason that they didn’t divide the infarct 
area into gray zone and core scar was that there was 
lack of experimental evidence to validate the accuracy 
of the LGE-MRI in segmenting gray zone and core 
scar. So far as we know, only a few published articles 
intended to segment the infarct area into gray zone 
and core scar with histopathology validation[18, 19].
Although the results in these papers demonstrated 
that the comparison between gray zone and core scar 
extent in LGE with the corresponding areas identified 
in histology yielded good correlations, we should 
notice that the late gadolinium-enhancement MRI was 
obtained from ex-vivo hearts. The ex-vivo images had 
very high spatial resolution compared with clinical 
images (0.6 mm vs. 1.7 mm in-plane spatial resolution, 
0.6 mm vs. 10 mm out of plane spatial resolution), thus 
this method should be validated to apply it to the clinical 
image segmentation. So far as we know, no published 
literature directly compared gray zone and core scar 
obtained from clinic LGE-MRI with histopathology 
which is recognized as the golden standard widely. 
Thus, a few studies used computational modeling to 
indirectly validate the segmentation of gray zone and 
core scar obtained from the LGE-MRI[21, 22]. They 
defined the optimal range of infarct tissue threshold 
values to divide it into gray zone and core scar, and 
these threshold values provided best match between 
simulation and experimental/clinic results.

The main reasons we used two and three 
categories of calcification are that: 1) To get direction 
comparison of the infarct tissue segmented by the 
GMM-based classification method with two categories 
with the consensus ground truth; 2) To get indirect 

Fig. 5 Example segmentation of one human heart with low image resolution from Anzhen Hospital
The first row shows the consensus segmentation, and the second row shows the segmentation with our method.
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comparison of the gray zone and core scar segmented 
by the GMM-based classification method with three 
categories. Owning to the main work of this paper 
is image segmentation, we didn’t do computation 
modeling to validate the accuracy of the three 
categories of calcification. Thus, we used the same 
idea of other publications of computational modeling 
to divide the infarct area into gray zone and core scar 
using threshold value method. Then we compared 
the segmentation results with the results segmented 
by GMM-based classification method with three 
categories, which was validated using ex-vivo swine 
hearts. This indirectly validates the segmentation 
of gray zone and core scar obtained from the LGE-
MRI with computational modeling and clinical 
measurements is beyond the scope of this paper.

The second step is used to remove the pixels 
composed of fat tissue or artifacts, which contain many 
pixels. The threshold value of maximal components 
can be adjusted too. We used a threshold of 50% in 
this study. If this value is low, some big artifacts will 
be included, especially the near-apex or base region. 
The third step is used to remove some small clusters of 
pixels formed by noises or blood vessels in some image 
slices which didn’t contain any infarct tissue. The value 
used in this step can be adjusted and we find that 15 
pixels are suitable for the dataset.

We used different datasets to validate the 
efficiency of our method. The dice value of public 
datasets is slightly higher than that of the Anzhen_
Zhengda dataset, and the variance is higher in the 
public dataset. The highest Dice value is from the 
images with resolution of 0.625 mm, the image quality 
is much better than that of the other clinical images. For 
the Anzhen_Zhengda dataset, the Dice value is close to 
that of the public dataset, and the volume difference 
is relatively low too, thus these results show that our 
method is relatively robust for different image sources.

Several automatic or semi-automatic methods 
have been used to segment infarct tissue, which are 
compared in detail in reference[14]. Those method 
used 30 datasets (20 for testing and 10 for training) 
for validation. For the validation in our study, we 
selected 8 datasets from their training dataset and 52 
from Anzhen_Zhengda Hospital. The Dice value in 
the 8 public datasets is close to or better than that of 
the methods listed in the reference (best Dice value 
of 0.85 with MCG method in human datasets, and 
0.86 with AIT method in the pig datasets). The Dice 
values in all the datasets used in this paper are close 
too, with a median value of 0.79. The advantage of our 
method compared with most of the methods listed in 
the reference[14] is that our method is fully automatic 
without requirement of manual work. This advantage is 
desirable when a large number of patients are involved.

Recently, the convolutional neural network method 

has been used for left ventricle scar segmentation, 
showing superior performance to conventional 
methods[20]. This method still needs further testing under 
a variety of conditions, such as a much larger cohort of 
patient images, or different image-scanning machines, 
image qualities, and image scanning parameters.

This study has several limitations. First, it was 
tested only in a small cohort of public datasets. If 
possible, we will collect more datasets from different 
centers scanned with different machines and different 
scan parameters. Second, our method may include 
some false segmentation which may be introduced 
by noise, fat tissue or artifacts from implantable 
cardioverter defibrillator. Third, although our method 
is fully automatic for scar segmentation, it still needs 
manual segmentation of endocardium and epicardium 
in the left ventricle.

In conclusion, we propose a method to 
automatically detect the scar in CMR-LGE images. 
After segmenting the boundary of left ventricle, the 
subsequent process pipeline is fully automatic without 
manual work. The results show that our method is 
efficient to different MRI sources which were scanned 
by various centers with different image collection 
parameters. Our segmentation accuracy is comparable 
to other conventional methods which are semi-
automatic, indicating the efficacy of our method for 
processing a large number of patients in clinical use.
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