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Abstract
We are given a set of indivisible goods and a set of m agents where each good has a 
size and each agent has an additive valuation function and a budget. The budgeted 
maximin share allocation problem is to find a feasible allocation such that the size 
of the bundle allocated to each agent does not exceed its budget, and the minimum 
ratio of the valuation and the maximin share (MMS) value of any agent is as large 
as possible, where the MMS value of each agent is that he can achieve by dividing 
the goods into n bundles, and receiving his least desirable bundle. In this paper, we 
prove the existence of n

3n−2
-approximate MMS allocation and give an instance which 

does not have a ( 3
4
+ �)-approximate MMS allocation, for any � ∈ (0, 1) . Moreover, 

we provide a polynomial time algorithm to find an 1
3
-MMS allocation, and prove that 

there is no ( 2
3
+ �)-approximate algorithm in polynomial time unless P = NP.

Keywords Fair allocation · Maximin-share · Budget constraints

1 Introduction

The fair allocation of indivisible goods has become an increasingly hot topic in both 
mathematics and economics [4, 23]. One of the most representative fair allocation 
problems is the max-min allocation problem [10], which assigns m indivisible goods 
to n heterogeneous agents such that the minimum utility of the agents is maximized, 
where the utility of an agent is the sum of its utilities for the items it receives. After 
nearly two decades of in-depth research, the best possible approximation algorithm 
is still far from resolved [26].
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Budish [12] introduced a novel notion of fair allocation, called maximin share 
(MMS), where the MMS value of an agent is her best guarantee if she is to parti-
tion the goods into n bundles but receives the worst one. Kurokawa et  al. [27] 
conducted in-depth research on maximin share, and since then, maximin share 
has attracted much attention from theoretical computer science and mathematics. 
They also proved that no algorithm can find a maximin share allocation for indi-
visible goods. Therefore, they turned their attention to the approximation guaran-
tee of maximin share. They proved that a 2

3
-MMS allocation always exists. There-

fore, improving the approximate guarantee of maximin share is a direct research 
direction in later research [1–3, 5, 7, 18, 22]. So far, for the additive valuations, 
the best approximation guarantee is 3

4
+

3

3836
 [3] and the best inapproximation 

result is 39
40

 [16]. Finding the best possible �-approximate MMS allocation for any 
instance is still open [4].

In a real environment, each agent may have additional constraints, such as con-
nectivity, cardinality, matroid, geometric, separation, budget, and conflict con-
straints [29]. In a company, when assigning goods (tasks) to agents (employees), 
each good has a size (working time) and each agent has a budget (total processing 
time) constraint. As the maximin share allocation [12], it is desirable to find the 
best possible �-approximate MMS allocation to ensure agent satisfaction. This 
motivates us to study the budgeted maximin share problem, where we are given a 
set of m indivisible goods and a set of n agents. Each good g has a size s(g), and 
each agent i has an additive valuation function v and a budget bi . The budgeted 
maximin share allocation problem is to find a feasible allocation such that the 
bundle allocated to each agent i does not exceed its budget bi , and the minimum 
ratio of the valuation and the maximin share (MMS) value of any agent is as large 
as possible, where MMS value of each agent is that he can achieve by dividing 
the goods into n bundles, and receiving his least desirable bundle.

Somewhat surprisingly, both the budgeted maximin share allocation problem 
and the budgeted max-min allocation problem (which can be defined similarly) 
has not been studied before. Obviously, the budgeted maximin share allocation 
problem generalizes the maximin share allocation [27] and the maximin share 
allocation under cardinality constraints [11]. However, classical methods, includ-
ing bag-filling and round-robin methods [4], cannot be directly applied to budget 
constraints. In this paper, we propose some existence results and present a pol-
ynomial time approximation algorithm based on the modified bag-filling algo-
rithm. The main results can be seen in Table 1.

The structure of the paper is as follows. In Sect.  2, we introduce the related 
works in detail. In Sect.  3, we introduce the symbols and related concepts. In 
Sect. 4, we give the existence results of approximate MMS allocation. In Sect. 5, 

Table 1  Our results Lower bound Upper bound

Existence n

3n−2
 (Corollary 2) 3

4
 (Theorem 1)

Polynomial 1

3
 (Theorem 5) 2

3
+ � (Theorem 4)
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we present a polynomial time algorithm to find 1
3
-MMS allocation. Finally, we 

draw conclusions and discuss future research directions.

2  Related works

If bi = +∞ for each agent i, the budgeted maximin share allocation problem is 
exactly the maximin share allocation [12]. Kurokawa et  al. [27] demonstrated 
that exactly MMS may not exist, but 2

3
-approximate MMS is guaranteed to exist. 

Amanatidis et  al. [5] proposed a ( 2
3
− �)-approximation guaranteed polynomial 

time algorithm. Barman et  al. [7] proposed a 2
3
-approximation guaranteed poly-

nomial time algorithm. Ghodsi et al. [22] proposed a ( 3
4
− �)-approximation guar-

anteed polynomial time algorithm. Garg et al. [18] proposed a ( 3
4
+ o(1))-approxi-

mation guaranteed polynomial time algorithm. Recently, Akrami et  al. [1, 3] 
improved the existence guarantee to ( 3

4
+min{

1

36
,

3

16n−4
}) and ( 3

4
+

3

3836
) . Further-

more, Akrami et al. [2] proved the existence of a randomized allocation such that 
each agent obtains 3

4
 her MMS value (ex-post) and (17

√
3 − 24)∕4

√
3 her MMS 

value (ex-ante).
If s(g) = 1 for each good g, the budgeted maximin share allocation problem is 

exactly the maximin share allocation under cardinality constraints. Biswas et al. 
[11] demonstrated that 1

3
-approximate MMS can guarantee its existence. Hummel 

et al. [24] improved the existence guarantee to 2
3
 and proposed a 2

3
-approximation 

guaranteed polynomial time algorithm.
The budgeted maximin share allocation problem is closely related to the max-min 

allocation problem [10], which assigns m indivisible goods to n heterogeneous 
agents such that the minimum utility of the agents is maximized. Asadpour and 
Saberi [6] presented an Ω( 1√

n log3 n
)-approximation algorithm based an iterative 

method for rounding a fractional matching on a tree. Saha and Srinivasan [28] 
designed an Ω( 1√

n log n
)-approximation algorithm by using a rounding method based 

on random walks in polytopes. Chakrabarty et  al. [14] designed an Ω( 1

m� logm
)

-approximation algorithm in nO(
1

�

) time for any � ≥ 9 log logm

logm
 . Recently, Ko et al. [26] 

designed an 1
c
-approximation algorithm where c is the maximum ratio of the largest 

utility to the smallest utility of any goods. In addition, Caprara et al. [13] designed 
an 2

3
-approximation algorithm under positive integer capacity for the max-min allo-

cation problem.
The budgeted maximin share allocation problem is also closely related to 

relaxed envy free allocation with budget constraints. Barman et  al. [9] studied 
EFX, which is a stronger concept than EF1, and demonstrated that EFX alloca-
tion always exists for generalized assignment constraints. They also proposed a 
pseudo polynomial time algorithm to calculate EFX and a fully polynomial-time 
approximation scheme to calculate EFX allocation. Wu et al. [31] demonstrated 
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that the maximum Nash social welfare distribution is 1
4
-EF1 and PO. Gan et  al. 

[21] proposed a polynomial time algorithm to find the a 1
2
-approximate EF1 allo-

cation with identical additive valuations. Barman et  al. [8] proposed a polyno-
mial time algorithm to find the EF2 allocation with identical additive valuations. 
Garbea et al. [19] studied the EFX allocation of high Nash social welfare for two 
agents and three agents.

3  Preliminaries

For convenience, let [k] = {1, 2,… , k} for any positive integer k. We are given an 
instance I = (N,G, vi, s, b) , where N = [n] is the set of agents, G = {g1, g2,… , gm} 
is the set of indivisible goods, vi ∶ G ↦ ℝ

+ is the value function of agent i ∈ N , 
s ∶ G ↦ ℝ

+ is the size function of goods, and b ∶ N ↦ ℝ
+ is the budget function 

of agents.
For any subset K ⊆ G , let s(K) =

∑
g∶g∈K s(g) be the total size of the goods in 

K, and vi(K) =
∑

g∶g∈K vi(g) be the total value of the goods in K for agent i. An 
n-partial-partition P(i)

= (P
(i)

1
,… ,P(i)

n
) of G is called feasible for agent i ∈ N , if 

∪n
j=1

P
(i)

j
⊆ G , s(P(i)

j
) ≤ bi for any j ∈ [n] , and

where bi is the budget of agent i. Let P(i)(G, n) be the set of all feasible n-partial-par-
titions of goods G for agent i. An important fairness criterion, called maximin share 
(MMS), is first proposed by Budish [12], which is defined as follows.

Definition 1 [12] The maximin share (MMS) value of agent i ∈ N for allocating the 
goods in G is defined as

An allocation A = (A1,A2,… ,An) is called feasible, if ∪n
i=1

Ai ⊆ G , s(Ai) ≤ bi 
for any i ∈ N , and Ai ∩ Aj = � for any i, j ∈ N with i ≠ j , where Ai is the bundle of 
goods assigned to agent i ∈ N.

Definition 2 (�-MMS). For 0 < 𝛼 ≤ 1 , a feasible allocation A is called �-approxi-
mate MMS if vi(Ai) ≥ � ⋅MMSi(G,N) for any agent i ∈ N.

Without causing confusion later, we will abbreviate MMSi(G,N) as MMSi . The 
budgeted maximin share allocation problem is to find an �-approximate MMS 
allocation, such that � is as large as possible.

The user’s MMS value has scale invariance, that is, if the value of an agent 
is multiplied by a factor, then the agent’s MMS value is also scaled by the same 
factor.

P
(i)

j
∩ P

(i)

k
= �, for any j, k ∈ [n] such that j ≠ k,

MMSi(G,N) = max
P
(i)∈P(i)(G,n)

min
j∈[n]

vi(P
(i)

j
).
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Lemma 1 (Scale invariance). [5, 17] Given an instance I = (N,G, vi, s, b) and posi-
tive scale factors di , let I� = (N,G, v�

i
, s, b) be a scaled instance such that

Then, MMS�
i
=

MMSi

di
 for any agent i ∈ [n].

Similar to [4, 5], we have

Lemma 2 (Monotonicity). For any j ∈ N and g ∈ G , MMS
i
(G�{g},N�{j})

≥ MMS
i
(G,N) holds for any agent i ∈ N�{j}.

4  The existence of approximate MMS allocation

As a negative side, we can easily obtain the following results.

Theorem 1 For any 𝜖 > 0 , there exists an instance for the budgeted maximin share 
allocation problem that does not have a ( 3

4
+ �)-MMS.

Proof Consider an instance with N = {1, 2} and G = {g1, g2, g3, g4, g5} . The param-
eters of these agents and goods are shown in Table 2.

The budgets of the two agents are b1 = 11 and b2 = 20 . Obviously, the 2-partial-
partition P

(i)
= ({g1, g3}, {g2, g5}) is feasible for agent 1 and 

min{v1({g1, g3}), v1({g2, g5})} = 1 , implying that MMS1 ≥ 1 . Since v1(G) = 2 , we 
have MMS1 = 1 . Similarly, we can obtain MMS2 = 1 . If v1(A1) > (

3

4
+ 𝜖)MMS1 , we 

have A1 ∈ {{g1, g3}, {g2, g5}, {g1, g5}} . It is easy to verify that v2(A2)

MMS2
≤

3

4
 in any case, 

which implies that the theorem holds.   ◻

For a subset K ⊆ G of goods and an agent i ∈ N , construct an instance (K,  i) for 
the classical knapsack problem [15], whose objective is to find a subset Ki ⊆ K , such 
that vi(Ki) is maximized under the constraint s(Ki) ≤ bi . It is well-known that the knap-
sack problem is NP-hard and admits a fully polynomial time approximation scheme 
(FPTAS) [15]. Let Ki = A(K, i) ⊆ K be subset of items produced by an �-approxima-
tion algorithm A for the instance (K, i) of the knapsack problem, implying that

v�
i
(g) =

vi(g)

di
, for any good g ∈ G and any agent i ∈ N,

Table 2  The parameters of 
agents and goods

g1 g2 g3 g4 g5

Agent 1 3

4

1

2

1

4
0 1

2

Agent 2 1

2

1

2

1

4

1

2

1

4

Sizes 9 9 2 16 2
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where OPT(K, i) = argmaxS⊆K∶s(S)≤bi vi(S) is the optimal solution for instance (K, i) 
of the knapsack problem and � ∈ (0, 1].

Assume that the guessed MMS values are (d1, d2,… , dn) . For convenience, let

for n ≥ 2 . Given an instance I = (N,G, vi, s, b) , a good g ∈ G obtained by scaling 
the users’ valuation functions (i.e., v�

i
=

vi

di
 ) is called ‘large’ for agent i ∈ N if 

v�
i
(g) ≥ � and s(g) ≤ bi . Our algorithm to find a �-approximate MMS allocation 

works as follows. For each agent i ∈ N , if there exists a large good, we can assign g 
to agent i by setting Ai = {g} . By monotonicity, we only need to find a feasible allo-
cation such that each agent receives a bundle with a value of at least � for v′ for the 
remaining agents. Then, let RGt ( RNt ) be the set of remaining goods (agents) at the 
beginning of any iteration t, where t ∈ {0,… , n} . First, find the set 
RN�

t
= {i ∈ RNt ∶ v�

i
(A(RGt, i)) ≥ �} by using the �-approximation algorithm A for 

the classical knapsack problem if there is an agent i ∈ RNt such that 
v�
i
(A(RGt, i)) ≥ � . Let Kit

= A(RGt, it) where it ∈ RN�
t
 is the agent with the smallest 

budget. Then, select goods from the set Kit
 and continuously add them to bag B until 

agent jt believes that the valuation of bag B is at least � . Finally, assign B to any 
agent jt such that v�

jt
(B) ≥ �.

Algorithm 1  Find a feasible allocation depending on (d1, d2,… , d
n
)

(1)vi(Ki) = vi(A(K, i)) ≥ � ⋅ vi(OPT(K, i)),

(2)� =
�

1 + 2� −
2�

n

∈

(
0,

1

2

]
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Theorem  2 In the allocation (A1,A2,… ,An) produced by Algorithm  1, we have 
vi(Ai) ≥ � ⋅ di , for each agent i ∈ N such that di ≤ MMSi.

Proof Let RN = {i|Ai = �} be the remaining agents and 
RG = RG|RN0|−|RN| = G ⧵ (∪n

i=1
Ai) be set of goods at the end of algorithm, as exactly 

one agent receives a bundle of goods at each iteration. Fix an agent i such that 
di ≤ MMSi . By contradiction, we assume that Ai = � , implying that i ∈ RN ≠ � and

following from the choice of Algorithm 1. By the definition of RG0 , we have

By the definition of A and MMSi , we have

where MMS�
i
(RG0,RN0) is the maximin share of agent i according to the valuation 

function v′
i
 , the first equality follows from Lemma  1, the third inequality follows 

from Lemma 2, and the fourth inequality follows from the assumption di ≤ MMSi.
For convenience, let � = |RN0| . Since RG0 ⊇ RG1 ⊇ ⋯ ⊇ RG|RN0|−|RN| , by (3), 

there must exist an iteration

such that

as |RN| ≠ ∅ otherwise it contradicts the assumption. At each iteration 
t ∈ {0, 1,… , �} , let gt be the last good added to B = Ajt

 , implying that

Therefore, we have v�
i
(Ajt

) = v�
i
(Ajt

⧵ {gt}) + v�
i
(gt) < 2𝛽 , and

(3)v�
j
(A(RG, j)) < 𝛽, for any agent j ∈ RN,

v�
i
(g) < 𝛽 or s(g) > bi, for any good g ∈ RG0.

v�
i
(A(RG0, i)) ≥ � ⋅ v�

i
(OPT(RG0, i))

≥ � ⋅MMS�
i
(RG0,RN0)

= � ⋅

MMSi(RG0,RN0)

di

≥ � ⋅

MMSi

di

≥ � ≥ �,

𝜏 < 𝜅 − 1

(4)v�
i
(A(RGt, i)) ≥ 𝛽 for each t ∈ {0, 1,… , 𝜏}, and v�

i
(A(RG

𝜏+1, i)) < 𝛽,

s(gt) ≤ bit ≤ bi, v
�

i
(gt) < 𝛽, and v�

i
(Ajt

⧵ {gt}) < 𝛽.
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As in the last section, let P(i)
= (P

(i)

1
,P

(i)

2
,… ,P(i)

�
) be a �-partial-partition of RG0 

achieving the maximin share of agent i, which means that

where the first inequality follows from the definition of MMSi , the second inequality 
follows from Lemma 2, and the last inequality follows the assumption. Therefore, 
we have

Since RG0 = ∪�

t=0
Ajt

∪ RG
�+1 and Ajt

,RG
�+1 are disjoint, we have

where the second inequality follows from (5) and (7), and the last inequality is due 
to 𝜏 < 𝜅 − 1.

Therefore, there is a bundle P(i)

k
 such that

where the last inequality is due to � ≤ n , and s(P(i)

k
∩ RG

�+1) ≤ s(P
(i)

k
) ≤ bi , which 

implies that OPT(P(i)

k
∩ RG

�+1, i) = P
(i)

k
∩ RG

�+1 and

Clearly, we have

(5)
𝜏∑

t=0

v�
i
(Ajt

) < 2(𝜏 + 1)𝛽.

(6)vi(P
(i)

k
) ≥ MMSi(RG0,RN0) ≥ MMSi ≥ di, for k = 1, 2,… , �,

(7)
�∑

k=1

v�
i
(P

(i)

k
) =

�∑

k=1

vi(P
(i)

k
)

di
≥ �.

�∑

k=1

v�
i
(P

(i)

k
∩ RG

�+1) =

�∑

k=1

v�
i
(P

(i)

k
∩ RG0) −

�∑

t=0

v�
i
(P

(i)

k
∩ Ajt

)

≥

�∑

k=1

v�
i
(P

(i)

k
) −

�∑

t=0

v�
i
(Ajt

)

≥ � − 2(� + 1)�

≥ � − 2(� − 1)�,

v�
i
(P

(i)

k
∩ RG

�+1) ≥ 1 − 2
(
1 −

1

�

)
�

≥ 1 − 2� +
2�

n
,

v�
i
(OPT(P

(i)

k
∩ RG

�+1), i) = v�
i
(P

(i)

k
∩ RG

�+1)

≥ 1 − 2� +
2�

n
.
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where the second inequality follows from (1) and the first equality follows from (2), 
contradicting (4).

Therefore, we have Ai ≠ ∅ . From the choice of algorithm, we have v�
i
(Ai) ≥ � , 

implying that

implies that the theorem holds.   ◻

If di is an accurate MMS value for any agent i ∈ N , i.e., di = MMSi , we have

Corollary 1 In the allocation (A1,A2,… ,An) produced by Algorithm  1, we have 
vi(Ai) ≥ � ⋅MMSi for any agent i ∈ N , where � =

�

1+2�−
2�

n

.

Theorem 3 Algorithm 1 returns a �-MMS allocation and the ratio is tight, where 
� =

�

1+2�−
2�

n

.

Proof According to Corollary 1, Algorithm 1 returns �-MMS allocation. Consider 
n agents, n − 1 + ⌈ 1

�

+ 2 −
2

n
⌉ indivisible goods and a small enough number 𝜖 > 0 . 

The parameters of these agents and goods are as in Table 3.

The budget for each agent i ∈ N is bi = 1 . Obviously, partition ( {g1} , {g2} , ..., 
{gn−1} , {gn,… , g

n−1+⌈ 1

�

+2−
2

n
⌉} ) is feasible n-partial-partition for all agent. Since 

min{vi({g1}), vi({g2}),… , vi({gn−1}), vi({gn,… , g
n−1+⌈ 1

�

+2−
2

n
⌉})} = 1 , we have 

MMSi ≥ 1 . In fact, no other feasible n-partial-partition provides a larger MMS 

v�
i
(A(RG

�+1, i)) ≥ v�
i
(A(P

(i)

k
∩ RG

�+1), i)

≥ � ⋅ v�
i
(OPT(P

(i)

k
∩ RG

�+1), i)

≥ � ⋅

(
1 − 2� +

2�

n

)

= � ⋅

(
1 −

2�

1 + 2� −
2�

n

+

2�

n

1 + 2� −
2�

n

)

= �,

vi(Ai) = v�
i
(Ai) ⋅ di ≥ � ⋅ di,

Table 3  The parameters of 
agents and goods

g1 ... g2 g
n−1 g

n
... g

n−1+⌈ 1

�

+2−
2

n

⌉

Agent 1 1 1 1 1 � � �

Agent 2 1 1 1 1 � � �

⋮

Agent n 1 1 1 1 � � �

Sizes 1 1 1 1 � � �
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value, i.e., MMS1 = 1 . We can verify that when � is small enough, Algorithm 1 
produces a feasible allocation (A1,A2,… ,An) , where at least one user i receives 
one good from {gn,… , g

n−1+⌈ 1

�

+2−
2

n
⌉} . Obviously, we have vi(Ai) = � = � ⋅MMSi , 

implying that the ratio is tight.   ◻

If A is an optimal algorithm for the classical knapsack problem, i.e., � = 1 , we 
have

Corollary 2 There exists a n

3n−2
-MMS allocation for every instance I of the budgeted 

maximin share problem.

5  Polynomial‑time algorithm

Based on the information of MMSi , we have proved the existence of n

3n−2
-approximate 

MMS allocation for the budgeted maximin share problem. However, it is NP-hard to 
compute MMSi . In this section, we try to design a polynomial-time algorithm to find 
an approximate MMS allocation. As a negative side, we can easily obtain the following 
results.

Theorem 4 For any 𝜖 > 0 , there is no polynomial-time algorithm that finds a ( 2
3
+ �)

-approximate MMS for any instance I, unless P = NP.

Proof Assuming that such an algorithm A exists, we show how to use it to solve 
a famous NP-complete problem, called 3-partition problem [20]. Given a positive 
integer p and a set of m = 3n elements where the size of each element is aj such that ∑m

j=1
aj = np , and p

4
< aj <

p

2
 for each j ∈ [m] . The 3-partition problem is to deter-

mine whether there is a partition that divides m = 3n elements into n subsets such 
that each subset contains 3 elements and the size of each subset is exactly p. Then, 
we construct an instance I of the budgeted maximin share problem with m = 3n 
goods and n agents, where s(gj) = aj for each j ∈ [m] , bi = p for each agent i ∈ [n] 
and vi(g) = 1 for each agent i and good g ∈ G . By using A to solve instance I, we 
can obtain a feasible allocation A = (A1,A2,… ,An) with |Ai| ≤ 3 , as p

4
< ai <

p

2
 , and 

bi = p.
If |Ai| = 3 for each agent i ∈ N , all the goods are allocated, implying that 

s(Ai) = p for each i ∈ [n] . Thus, the answer to the 3-partition instance is yes. Moreo-
ver, if the answer to the 3-partition instance is yes, we have MMSi = 3 for each agent 
i ∈ [n] . Therefore, vi(Ai) ≥ (

2

3
+ �) ⋅MMSi = 2 + 3� , implying that |Ai| = 3 . In other 

words, the answer to the 3-partition instance is yes if and only if |Ai| = 3 for all i. 
Therefore, we can solve the 3-partition problem by using algorithm A , contradicting 
the assumption P ≠ NP .   ◻

For any small � ∈ (0, 1) , let A be the fully polynomial time approximation scheme 
for the knapsack problem [15] and � = 1 − � . Let � = 1

5n
 . Therefore, we have
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in Algorithm 1.
Algorithm 2  Finding a feasible 1

3
-approximate MMS allocation in polynomial time 

For budgeted submodular partitioning, Wang et  al. [30] introduced a method 
for finding a n-partial-partition P(i)

= (P
(i)

1
,P

(i)

2
,… ,P(i)

n
) ∈ P

(i)(G, n) of G for agent 
i such that mink∈N vi(P

(i)

k
) ≥

�

n�+1
⋅MMSi , where � is the approximation ratio of the 

greedy algorithm for the classic knapsack problem. However, for the additive util-
ity function, the approximation ratio of greedy algorithms for classical knapsack 
problems is � =

1

2
 . Therefore, we can find a feasible n-partial-partition 

P
(i)
= (P

(i)

1
,P

(i)

2
,… ,P(i)

n
) ∈ P

(i)(G, n) for any agent i in polynomial time such that

For each i ∈ N , let di = (n + 2) ⋅mink∈N vi(P
(i)

k
) . Clearly,

Since di ≥ MMSi , if agent i receives a bundle Ai ≠ ∅ in the allocation (A1,A2,… ,An) 
produced by Algorithm 1, then vi(Ai) ≥ � ⋅ di ≥ � ⋅MMSi . Otherwise, let

and reduce di by multiplying it by a constant factor (1 − �) . In this way, it can 
be ensured that Algorithm  1 produces a nonempty bundle for agent i when 
MMSi ≥ di > (1 − 𝛿)MMSi . Formally, our algorithm is shown in Algorithm 2.

Theorem 5 Algorithm 2 produces a feasible allocation A = (A1,A2,… ,An) in poly-
nomial time with vi(Ai) ≥

1

3
⋅MMSi for any agent i ∈ N.

(8)� =
�

1 + 2� −
2�

n

=
5n2 − n

15n2 − 15n + 5

1

n + 2
⋅MMSi ≤ min

k∈N
vi(P

(i)

k
) ≤ MMSi.

(9)MMSi ≤ di ≤ (n + 2)MMSi, for each i ∈ N.

� =
12n − 5

15n2 − 3n
∈ (0, 1),



 B. Deng, W. Li 

Proof By Theorem 2, for any value di ∈ ((1 − �) ⋅MMSi,MMSi] , we have

which implies that the value of di will not decrease. In other words, 
di ≥ (1 − �) ⋅MMSi for each agent i at the end of Algorithm 2, which implies that

where the first inequality follows from the choice of Algorithm 2, and the last equal-
ity follows from the definitions of � and �.

The initial values of di can be computed in time O(m3 logm) by using the method 
in [30]. Since di is reduced by factor (1 − �) , as in [25], the number of adjustments 
per agent is at most

where the inequality comes from the Maclaurin formula ln(1 − x) = −
∑∞

r=1

xr

r
 , i.e.,

 Thus, the maximum number of iterations required is 
O(n log1−�(n + 2)) = O(n2 log n) = O(m2 logm) , implying that the total running time 
is polynomial in m.

Therefore, the theorem holds.   ◻

6  Conclusion

In this article, we propose a modified bag-filling algorithm to obtain a 1
3
-approxi-

mate MMS allocation for the budgeted maximin allocation problem in polynomial 
time. Designing a polynomial time algorithm to find the best-possible approx-
imate MMS allocation is a very interesting open problem. Another interesting 
direction is to consider utility functions beyond additivity in the model presented 
in this article.
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v�
i
(Ai) =

vi(Ai)

di
≥ �,

vi(Ai) = v�
i
(Ai) ⋅ di ≥ � ⋅ di ≥ � ⋅ (1 − �) ⋅MMSi =

1

3
⋅MMSi,

log1−�

(
1

n + 2

)
=

ln(
1

n+2
)

ln
(
1 −

12n−5

15n2−3n

) ≤

(
1.25n +

13n

4(12n − 5)

)
ln(n + 2),

ln
(
1 −

12n − 5

15n2 − 3n

)
= −

∞∑

r=1

(
12n−5

15n2−3n
)r

r
≤ −

12n − 5

15n2 − 3n
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