
Vol.:(0123456789)

Optimization Letters
https://doi.org/10.1007/s11590-024-02138-5

ORIGINAL PAPER

Minimizing the number of tardy jobs with generalized
due‑dates and position‑dependent processing times

Enrique Gerstl1  · Gur Mosheiov1

Received: 10 July 2023 / Accepted: 2 July 2024
© The Author(s) 2024

Abstract
We study a single machine scheduling problem with generalized due-dates and gen-
eral position-dependent job processing times. The objective function is minimum
number of tardy jobs. The problem is proved to be NP-hard in the strong sense. We
introduce an efficient algorithm that solves medium size problems in reasonable run-
ning time. A simple and efficient heuristic is also introduced, which obtained the
optimal solution in the vast majority of our tests.

Keywords  Scheduling · Single machine · Generalized due-dates · Position-
dependent processing times · Minimum number of tardy jobs

1  Introduction

The single machine model studied in this paper combines two popular features in
scheduling theory: (1) Generalized due-dates (gdd), and (2) Position-dependent job
processing times. In a gdd setting, the due-dates are not job-specific, but the input
contains a sorted set of numbers, such that the j-th number is the due-date assigned
to the job processed in the j-th position. When position-dependent processing times
are considered, the processing time of a given job varies in the most general way as
a function of its position in the sequence. The objective function considered is mini-
mum number of tardy jobs.

Hall [1] introduced the concept of generalized due-dates, and Hall et al. [2] pro-
vided the first set of complexity results for a number of problems considering clas-
sical scheduling measures. Some of the recently published papers dealing with vari-
ous extensions of these gdd models are: Gerstl and Mosheiov [3], Choi and Park
[4], Park et al. [5], Choi et al. [6], Gerstl and Mosheiov [7], Choi et al. [8], Li and
Chen [9], Park et al. [10], Mor et al. [11], Choi et al. [12] and Mosheiov et al. [13,
14]. These papers contain numerous applications of gdd scheduling. An interesting

 *	 Enrique Gerstl
	 enrique.gerstl@mail.huji.ac.il

1	 Present Address: School of Business Administration, The Hebrew University, Jerusalem, Israel

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-024-02138-5&domain=pdf
http://orcid.org/0000-0001-9158-984X

	 E. Gerstl, G. Mosheiov

example from the petrochemical industry was described in the original paper of Hall
[1]. In this setting, a number of interchangeable heat exchangers must be maintained
up to a certain date. The identity of the heat exchangers is immaterial, implying that
the problem can be formulated as a gdd scheduling problem.

Scheduling with position-dependent job processing times is also a wide area
which has been studied by many researchers in the last three decades. Most of the
researchers considered either learning see e.g., Biskup [15, 16], or job deteriora-
tion see e.g., Yin et al. [17] and Huang and Wang [18]. These two settings assume
monotonicity: when a learning effect is considered, the job processing times are
non-increasing as a function of their position, in the case of deterioration, the job
processing times are assumed to be non-decreasing as a function of the job-position.
In this paper we assume position-dependent processing time in the most general
way, i.e., they do not follow any given function, and in particular no monotonicity
is assumed. This general form is justified e.g., in settings consisting of the following
two effects: (1) a learning process (of the scheduler/producer) is valid and as a result
the processing times decrease for jobs performed later in the sequence, and (2) the
entire system deteriorates, which leads to larger processing times of late processed
jobs. In such systems, the impact of the job position on its processing time may
change, and in particular the resulting sequence is not necessarily monotone. Some
examples of studies of scheduling with general position-dependent job processing
times are: Mosheiov [19], Gerstl and Mosheiov [20], Yu et al. [21], Agnetis and
Mosheiov [22], Gerstl et al. [23], Pei et al. [24], Fiszman and Mosheiov [25], Kova-
lyov et al. [26], Yang and Lu [27], Mosheiov et al. [28], Montoya-Torres et al. [29],
and Przybylski [30].

As mentioned, the scheduling measure considered here is minimum number
of tardy jobs. The classical single-machine problem of minimizing the number of
tardy jobs is solved in O(nlogn) time (where n is the number of jobs); see Moore
[31]. Numerous extensions of this problem have been studied since. Some promi-
nent examples are: Ho and Chang [32], Lann and Mosheiov [33], Lodree et al. [34],
Mosheiov and Sidney [35], Mosheiov and Oron [36], Adamu and Adewumi [37],
Allahverdi et al. [38], Aydilek et al. [39], Mor et al. [40], He et al. [41] and Hermelin
et al. [42].

Our paper studies for the first time a setting combining all these features: (1)
Generalized due-dates, (2) Position-dependent job processing times, and (3) The
objective of minimum number of tardy jobs. The single-machine problem combin-
ing features (1) and (3), i.e., Minimizing the number of tardy jobs with generalized
due-dates, is easily shown to be solved in polynomial time as well. Specifically, it
is solved by the Shortest Processing Times first (SPT) policy, i.e., in O(nlogn) time
as well. On the other hand, the complexity status of the single-machine problem
combining all three features was unknown. In this paper we prove that the prob-
lem is strongly NP-hard. Consequently, we introduce first an efficient heuristic of a
greedy nature. Then, an exact solution algorithm is introduced. This algorithm finds
the optimal schedule significantly faster than a standard full-enumeration procedure.

Minimizing the number of tardy jobs with generalized due‑dates…

A numerical study is performed in order to measure (1) The running time required
by the (exact) algorithm, and (2) The percentage of the instances solved to optimal-
ity by the heuristic.

The paper is organized as follows: Sect. 2 contains the notation and the formula-
tion. Section 3 presents the NP-hardness proof. In Sect. 4 we introduce the exact
solution algorithm and the heuristic. The results of our numerical tests are reported
in Sect. 5. Conclusions and some ideas for future research are provided in the last
section.

2 � Formulation

We study a single machine n-job scheduling problem. pjr denotes the processing
time of job j if assigned to position r;j, r = 1,… , n . dr denotes the r-th generalized
due-date, i.e., the due-date of the job assigned to position r , r = 1,… , n.

For a given schedule of the jobs, Cr denotes the completion time of the job
in position r , r = 1,… , n . The tardiness of the job in position r is denoted by
Tr = max

{
Cr − dr, 0

}
, r = 1,… , n . Ur is the tardiness indicator, i.e., Ur = 1 if

Tr > 0 , and Ur = 0 otherwise ( Tr = 0 ). The objective function is minimum number
of tardy jobs:

∑n

r=1
Ur . Hence, the problem studied here is:

3 � NP‑hardness proof

In this section we study the complexity status of the problem.

Theorem 1  : Problem 1���pjr, gdd
���
∑

Ur is strongly NP-Hard.

Proof  The proof is by reduction from 3-Partition.

3-Partition: Consider a set A of positive rational numbers, A =
{
a1, a2,… , a3t

}
 ,

where
∑3t

i=1
ai = t and 1

4
< ai <

1

2
 , i = 1,2,… , 3t . Can the set A be partitioned into t

disjointed triplets, A1,A2,… ,At , such as
∑

i∈Aj
ai = 1, j = 1,2,… , t?

We construct the following instance of the scheduling problem from 3-partition:
There are n = 3t jobs. The position-dependent processing time of job j if assigned

to position r ( pjr, j, r = 1,… , n ) is the following:

1
|||pjr, gdd

|||
∑

Ur

	 E. Gerstl, G. Mosheiov

Let the generalized due-dates be:

The scheduling measure is minimum number of tardy jobs.
The recognition version (RV) of this scheduling problem: Is there a schedule with

no tardy jobs?
We prove in the following that there is a YES answer to 3-Partition if and only if

there is a YES answer to RV.
(⇒ ) Assume first that there is a YES solution to 3-partition. Then, schedule the

jobs of the first triplet A1 in the first 3 positions, the jobs of the second triplet A2 in
the next 3 positions, etc. It follows that the third job is completed at time d3 = 1, the
sixth job is completed exactly at time d6 = 3 , and so on; see Fig. 1. The resulting
sequence contains no tardy jobs.

(⇐ ) Assume now that there is NO solution to 3-partition. It follows that any allo-
cation to triplets contains some with total load strictly smaller than 1, and some with
total load strictly larger than 1. Consider the case that there is a single triplet of each
type: triplet Ak in which the sum of its elements is strictly smaller than 1 (say, 1 − � ),
and triplet Al , in which the sum of its elements is strictly larger than 1 ( 1 + �).

We create a schedule based on this allocation to triplets. Consider first a
schedule in which l < k , i.e., the triplet of jobs Al is processed before the tri-
plet Ak . In this case, the completion time of job 3 l (the last job in this tri-
plet) is 1 + 2 +… l − 1 + l(1 + 𝜖) =

∑l

i=1
i + l𝜀 >

∑l

i=1
i = d3l . Hence,

this schedule contains at least one tardy job, implying a NO solution to
3-partition (Fig. 2). Assume now that the triplet of jobs Al is processed
after the triplet Ak . Assume that there are x triplets between them (i.e.,

pj1 = pj2 = pj3 = aj,

pj4 = pj5 = pj6 = 2aj,

pj7 = pj8 = pj9 = 3aj,

…

pj(3k−2) = pj(3k−1) = pj3k = kaj,

…

pj(3t−2) = pj(3t−1) = pj3t = taj.

d1 = d2 = d3 = 1,

d4 = d5 = d6 = 3,

d7 = d8 = d9 = 6,

⋯

d3k−2 = d3k−1 = d3k =

k∑

i=1

i,

⋯

d3t−2 = d3t−1 = d3t =

t∑

i=1

i.

Minimizing the number of tardy jobs with generalized due‑dates…

l = k + x ). Then, the completion time of job 3l (the last job in triplet Al ) is:
1 + 2 +… k − 1 + k(1 − �) + (k + 1) + (k + 2)+, , ,+(k + x − 1) + (k + x)

(1 + 𝜖) =
∑l

i=1
i − k𝜀 + (k + x)𝜖 =

∑l

i=1
i + x𝜖 >

∑l

i=1
i = d

3l
 . Hence, as above, this

schedule contains at least one tardy job, implying a NO solution to 3-Partition. ■

4 � A heuristic and an exact solution algorithm

Since the problem 1���pjr, gdd
���
∑

Ur is NP-hard in the strong sense, we focus in this
section on the introduction of a simple heuristic and of an efficient exact solution
algorithm. The heuristic (denoted by H) is based on assigning the jobs sequentially
from position 1 to position n . It is of a greedy nature - at each iteration (position),
the shortest possible job is selected. Let G denote the set of unscheduled jobs so far.
Initially, G = {j = 1,… , n} . Let �⃗S denote the resulting job sequence. Clearly, the ini-
tial sequence is empty. In the first iteration, we schedule the shortest job (in the first
position: i = 1 ). The index of this job is denoted by minJobIndex :
minJobIndex = argminj∈G

{
pj1

}
, j = 1,… , n . This job is removed from G :

G = {G�minJobIndex} and added to the job sequence �⃗S in position i = 1 . We repeat
the same job selection procedure (from the unscheduled jobs) for the remaining
positions: positions 2 to n . The following pseudo code introduces in detail:

Fig. 1   A feasible schedule of 3t jobs with no tardy jobs

	 E. Gerstl, G. Mosheiov

Running Time: We consider all n positions. For each position, O(n) jobs are
checked. The calculation of the completion time of the selected job requires constant
time. It follows that the total running time of H is O

(
n2
)
.

We now introduce an exact non-polynomial algorithm (denoted F) that solves to
optimality problem 1���pjr, gdd

���
∑

Ur . The algorithm starts by running H and obtain-
ing a feasible schedule and an upper bound on the optimal number of tardy jobs. The
procedure is based on building partial schedules at each iteration such that a job is
added to the sequence and the number of tardy jobs (so far) and the upper bound are
updated. However, we avoid the evaluation of all n! schedules by discarding partial
schedules when the number of tardy jobs ( minNumOfTardyJobs ) exceeds the current
upper bound. (It should be noted that in the worst case, the algorithm evaluates the
assignment of all jobs to all positions.) After obtaining the initial upper bound,
Algorithm F calls function L that evaluates all options of adding the unscheduled
jobs to the remaining positions.

In the following we introduce Algorithm F and the function L.
Algorithm F F(pjr, dr)

Minimizing the number of tardy jobs with generalized due‑dates…

Special Case 1: Position-independent processing times ( 1�gdd�
∑

Ur).
The special case of position-independent processing times (i.e., the case that

p
jr
= p

j
; j, r = 1,… , n ) was shown to be solved by the SPT (Shortest Processing

Time first) policy; see Hall [1].
Special Case 2: A common due-date ( 1���pjr, dj = d

���
∑

Ur).
A special case of general learning curves with a common due-date was studied by

Mosheiov and Sidney [35], who proved that an optimal solution is obtained in poly-
nomial time. A similar idea can be used for solving the setting of general position-
dependent processing times.

We start by fixing a number k (1 ≤ k ≤ n) . Then we solve the problem of mini-
mizing the makespan of k jobs (out of the original set of n jobs). This problem can be
formulated as a Linear Assignment Problem (LAP), where n jobs need to assigned
to k positions. Thus, the input matrix is of size n × k , and each entry contains the
processing time of job i if assigned to the j-th position ( pij, i = 1,… , n, j = 1,… , k) .
The LAP is the following:

	 E. Gerstl, G. Mosheiov

The result of this LAP, denoted Cmax(k) , is the minimal makespan value of k jobs.
This value is compared to d , and if Cmax(k) ≤ d , then k jobs can be completed on
time (leading to n − k tardy jobs). This procedure is repeated for all k values, and
the largest k for which Cmax(k) ≤ d is the optimal solution. Running time: Each LAP
is solved in O(n3) , the procedure is repeated O(n) , leading to total running time of
O(n4).

5 � Numerical study

We tested numericaly the performance of the exact algorithm F and the heuristic
H. In all our numerical experiments, the job-position processing times were gener-
ated uniformly in the interval [1, pmax = 100] . The generalized due dates were gen-
erated uniformly in the interval [1, dmax = �P] , where P = npmax ( n is the number
of jobs), and � is the tightness factor. We assumed: � = 0.25, 0.5,… , 1.5 . For each

MIN

n∑

i=1

k∑

j=1

Xijpij

S.T.

k∑

j=1

Xij ≤ 1, i = 1,… , n

n∑

i=1

Xij = 1, j = 1,… , k

Xijbinary, i = 1,… , n, j = 1,… , k.

Fig. 2   Average running time of algorithm F as a function of the number of jobs for different tightness
factors (logarithmic scale)

Minimizing the number of tardy jobs with generalized due‑dates…

combination of n and � , 10 instances were generated and solved. [All algorithms
were coded in C, and executed on a Macintosh 2.7 GHz Intel Core i7 and 16 Gb
RAM.]

We first evaluated Algorithm F assuming a small tightness factor: � = 0.25 . In
this part of the numerical study, only small instances were solved (up to 14 jobs),
and all problems were solved to optimality. Table 1 reports the average and worst-
case running time for instances of n = 10,11,… , 14 . Table 1 is limited to instances
of this size because the running time for n = 14 increased significantly and reached
an average of 611 s. Next, the running time of Algorithm F was measured for larger
due-dates densities: � = 0.5, 0.75,… , 1.5 . For these densities, we were able to solve
instances of larger numbers of jobs: n = 10,15,… , 30 . The running times, reported
in Table 2, indicate that instances of up to 25 jobs were solved in few milliseconds.
However, for n = 30 and � = 1 , a single instance was solved in more than 2.7 s. A
logarithmic scale graph of the average running time as a function of the number of
jobs for different tightness factors is provided in Fig. 2. In the last part of the numer-
ical study, the proposed heuristic H was evaluated. The results of H were compared
to those obtained by Algorithm F given an upper bound of 60 s on its running time.
We report that H reached an optimal schedule for a given instance, if the solution
of algorithm H is identical to that obtained by the modified algorithm F (in less
than 60 s). As above, the tightness factors were: � = 0.5, 0.75,… , 1.5 , and larger
instances were solved: n = 10,20,… , 50 . Again, for each combination of n and � ,
10 problems were generated and solved. Table 3 and Fig. 3 provide the number of
times that algorithm H reached an optimal schedule (as a function of the number of
jobs and the tightness factor). Note that H performs well for small- and medium-size
problems: for instances of up to 30 jobs, only in one case (out of 300), the opti-
mum was not obtained by the heuristic. Also, for (relatively) large tightness factor
of � = 1.5 , the heuristic missed the optimum in one case only (out of 250). Based
on these promising results, we believe that Heuristic H can be used in most practical
settings.

Table 1   Average and worst-case
run times (sec) for Algorithm
F with the smallest tightness
factor ( � = 0.25)

Number of Jobs � = 0.25

Average Time Worse Time

10 0.032 0.219
11 0.403 2.550
12 0.844 6.120
13 11.738 216.229
14 611.624 6705.725

	 E. Gerstl, G. Mosheiov

Table 2   Average and worst-case run times (sec) for Algorithm F with different tightness factors
( � = 0.5, 0.75, 1, 1.25, 1.5)

Number
of Jobs

� = 0.5 � = 0.75 � = 1 � = 1.25 � = 1.5

Average
time

Worse
time

Average
time

Worse
time

Average
time

Worse
time

Average
time

Worse
time

Average
time

Worse
time

10 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
15 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.001 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25 0.000 0.002 0.000 0.002 0.000 0.000 0.000 0.002 0.029 0.860
30 0.000 0.004 0.089 2.679 0.004 0.107 0.000 0.004 0.000 0.000

Table 3   Number of
times that algorithm H
reached the optimum with
different tightness factors
( � = 0.5, 0.75, 1, 1.25, 1.5)

Number
of Jobs

Number of Optimal results

T = 0.5 T = 0.75 T = 1 T = 1.25 T = 1.5

10 10 10 10 10 10
20 10 10 10 10 10
30 10 9 10 10 10
40 10 9 10 7 10
50 6 7 7 9 9

Fig. 3   Number of optimal schedules obtained by algorithm H as a function of the number of jobs for dif-
ferent tightness factors

Minimizing the number of tardy jobs with generalized due‑dates…

6 � Conclusion

We studied a single machine scheduling problem to minimize the number of tardy
jobs. The special features considered are: generalized due-dates and general posi-
tion-dependent job processing times. We first proved that the problem is NP-hard
in the strong sense. Hence, a simple greedy heuristic and an exact algorithm were
introduced. Both procedures were tested numerically. The exact algorithm was
shown to be able to handle medium size instances, and the heuristic reached the
optimum in the vast majority of (the larger) instances in our tests.

Since no studies considering both generalized due-dates and general position-depend-
ent processing times have been published, future research may focus on other settings
combining these two features. Challenging options are either other machine settings
(multi-machines or shops), or other scheduling measures. In addition, we note that the
complexity of the problem of minimizing the number of tardy jobs with general position-
dependent processing times (and standard job-dependent due-dates) is still unknown, and
is clearly another possible topic for future research.

Acknowledgements  The second author was supported by The Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation—Grant Number 452470135).

Funding  Open access funding provided by Hebrew University of Jerusalem.

Data availability  All data used in our simulations was generated randomly according to the procedures
described in the numerical study section and are available upon request.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Hall, N.G.: Scheduling problems with generalized due dates. IIE Trans. 18, 220–222 (1986)
	 2.	 Hall, N.G., Sethi, S.P., Sriskandarajah, C.: On the complexity of generalized due date scheduling

problems. Eur. J. Oper. Res.Oper. Res. 51, 100–109 (1991)
	 3.	 Gerstl, E., Mosheiov, G.: Single machine scheduling problems with generalized due-dates and job-

rejection. Int. J. Prod. Res. 55, 3164–3172 (2017)
	 4.	 Choi, B.C., Park, M.J.: Just-in-time scheduling with generalized due dates and identical due date

intervals. Asia-Pacific J. Oper. Res.Oper. Res. 35, 1850046 (2018)
	 5.	 Park, M.J., Min, Y.H., Choi, B.C.: Two-agent scheduling with generalized due dates. Asian J Shipp

Logist 34, 345–350 (2018)
	 6.	 Choi, B.C., Min, Y., Park, M.J.: Strong NP-hardness of minimizing total deviation with generalized

and periodic due dates. Oper. Res. Lett. Res. Lett. 47, 433–437 (2019)
	 7.	 Gerstl, E., Mosheiov, G.: Single machine to maximize the number of on-time jobs with generalized

due-dates. J. Sched. 23, 289–299 (2020)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 E. Gerstl, G. Mosheiov

	 8.	 Choi, B. C., Park, M. J., and Min, Y.: A Just-in-time Scheduling Problem with Generalized Due
Dates and Controllable Processing Times. 한국 SCM 학회지. 20(1), 17–23 (2020)

	 9.	 Li, S.S., Chen, R.X.: Scheduling with common due date assignment to minimize generalized
weighted earliness–tardiness penalties. Optim. Lett. 14, 1681–1699 (2020)

	10.	 Park, M.J., Choi, B.C., Min, Y., Kim, K.M.: Two-machine ordered flow shop scheduling with gener-
alized due dates. Asia-Pacific J. Oper. Res.Oper. Res. 37, 1950032 (2020)

	11.	 Mor, B., Mosheiov, G., Shabtay, D.: Minimizing the total tardiness and job rejection cost in a pro-
portionate flow shop with generalized due dates. J. Sched. 24, 553–567 (2021)

	12.	 Choi, B.C., Kim, K.M., Min, Y., Park, M.J.: Scheduling with generalized and periodic due dates
under single-and two-machine environments. Optim. Lett. 16, 623–633 (2022)

	13.	 Mosheiov, G., Oron, D., Shabtay, D.: Minimizing total late work on a single machine with general-
ized due-dates. Eur. J. Oper. Res.Oper. Res. 293, 837–846 (2021)

	14	 Mosheiov, G., Oron, D., Shabtay, D.: On the tractability of hard scheduling problems with general-
ized due-dates with respect to the number of different due-dates. J. Sched. 25(5), 577–587 (2022).
https://​doi.​org/​10.​1007/​s10951-​022-​00743-9

	15.	 Biskup, D.: Single-machine scheduling with learning considerations. Eur. J. Oper. Res.Oper. Res.
115, 173–178 (1999)

	16.	 Biskup, D.: A state-of-the-art review on scheduling with learning effects. Eur. J. Oper. Res.Oper.
Res. 188, 315–329 (2008)

	17.	 Yin, Y., Wu, W.H., Cheng, T.C.E., Wu, C.C.: Due-date assignment and single-machine scheduling
with generalised position-dependent deteriorating jobs and deteriorating multi-maintenance activi-
ties. Int. J. Prod. Res. 52, 2311–2326 (2014)

	18.	 Huang, X., Wang, J.J.: Machine scheduling problems with a position-dependent deterioration. Appl.
Math. Model. 39, 2897–2908 (2015)

	19.	 Mosheiov, G.: Proportionate flowshops with general position-dependent processing times. Inf. Pro-
cess. Lett. 111, 174–177 (2011)

	20.	 Gerstl, E., Mosheiov, G.: Scheduling on parallel identical machines with job-rejection and position-
dependent processing times. Inf. Process. Lett. 112, 743–747 (2012)

	21.	 Yu, X., Zhang, Y., Huang, K.: Multi-machine scheduling with general position-based deterioration
to minimize total load revisited. Inf. Process. Lett. 114, 399–404 (2014)

	22.	 Agnetis, A., Mosheiov, G.: Scheduling with job-rejection and position-dependent processing times
on proportionate flowshops. Optim. Lett. 11, 885–892 (2017)

	23.	 Gerstl, E., Mor, B., Mosheiov, G.: Minmax scheduling with acceptable lead-times: extensions to
position-dependent processing times, due-window and job rejection. Comput. Oper. Res. Oper. Res.
83, 150–156 (2017)

	24.	 Pei, J., Liu, X., Pardalos, P.M., Li, K., Fan, W., Migdalas, A.: Single-machine serial-batching sched-
uling with a machine availability constraint, position-dependent processing time, and time-depend-
ent set-up time. Optim. Lett. 11, 1257–1271 (2017)

	25.	 Fiszman, S., Mosheiov, G.: Minimizing total load on a proportionate flowshop with position-
dependent processing times and job-rejection. Inf. Process. Lett. 132, 39–43 (2018)

	26.	 Kovalyov, M.Y., Mosheiov, G., Šešok, D.: Comments on “proportionate flowshops with general
position dependent processing times” [Inf. Process. Lett. 111 (2011) 174–177] and “minimizing
total load on a proportionate flowshop with position-dependent processing times and job-rejection”
[Inf. process. Lett. 132 (2018) 39–43]. Inf. Process. Lett. 147, 1–2 (2019)

	27.	 Yang, L., Lu, X.: Two-agent scheduling problems with the general position-dependent processing
time. Theoret. Comput. Sci.. Comput. Sci. 796, 90–98 (2019)

	28	 Mosheiov, G., Sarig, A., Strusevich, V.: Minmax scheduling and due-window assignment with posi-
tion-dependent processing times and job rejection. 4OR 18(4), 439–456 (2020). https://​doi.​org/​10.​
1007/​s10288-​019-​00418-w

	29.	 Montoya-Torres, J. R., Botta-Genoulaz, V., Materzok, N., Gíslason, Þ. P. and Mendiela, S.: Mode-
ling the parallel machine scheduling problem with worker-and position-dependent processing times.
In: IFIP International Conference on Advances in Production Management Systems. pp. 351–359.
Springer, Cham (2021)

	30.	 Przybylski, B.: Parallel-machine scheduling of jobs with mixed job-, machine-and position-depend-
ent processing times. J. Comb. Optim.Optim. 44, 207–222 (2022)

	31.	 Moore, J.M.: An n job, one machine sequencing algorithm for minimizing the number of late jobs.
Manag. Sci. 15, 102–109 (1968)

https://doi.org/10.1007/s10951-022-00743-9
https://doi.org/10.1007/s10288-019-00418-w
https://doi.org/10.1007/s10288-019-00418-w

Minimizing the number of tardy jobs with generalized due‑dates…

	32.	 Ho, J.C., Chang, Y.L.: Minimizing the number of tardy jobs for m parallel machines. Eur. J. Oper.
Res.Oper. Res. 84, 343–355 (1995)

	33.	 Lann, A., Mosheiov, G.: Single machine scheduling to minimize the number of early and tardy jobs.
Comput. Oper. Res.. Oper. Res. 23, 769–778 (1996)

	34.	 Lodree, E., Jr., Jang, W., Klein, C.M.: A new rule for minimizing the number of tardy jobs in
dynamic flow shops. Eur. J. Oper. Res.Oper. Res. 159, 258–263 (2004)

	35.	 Mosheiov, G., Sidney, J.B.: Note on scheduling with general learning curves to minimize the num-
ber of tardy jobs. J Operational Res Soc 56, 110–112 (2005)

	36.	 Mosheiov, G., Oron, D.: Minimizing the number of tardy jobs on a proportionate flowshop with
general position-dependent processing times. Comput. Oper. Res.. Oper. Res. 39, 1601–1604 (2012)

	37.	 Adamu, M.O., Adewumi, A.O.: A survey of single machine scheduling to minimize weighted num-
ber of tardy jobs. J Ind manag optim 10(1), 219–241 (2013)

	38.	 Allahverdi, A., Aydilek, A., Aydilek, H.: Minimizing the number of tardy jobs on a two-stage
assembly flowshop. J. Ind. Prod. Eng. 33, 391–403 (2016)

	39.	 Aydilek, A., Aydilek, H., Allahverdi, A.: Algorithms for minimizing the number of tardy jobs for
reducing production cost with uncertain processing times. Appl. Math. Model. 45, 982–996 (2017)

	40.	 Mor, B., Mosheiov, G., Shapira, D.: Lot scheduling on a single machine to minimize the (weighted)
number of tardy orders. Inf. Process. Lett. 164, 106009 (2020)

	41.	 He, R., Yuan, J., Ng, C.T., Cheng, T.C.E.: Two-agent preemptive Pareto-scheduling to minimize the
number of tardy jobs and total late work. J. Comb. Optim.Optim. 41, 504–525 (2021)

	42.	 Hermelin, D., Karhi, S., Pinedo, M., Shabtay, D.: New algorithms for minimizing the weighted
number of tardy jobs on a single machine. Ann. Oper. Res.Oper. Res. 298, 271–287 (2021)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Minimizing the number of tardy jobs with generalized due-dates and position-dependent processing times
	Abstract
	1 Introduction
	2 Formulation
	3 NP-hardness proof
	4 A heuristic and an exact solution algorithm
	5 Numerical study
	6 Conclusion
	Acknowledgements
	References

