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Abstract
We study a single machine scheduling problem with generalized due-dates and gen-
eral position-dependent job processing times. The objective function is minimum 
number of tardy jobs. The problem is proved to be NP-hard in the strong sense. We 
introduce an efficient algorithm that solves medium size problems in reasonable run-
ning time. A simple and efficient heuristic is also introduced, which obtained the 
optimal solution in the vast majority of our tests.

Keywords  Scheduling · Single machine · Generalized due-dates · Position-
dependent processing times · Minimum number of tardy jobs

1  Introduction

The single machine model studied in this paper combines two popular features in 
scheduling theory: (1) Generalized due-dates (gdd), and (2) Position-dependent job 
processing times. In a gdd setting, the due-dates are not job-specific, but the input 
contains a sorted set of numbers, such that the j-th number is the due-date assigned 
to the job processed in the j-th position. When position-dependent processing times 
are considered, the processing time of a given job varies in the most general way as 
a function of its position in the sequence. The objective function considered is mini-
mum number of tardy jobs.

Hall [1] introduced the concept of generalized due-dates, and Hall et al. [2] pro-
vided the first set of complexity results for a number of problems considering clas-
sical scheduling measures. Some of the recently published papers dealing with vari-
ous extensions of these gdd models are: Gerstl and Mosheiov [3], Choi and Park 
[4], Park et al. [5], Choi et al. [6], Gerstl and Mosheiov [7], Choi et al. [8], Li and 
Chen [9], Park et al. [10], Mor et al. [11], Choi et al. [12] and Mosheiov et al. [13, 
14]. These papers contain numerous applications of gdd scheduling. An interesting 
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example from the petrochemical industry was described in the original paper of Hall 
[1]. In this setting, a number of interchangeable heat exchangers must be maintained 
up to a certain date. The identity of the heat exchangers is immaterial, implying that 
the problem can be formulated as a gdd scheduling problem.

Scheduling with position-dependent job processing times is also a wide area 
which has been studied by many researchers in the last three decades. Most of the 
researchers considered either learning see e.g., Biskup [15, 16], or job deteriora-
tion see e.g., Yin et al. [17] and Huang and Wang [18]. These two settings assume 
monotonicity: when a learning effect is considered, the job processing times are 
non-increasing as a function of their position,  in the case of deterioration, the job 
processing times are assumed to be non-decreasing as a function of the job-position. 
In this paper we assume position-dependent processing time in the most general 
way, i.e., they do not follow any given function, and in particular no monotonicity 
is assumed. This general form is justified e.g., in settings consisting of the following 
two effects: (1) a learning process (of the scheduler/producer) is valid and as a result 
the processing times decrease for jobs performed later in the sequence, and (2) the 
entire system deteriorates, which leads to larger processing times of late processed 
jobs. In such systems, the impact of the job position on its processing time may 
change, and in particular the resulting sequence is not necessarily monotone. Some 
examples of studies of scheduling with general position-dependent job processing 
times are: Mosheiov [19], Gerstl and Mosheiov [20], Yu et  al. [21], Agnetis and 
Mosheiov [22], Gerstl et al. [23], Pei et al. [24], Fiszman and Mosheiov [25], Kova-
lyov et al. [26], Yang and Lu [27], Mosheiov et al. [28], Montoya-Torres et al. [29], 
and Przybylski [30].

As mentioned, the scheduling measure considered here is minimum number 
of tardy jobs. The classical single-machine problem of minimizing the number of 
tardy jobs is solved in O(nlogn) time (where n is the number of jobs); see Moore 
[31]. Numerous extensions of this problem have been studied since. Some promi-
nent examples are: Ho and Chang [32], Lann and Mosheiov [33], Lodree et al. [34], 
Mosheiov and Sidney [35], Mosheiov and Oron [36], Adamu and Adewumi [37], 
Allahverdi et al. [38], Aydilek et al. [39], Mor et al. [40], He et al. [41] and Hermelin 
et al. [42].

Our paper studies for the first time a setting combining all these features: (1) 
Generalized due-dates, (2) Position-dependent job processing times, and (3) The 
objective of minimum number of tardy jobs. The single-machine problem combin-
ing features (1) and (3), i.e., Minimizing the number of tardy jobs with generalized 
due-dates, is easily shown to be solved in polynomial time as well. Specifically, it 
is solved by the Shortest Processing Times first (SPT) policy, i.e., in O(nlogn) time 
as well. On the other hand, the complexity status of the single-machine problem 
combining all three features was unknown. In this paper we prove that the prob-
lem is strongly NP-hard. Consequently, we introduce first an efficient heuristic of a 
greedy nature. Then, an exact solution algorithm is introduced. This algorithm finds 
the optimal schedule significantly faster than a standard full-enumeration procedure. 
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A numerical study is performed in order to measure (1) The running time required 
by the (exact) algorithm, and (2) The percentage of the instances solved to optimal-
ity by the heuristic.

The paper is organized as follows: Sect. 2 contains the notation and the formula-
tion. Section  3 presents the NP-hardness proof. In Sect.  4 we introduce the exact 
solution algorithm and the heuristic. The results of our numerical tests are reported 
in Sect. 5. Conclusions and some ideas for future research are provided in the last 
section.

2 � Formulation

We study a single machine n-job scheduling problem. pjr denotes the processing 
time of job j if assigned to position r;j, r = 1,… , n . dr denotes the r-th generalized 
due-date, i.e., the due-date of the job assigned to position r , r = 1,… , n.

For a given schedule of the jobs, Cr denotes the completion time of the job 
in position r , r = 1,… , n . The tardiness of the job in position r is denoted by 
Tr = max

{
Cr − dr, 0

}
, r = 1,… , n . Ur is the tardiness indicator, i.e., Ur = 1 if 

Tr > 0 , and Ur = 0 otherwise ( Tr = 0 ). The objective function is minimum number 
of tardy jobs: 

∑n

r=1
Ur . Hence, the problem studied here is:

3 � NP‑hardness proof

In this section we study the complexity status of the problem.

Theorem 1  : Problem 1���pjr, gdd
���
∑

Ur is strongly NP-Hard.

Proof  The proof is by reduction from 3-Partition.

3-Partition: Consider a set A of positive rational numbers, A =
{
a1, a2,… , a3t

}
 , 

where 
∑3t

i=1
ai = t and 1

4
< ai <

1

2
 , i = 1,2,… , 3t . Can the set A be partitioned into t 

disjointed triplets, A1,A2,… ,At , such as 
∑

i∈Aj
ai = 1, j = 1,2,… , t?

We construct the following instance of the scheduling problem from 3-partition:
There are n = 3t jobs. The position-dependent processing time of job j if assigned 

to position r ( pjr, j, r = 1,… , n ) is the following:

1
|||pjr, gdd

|||
∑

Ur
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Let the generalized due-dates be:

The scheduling measure is minimum number of tardy jobs.
The recognition version (RV) of this scheduling problem: Is there a schedule with 

no tardy jobs?
We prove in the following that there is a YES answer to 3-Partition if and only if 

there is a YES answer to RV.
(⇒ ) Assume first that there is a YES solution to 3-partition. Then, schedule the 

jobs of the first triplet A1 in the first 3 positions, the jobs of the second triplet A2 in 
the next 3 positions, etc. It follows that the third job is completed at time d3 = 1, the 
sixth job is completed exactly at time d6 = 3 , and so on; see Fig. 1. The resulting 
sequence contains no tardy jobs.

(⇐ ) Assume now that there is NO solution to 3-partition. It follows that any allo-
cation to triplets contains some with total load strictly smaller than 1, and some with 
total load strictly larger than 1. Consider the case that there is a single triplet of each 
type: triplet Ak in which the sum of its elements is strictly smaller than 1 (say, 1 − � ), 
and triplet Al , in which the sum of its elements is strictly larger than 1 ( 1 + �).

We create a schedule based on this allocation to triplets. Consider first a 
schedule in which l < k , i.e., the triplet of jobs Al is processed before the tri-
plet Ak . In this case, the completion time of job 3 l (the last job in this tri-
plet) is 1 + 2 +… l − 1 + l(1 + 𝜖) =

∑l

i=1
i + l𝜀 >

∑l

i=1
i = d3l . Hence, 

this schedule contains at least one tardy job, implying a NO solution to 
3-partition (Fig.  2). Assume now that the triplet of jobs Al is processed 
after the triplet Ak . Assume that there are x triplets between them (i.e., 

pj1 = pj2 = pj3 = aj,

pj4 = pj5 = pj6 = 2aj,

pj7 = pj8 = pj9 = 3aj,

…

pj(3k−2) = pj(3k−1) = pj3k = kaj,

…

pj(3t−2) = pj(3t−1) = pj3t = taj.

d1 = d2 = d3 = 1,

d4 = d5 = d6 = 3,

d7 = d8 = d9 = 6,

⋯

d3k−2 = d3k−1 = d3k =

k∑

i=1

i,

⋯

d3t−2 = d3t−1 = d3t =

t∑

i=1

i.
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l = k + x ). Then, the completion time of job 3l (the last job in triplet Al ) is: 
1 + 2 +… k − 1 + k(1 − �) + (k + 1) + (k + 2)+, , ,+(k + x − 1) + (k + x)

(1 + 𝜖) =
∑l

i=1
i − k𝜀 + (k + x)𝜖 =

∑l

i=1
i + x𝜖 >

∑l

i=1
i = d

3l
 . Hence, as above, this 

schedule contains at least one tardy job, implying a NO solution to 3-Partition. ■

4 � A heuristic and an exact solution algorithm

Since the problem 1���pjr, gdd
���
∑

Ur is NP-hard in the strong sense, we focus in this 
section on the introduction of a simple heuristic and of an efficient exact solution 
algorithm. The heuristic (denoted by H) is based on assigning the jobs sequentially 
from position 1 to position n . It is of a greedy nature - at each iteration (position), 
the shortest possible job is selected. Let G denote the set of unscheduled jobs so far. 
Initially, G = {j = 1,… , n} . Let �⃗S denote the resulting job sequence. Clearly, the ini-
tial sequence is empty. In the first iteration, we schedule the shortest job (in the first 
position: i = 1 ). The index of this job is denoted by minJobIndex : 
minJobIndex = argminj∈G

{
pj1

}
, j = 1,… , n . This job is removed from G : 

G = {G�minJobIndex} and added to the job sequence �⃗S in position i = 1 . We repeat 
the same job selection procedure (from the unscheduled jobs) for the remaining 
positions: positions 2 to n . The following pseudo code introduces in detail:

Fig. 1   A feasible schedule of 3t jobs with no tardy jobs
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Running Time: We consider all n positions. For each position, O(n) jobs are 
checked. The calculation of the completion time of the selected job requires constant 
time. It follows that the total running time of H is O

(
n2
)
.

We now introduce an exact non-polynomial algorithm (denoted F) that solves to 
optimality problem 1���pjr, gdd

���
∑

Ur . The algorithm starts by running H and obtain-
ing a feasible schedule and an upper bound on the optimal number of tardy jobs. The 
procedure is based on building partial schedules at each iteration such that a job is 
added to the sequence and the number of tardy jobs (so far) and the upper bound are 
updated. However, we avoid the evaluation of all n! schedules by discarding partial 
schedules when the number of tardy jobs ( minNumOfTardyJobs ) exceeds the current 
upper bound. (It should be noted that in the worst case, the algorithm evaluates the 
assignment of all jobs to all positions.) After obtaining the initial upper bound, 
Algorithm F calls function L that evaluates all options of adding the unscheduled 
jobs to the remaining positions.

In the following we introduce Algorithm F and the function L.
Algorithm F F(pjr, dr)
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Special Case 1: Position-independent processing times ( 1�gdd�
∑

Ur).
The special case of position-independent processing times (i.e., the case that 

p
jr
= p

j
; j, r = 1,… , n ) was shown to be solved by the SPT (Shortest Processing 

Time first) policy; see Hall [1].
Special Case 2: A common due-date ( 1���pjr, dj = d

���
∑

Ur).
A special case of general learning curves with a common due-date was studied by 

Mosheiov and Sidney [35], who proved that an optimal solution is obtained in poly-
nomial time. A similar idea can be used for solving the setting of general position-
dependent processing times.

We start by fixing a number k (1 ≤ k ≤ n) . Then we solve the problem of mini-
mizing the makespan of k jobs (out of the original set of n jobs). This problem can be 
formulated as a Linear Assignment Problem (LAP), where n jobs need to assigned 
to k positions. Thus, the input matrix is of size n × k , and each entry contains the 
processing time of job i if assigned to the j-th position ( pij, i = 1,… , n, j = 1,… , k) . 
The LAP is the following:
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The result of this LAP, denoted Cmax(k) , is the minimal makespan value of k jobs. 
This value is compared to d , and if Cmax(k) ≤ d , then k jobs can be completed on 
time (leading to n − k tardy jobs). This procedure is repeated for all k values, and 
the largest k for which Cmax(k) ≤ d is the optimal solution. Running time: Each LAP 
is solved in O(n3) , the procedure is repeated O(n) , leading to total running time of 
O(n4).

5 � Numerical study

We tested numericaly the performance of the exact algorithm F and the heuristic 
H. In all our numerical experiments, the job-position processing times were gener-
ated uniformly in the interval [1, pmax = 100] . The generalized due dates were gen-
erated uniformly in the interval [1, dmax = �P] , where P = npmax ( n is the number 
of jobs), and � is the tightness factor. We assumed: � = 0.25, 0.5,… , 1.5 . For each 

MIN

n∑

i=1

k∑

j=1

Xijpij

S.T.

k∑

j=1

Xij ≤ 1, i = 1,… , n

n∑

i=1

Xij = 1, j = 1,… , k

Xijbinary, i = 1,… , n, j = 1,… , k.

Fig. 2   Average running time of algorithm F as a function of the number of jobs for different tightness 
factors (logarithmic scale)
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combination of n and � , 10 instances were generated and solved. [All algorithms 
were coded in C, and executed on a Macintosh 2.7 GHz Intel Core i7 and 16 Gb 
RAM.]

We first evaluated Algorithm F assuming a small tightness factor: � = 0.25 . In 
this part of the numerical study, only small instances were solved (up to 14 jobs), 
and all problems were solved to optimality. Table 1 reports the average and worst-
case running time for instances of n = 10,11,… , 14 . Table 1 is limited to instances 
of this size because the running time for n = 14 increased significantly and reached 
an average of 611 s. Next, the running time of Algorithm F was measured for larger 
due-dates densities: � = 0.5, 0.75,… , 1.5 . For these densities, we were able to solve 
instances of larger numbers of jobs: n = 10,15,… , 30 . The running times, reported 
in Table 2, indicate that instances of up to 25 jobs were solved in few milliseconds. 
However, for n = 30 and � = 1 , a single instance was solved in more than 2.7 s. A 
logarithmic scale graph of the average running time as a function of the number of 
jobs for different tightness factors is provided in Fig. 2. In the last part of the numer-
ical study, the proposed heuristic H was evaluated. The results of H were compared 
to those obtained by Algorithm F given an upper bound of 60 s on its running time. 
We report that H reached an optimal schedule for a given instance, if the solution 
of algorithm H is identical to that obtained by the modified algorithm F (in less 
than 60  s). As above, the tightness factors were: � = 0.5, 0.75,… , 1.5 , and larger 
instances were solved: n = 10,20,… , 50 . Again, for each combination of n and � , 
10 problems were generated and solved. Table 3 and Fig. 3 provide the number of 
times that algorithm H reached an optimal schedule (as a function of the number of 
jobs and the tightness factor). Note that H performs well for small- and medium-size 
problems: for instances of up to 30 jobs, only in one case (out of 300), the opti-
mum was not obtained by the heuristic. Also, for (relatively) large tightness factor 
of � = 1.5 , the heuristic missed the optimum in one case only (out of 250). Based 
on these promising results, we believe that Heuristic H can be used in most practical 
settings.

Table 1   Average and worst-case 
run times (sec) for Algorithm 
F with the smallest tightness 
factor ( � = 0.25)

Number of Jobs � = 0.25

Average Time Worse Time

10 0.032 0.219
11 0.403 2.550
12 0.844 6.120
13 11.738 216.229
14 611.624 6705.725
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Table 2   Average and worst-case run times (sec) for Algorithm F with different tightness factors 
( � = 0.5, 0.75, 1, 1.25, 1.5)

Number
of Jobs

� = 0.5 � = 0.75 � = 1 � = 1.25 � = 1.5

Average 
time

Worse 
time

Average 
time

Worse 
time

Average 
time

Worse 
time

Average 
time

Worse 
time

Average 
time

Worse 
time

10 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
15 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.001 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25 0.000 0.002 0.000 0.002 0.000 0.000 0.000 0.002 0.029 0.860
30 0.000 0.004 0.089 2.679 0.004 0.107 0.000 0.004 0.000 0.000

Table 3   Number of 
times that algorithm H 
reached the optimum with 
different tightness factors 
( � = 0.5, 0.75, 1, 1.25, 1.5)

Number 
of Jobs

Number of Optimal results

T = 0.5 T = 0.75 T = 1 T = 1.25 T = 1.5

10 10 10 10 10 10
20 10 10 10 10 10
30 10 9 10 10 10
40 10 9 10 7 10
50 6 7 7 9 9

Fig. 3   Number of optimal schedules obtained by algorithm H as a function of the number of jobs for dif-
ferent tightness factors
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6 � Conclusion

We studied a single machine scheduling problem to minimize the number of tardy 
jobs. The special features considered are: generalized due-dates and general posi-
tion-dependent job processing times. We first proved that the problem is NP-hard 
in the strong sense. Hence, a simple greedy heuristic and an exact algorithm were 
introduced. Both procedures were tested numerically. The exact algorithm was 
shown to be able to handle medium size instances, and the heuristic reached the 
optimum in the vast majority of (the larger) instances in our tests.

Since no studies considering both generalized due-dates and general position-depend-
ent processing times have been published, future research may focus on other settings 
combining these two features. Challenging options are either other machine settings 
(multi-machines or shops), or other scheduling measures. In addition, we note that the 
complexity of the problem of minimizing the number of tardy jobs with general position-
dependent processing times (and standard job-dependent due-dates) is still unknown, and 
is clearly another possible topic for future research.
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