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Abstract
Current methodologies for finding portfolio rules under the Merton framework 
employ hard-to-implement numerical techniques. This work presents a methodol-
ogy that can derive an allocation à la Merton in a spreadsheet, under an incomplete 
market with a time-varying dividend yield and long-only constraints. The first step 
of the method uses the martingale approach to obtain a portfolio rule in a complete 
artificial market. The second step derives a closed-form optimal solution satisfying 
the long-only constraints, from the unconstrained solution of the first step. This is 
done by determining closed-form Lagrangian dual processes satisfying the primal-
dual optimality conditions between the true and artificial markets. The last step 
estimates the parameters defined in the artificial market, to then obtain analytical 
approximations for the hedging demand component within the optimal portfolio 
rule of the previous step. The methodology is tested with real market data from 16 
US stocks from the Dow Jones. The results show that the proposed solution deliv-
ers higher financial wealth than the myopic solution, which does not consider the 
time-varying nature of the dividend yield. The sensitivity analysis carried out on the 
closed-form solution reveals that the difference with respect to the myopic solution 
increases when the price of the risky asset is more sensitive to the dividend yield, 
and when the dividend yield presents a higher probability of diverging from the cur-
rent yield. The proposed solution also outperforms a known Merton-type solution 
that derives the Lagrangian dual processes in another way.
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1  Introduction

Continuous and time-varying allocations under the Merton [9] framework are still 
ignored by practitioners. As mentioned by Cochrane [4],  “Merton’s theory has 
almost no impact on portfolio practice” and solving Merton models “remains a 
productive and challenging enterprise”. Evidently, ignoring the dynamic nature of 
markets in the portfolio allocation, as myopic solutions do, can lead to considerable 
welfare losses in the long term (see Larsen and Munk [8] and Castañeda and Reus 
[2] for examples).

To shed light on this matter, this work proposes an approximation method for 
a portfolio problem with one or two risky assets and a mean-reverting dividend 
yield process, to capture the well-known relationship between stock returns and 
the dividend-price ratio (see Cochrane [3]). The methodology is developed under 
an incomplete market, where the risk emerging from the dividend yield dynamics 
cannot be fully hedged. A closed-form solution is provided, using the “artificial 
markets”technique, developed by Karatzas et al. [7] and Cvitanić and Karatzas [5].

The method has two novel features, which are interesting for both academics and 
practitioners. The first is that it is very easy to implement, since the portfolio rule 
can be computed in a spreadsheet. Current à la Merton solutions involve implement-
ing complex numerical methods which cannot be found in open-source program-
ming languages. For example, Munk and Sørensen[10] use a finite-difference back-
wards iterative solution of the Hamilton–Jacobi–Bellman (HJB) equation to find 
the optimal investment in a life cycle problem with two assets and mean-reverting 
interest rates. Bick et al. [1] also employ the “artificial markets”technique to derive 
a portfolio rule for the same setting as in Munk and Sørensen [10]. However, the 
last step of their methodology includes a procedure for determining the near-optimal 
solution which is left unspecified.1 More recently,Kamma and Pelsser [6] enhance 
the method from Bick et al.[1] to solve the a life cycle problem with more general 
return structures, general trading and liquidity constraints, and state-dependent util-
ity functions.

The second is related to the way of determining the long-only allocations after deriv-
ing the unconstrained optimal allocation in the complete artificial market. Current 
methodologies prune (e.g Bick et al.[1]) or project (e.g Kamma and Pelsser [6]) the 
unconstrained solution to satisfy the portfolio constraints, which might lead to subopti-
mal solutions in the two-asset case. Instead, the method proposed derives a closed-form 
expression for the Lagrangian dual processes emerging from the long-only constraints. 
These dual processes, along with the constrained allocation, satisfy the primal-dual 
optimality conditions defined in Cvitanić and Karatzas[5]. It is important to remark that 
the formula can be applied in any portfolio problem involving two assets and long-only 
constraints, since the closed-form values of the dual processes are a function of nothing 
more than the unconstrained optimal solution and the asset’s covariance matrix.

1  Sect.  4 of Bick et  al.[1] says “searching over different Ψ , we find the best of the feasible strategies 
( c(Ψ∗) , �(Ψ∗))...”, where Ψ is the set of parameters characterizing the processes from the artificial mar-
ket.
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2 � Methodology

2.1 � Market with one risky asset

Consider a market composed of constant risk-free rate r and a risky asset (stock) of 
price St , with the following dynamics

where �S is the instantaneous volatility of the stock’s return, (Wt)0≤t≤T is a standard 
Brownian Motion (BM) process. The instantaneous expected return �S,t = r + �dt , 
where 𝛼 > 0 is a constant parameter and dt is a mean-reverting process aimed at 
capturing the relationship between stock returns and the dividend-price ratio. The 
process dt follows

where (�, d∞, �d, �Sd) are constant parameters, and Wd is an independent standard 
BM process. The investor’s preferences are represented by the constant relative risk 
aversion (CRRA) utility

where T is the planning horizon, 𝛾> 0 is the Arrow-Pratt’s coefficient of relative risk 
aversion. XT is the terminal value of the financial wealth process, Xt ≥ 0 ∀t ∈ [0, T] , 
which follows

where �S,t ∈ [a, b] is the fraction invested (of financial wealth, Xt ) in the risky asset. 
It is assumed that the remains are invested in a risk-free asset (with return r).

Previous market is incomplete because it is not possible to fully hedge the risk emerg-
ing from process Wd in dt . Thus, the “artificial markets”technique is used to complete 
the market with a fictitious second risky asset following dFt∕Ft = (r + �F,t)dt + dWd,t , 
where �F,t represents the market premium of the fictitious asset. Using the martingale 
approach, the investment problem can be written as

where �t is the stochastic discount factor (SDF) in the artificial financial market. In 
this case, the SDF satisfies d𝜉t∕𝜉t = −rdt − 𝜃tdW̃t , with 𝜃t = (

𝛼

𝜎S

dt,𝜙F,t)
� ∈ ℝ

2 , 
W̃t = (WS,t,Wd,t)

� ∈ ℝ
2 . Let ��

t
= (�S,t,�F,t)

� ∈ ℝ
2 be the fraction of financial wealth 

invested in the real and fictitious assets, and let ��
t
= (�S,t,�F,t)

� ∈ ℝ
2 . The financial 

wealth Xt in this complete market follows

dSt∕St = �S,tdt + �SdWS,t

(1)ddt = �(d∞ − dt)dt + �d

(
�SddWS,t +

√
1 − �

2
Sd
dWd,t

)
,

U0(XT ) = E0

[
X
1−�

T
∕(1 − �)

]
,

(2)dXt = Xt

(
1 − �S,t

)
rdt + Xt�S,t

(
�S,tdt + �SdWS,t

)
, X0 given,

(3)max
XT

U0(XT ), s.t. E0

[
�TXT

] ≤ X0,
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with 𝜎̃ =

(
𝜎S 0

0 1

)
 . To find the unconstrained optimal solution, let � be the Lagrange 

multiplier of the budget constraint. KKT conditions in (3) deliver 
�U(XT )∕�XT = ��T . Thus, the optimal solution satisfies X∗

T
= (��T )

−1∕� . Note that 
budget constraint is active in the optimal solution. If not, � = 0 , which contradicts 
KKT. Defining �t,T = �T∕�t , then

where R = 1 −
1

�

 . Define function gt(dt) as

From (5) and the fact that E0

[
�TXT

]
= X0 , is not hard to find that � =

X0

E0(�
R
T
)

−�
 , and 

thus the indirect utility function in this artificial market (which depends of process 
�F ) is

By applying Itô’s Lemma on (��t)
−

1

� , its stochastic component equals −(𝜓𝜉t)
−
1
𝛾

𝛾

𝜃tdW̃t . 
Analogously, the stochastic component of gt(dt) equals 
𝜕dgt(dt)(𝜎d𝜌S, 𝜎d

√
1 − 𝜌

2
Sd
)dW̃t , where �dgt(dt) denotes the derivative with respect to 

dt . The stochastic component of X∗
t
 on (5) equals 

X∗
t

𝜃t

𝛾

dW̃t + X∗
t

𝜕dgt(dt)

gt(dt)
(𝜎d𝜌S, 𝜎d

√
1 − 𝜌

2
Sd
)dW̃t . By matching the stochastic component 

of this SDE with the stochastic component defining Xt in (4), the following holds

where �∗
t
= (�∗

S,t
,�∗

F,t
)� ∈ ℝ

2 are the unconstrained optimal allocations in the risky 
and fictitious assets respectively. Thus

(4)dXt = Xt

(
1 − 𝜋

�
t
1
)
rtdt + Xt𝜋

�
t

(
𝜇tdt + 𝜎̃dW̃t

)
,

(5)X∗
t
= Et

[
�t,TX

∗
T

]
= Et

[
�t,T (��T )

−
1

�

]
= (��t)

−
1

� Et

[
�
R
t,T

]
,

gt(dt) ∶= Et

[
𝜉
R
t,T

]
= Et

[
exp

(
−R∫

T

t

(r + 0.5𝜃�
u
𝜃u)du − R∫

T

t

𝜃
�
u
dWu

)]

= Et

[
exp

(
−Rr(T−t)−

R

2 ∫
T

t

(
𝛼
2

𝜎
2
S

d2
u
+𝜙2

F,u

)
du−R∫

T

t

𝛼du

𝜎S

dWS,u−R∫
T

t

𝜙F,udWd,u

)]

= exp (−rR(T−t))

Et

[
exp

(
∫

T

t

−
R

2

(
𝛼
2

𝜎
2
S

d2
u
+𝜙2

F,u

)
du−

R𝛼

𝜎S
∫

T

t

dudWS,u−R∫
T

t

𝜙F,udWd,u

)]

(6)J0(X0,�F) ∶= max
�

U0(XT ) =
X
1−�

0

1 − �

g0(d0)
�

X∗
t �̃

′�∗
t =

[

�̃t
�
+

�dgt(dt)
gt(dt)

(

�d�S, �d
√

1 − �2Sd

)′]

X∗
t

(7)�
∗
S,t

=
�dt

��
2
S

+
�d�Sd

�S

�dgt(dt)

gt(dt)
=

�S,t − r

��
2
S

+
�d�Sd

�S

�dgt(dt)

gt(dt)
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The first component of �∗
S,t

 is the solution that would be obtained if �S,t is assumed 
to remain unchanged after time t. This would be the myopic solution. The second 
term is the hedging demand component (HD hereafter), which takes into account the 
time-varying nature of dt after time t.

Since �S,t ∈ [a, b] , then the artificial market proposed in Cvitanić and Karatzas 
[5] is used. This unconstrained market has a Lagrange multiplier process 𝜆S,t ⊆ ℝ , 
with a risk-free rate of r + �[a,b](�S,t) , where �[a,b](�S,t) ∶= supx∈[a,b](−�S,t ⋅ x) . 
Therefore, 𝜃t,1 = 𝛼dt∕𝜎S changes to �dt + �S,t∕�S . Replacing last change into (7), 
the new optimal solution equals to 𝜋̃S,t = 𝜋

∗
S,t

+
1

𝛾𝜎
2
S

𝜆S,t . Finally, Proposition 8.3 of 
Cvitanić and Karatzas [5] is applied; if there is a �S,t satisfying

then 𝜋̃S,t is the optimal solution in set [a, b]. Defining 𝜆̃S,t = 𝜆S,t∕𝛾 , latter conditions 
can be written as

Is not hard to see that conditions (9) and (10) are satisfied with

Proof 

•	 Case 𝜋
∗
S,t

< a : Solution 𝜋̃S,t = a ⇒ 𝜆̃S,t = 𝜎
2
S
(a − 𝜋

∗
S,t
) . Since 𝜆̃S,t > 0 then 

𝛿[a,b](𝜆̃S,t) = −a𝜆̃S,t , and 𝜋∗
S,t
𝜆̃S,t +

1

𝜎
2
S

𝜆̃
2
S,t

− a𝜆̃S,t = 0.
•	 Case �∗

S,t
∈ [a, b] : Solution 𝜋̃S,t = 𝜋

∗
S,t

 , ⇒ 𝜆̃S,t = 0 . Thus 𝛿[a,b](𝜆̃S,t) = 0 , and 
𝜋
∗
S,t
𝜆̃S,t +

1

𝜎
2
S

𝜆̃
2
S,t

= 0.
•	 Case 𝜋

∗
S,t

> b : Solution 𝜋̃S,t = b ⇒ 𝜆̃S,t = 𝜎
2
S
(b − 𝜋

∗
S,t
) . Since 𝜆̃S,t < 0 , then 

𝛿[a,b] = −b𝜆̃S , and 𝜋∗
S,t
𝜆̃S,t +

1

𝜎
2
S

𝜆̃
2
S,t

− b𝜆̃S,t = 0.

(8)�
∗
F,t

=
�F,t

�

+ �d

√
1 − �

2
Sd

�dgt(dt)

gt(dt)
,

𝜋̃S,t = 𝜋
∗
S,t

+
1

𝛾𝜎
2
S

𝜆S,t ∈ [a, b]

𝜋
∗
S,t
𝜆S,t +

1

𝛾𝜎
2
S

𝜆
2
S,t

+ 𝛿[a,b](𝜆S,t) = 0,

(9)𝜋̃S,t = 𝜋
∗
S,t

+
1

𝜎
2
S

𝜆̃S,t ∈ [a, b]

(10)𝜋
∗
S,t
𝜆̃S,t +

1

𝜎
2
S

𝜆̃
2
S,t

+ 𝛿[a,b](𝜆̃S,t) = 0,

(11)
𝜆̃S,t = 𝜎

2
S
[max{a − 𝜋

∗
S,t
, 0}−max{𝜋∗

S,t
−b, 0}]

𝜋̃S,t = 𝜋
∗
S,t

+max{a − 𝜋
∗
S,t
, 0}−max{𝜋∗

S,t
−b, 0}
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The final step is to derive a closed-form approximation for �dgt(dt)∕gt(dt) . In 
such way the method can provide a closed-form approximation for �∗

S,t
 in (7), which 

allows to obtain 𝜆̃S,t and 𝜋̃S,t using (11). To do so, �F,t must be estimated first. As 
explained in [1], the indirect utility in the artificial market is an upper bound for 
the indirect utility function of the true market. It is an upper bound for any val-
ues of �F,t . Thus, the best bound is the process �F,t minimizing the indirect util-
ity function of the artificial market. As an approximation, later function is mini-
mized over the set A composed of the non-stochastic processes �F,t . In such case, 
∫ T

t
�F,udWS,u ∼ N(0, ∫ T

t
�
2
F,u

du) . Thus

which is minimized when �F,u = 0 ∀u ∈ [t, T] . The next step is to 
assume that du is not stochastic (only for the approximation of gt(dt) ). 
For example, du can be equal to the expected value of such pro-
cess, that is, du = dt exp (−�(u−t))+d∞[1− exp (−�(u−t))] . In that case, 
∫ T

t
dudWS,u ∼ N(0, ∫ T

t
d2
u
du) and thus

Hence

with

Therefore, the closed-form unconstrained allocation for the risky asset equals

min
�F∈A

Jt(dt,�F) ∶= min
�F∈A

Et

[
X
1−�

T
∕(1 − �)

]
= min

�F∈A

X
1−�
t

1 − �

gt(dt)
�

= min
�F∈A

1

1 − �

exp

(
−�

R(1 − R)

2 ∫
T

t

�
2
F,u

du

)

= min
�F∈A

1

1 − �

exp

(
1

2

(
1 − �

�

)
∫

T

t

�
2
F,u

du

)

(12)ĝt(dt) = exp

[
−R

(
r(T−t)+

𝛼
2(1−R)

2𝜎2
S

∫
T

t

d2
u
du

)]
.

𝜕dĝt(dt)

ĝt(dt)
= −

R

𝛾

𝛼
2

𝜎
2
S

1

2
𝜕d ∫

T

t

d2
u
du = −

R

𝛾

𝛼
2

𝜎
2
S

D𝜅

t,T
,

D�

t,T
∶=

1

2
�d ∫

T

t

d2
u
du = ∫

T

t

du�ddudu =
1− exp (−2�(T − t))

2�
(dt−d∞)

+
1 − exp (−�(T − t))

�

d∞.

(13)𝜋̂S,t =
𝛼dt

𝛾𝜎
2
S

−
𝜎d𝜌Sd

𝜎S

R

𝛾

𝛼
2

𝜎
2
S

D𝜅

t,T
=

𝜇S,t − r

𝛾𝜎
2
S

−
𝜎d𝜌Sd

𝜎S

(
𝛼

𝜎S

)2

D𝜅

t,T

1

𝛾

(
1−

1

𝛾

)
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The HD component in (13) increases in magnitude with (i) an increase in �d�Sd
�S

 , 
which represents the sensitivity of the dividend yield with respect to the asset return, 
(ii) an increase in the �∕�S ratio, (iii) increases in the current and long-run dividend 
yields, since D�

t,T
 increases with increases in dt and d∞ , (iv) a decrease in � , since 

D�

t,T
 decreases with an increase in � , (v) an increase in the time to horizon, since D�

t,T
 

increases with an increase in T−t . The previous sensitivity results are as expected. 
The HD component increases in magnitude either when the dividend yield diverges 
more frequently from dt (e.g., smaller � , longer horizon), or when the price of the 
risky asset is more sensitive to the dividend yield (e.g., higher dt, � , or �d�Sd

�S

).

2.2 � Market with two risky assets

The main complexity of this extension comes in determining the Lagrangian pro-
cesses emerging from the long only-constraints. Now there are two possibly corre-
lated risky asset with prices St = (S1,t, S2,t) following

where �S ∈ ℝ
2×2 is a volatility matrix and WS,t ∈ ℝ

2 . Let 𝜇S,t = r+d̃t , with 
d̃t = (𝛼1d1,t, 𝛼1d2,t)

� ∈ ℝ
2 , and dt following

where �d =

⎛⎜⎜⎝
�d,1�Sd,1 0 �d,1

�
1−�2

Sd,1
0

0 �d,2�Sd,2 0 �d,2

�
1−�2

Sd,2

⎞⎟⎟⎠
 . Equation (2) is 

adapted to

where �S,t ∈ K = {(�S1,t,�S2,t) ∈ ℝ
2 ∶ (�S1,t,�S2,t) ≥ 0 , �S1,t + �S2,t

≤ 1}.
To complete the market, two fictitious assets are added Ft = (F1,t,F2,t) fol-

lowing dFt∕Ft = (r + �F,t)dt + dWd,t , where �F,t ∈ ℝ
2 represents the mar-

ket premium of both assets. The SDF then satisfies d𝜉t∕𝜉t = −rdt−𝜃tdW̃t , with 
𝜃t = (𝜎−1

S
d̃S,t,𝜙F,t)

� ∈ ℝ
4 , W̃t = (WS,t,Wd,t)

� ∈ ℝ
4 . Following the same martingale 

approach with one risky asset, it is straightforward to show that the optimal uncon-
strained solution in this complete market equals

dSt

St
= �S,tdt + �SdWS,t

(14)ddt =

(
�1 0

0 �2

)
(d∞ − dt)dt + �d(dWS,t, dWd,t)

�

(15)dXt = Xt

(
1 − 1

�
�S,t

)
rdt + Xt�

�
S,t

(
�S,tdt + �SdWS,t

)
,



	 L. Reus 

1 3

with gt(dt) as

Since �S,t ∈ K , then the artificial market proposed in Cvitanić and Karatzas [5] is 
used. This unconstrained market has a Lagrange multiplier process 𝜆S,t ⊆ ℝ

2 , with a 
risk-free rate of r + �K(�S,t) , where �K(�S,t) ∶= supx∈K(−�

�
S,t
x) . Therefore, 

𝜃t,1 = 𝜎
−1
S
d̃S,t changes to 𝜎−1

S
d̃S,t + 𝜎

−1
S
𝜆S,t . Replacing last change into (16), the new 

optimal solution equals to 𝜋̃S,t = 𝜋
∗
S,t

+
1

𝛾

(𝜎S𝜎
�
S
)−1𝜆S,t . Finally, Proposition 8.3 of 

Cvitanić and Karatzas [5] is applied exactly as with the one-asset case; if there is a 
𝜆̃S,t ⊆ ℝ

2 satisfying

then  𝜋̃S,t is the optimal solution in K.  Is not hard to see that 

𝛿K(𝜆̃S) ∶= supx∈K(−x
�
𝜆̃S,t) = max{−𝜆̃S1,t,−𝜆̃S2,t, 0} . Let �S��

S
=

(
�
2
1

�1�2�12

�1�2�12 �
2
2
,

)
 , 

representing the covariance matrix of the two assets and denote 
(�1,�2) = (�S1,t,�S2,t) . Appendix 1 shows that the solution of Eqs. (17) and (18) is 
given by

(16)

𝜋
∗
S,t

=
1

𝛾

(𝜎S𝜎
�
S
)−1d̃t + (𝜎�

S
)−1

�
𝜎d,1𝜌Sd,1 0

0 𝜎d,2𝜌Sd,2

�
𝜕dg(dt)

g(dt)

=
1

𝛾

(𝜎S𝜎
�
S
)−1(𝜇S,t − r) + (𝜎�

S
)−1

�
𝜎d,1𝜌Sd,1 0

0 𝜎d,2𝜌Sd,2

�
𝜕dg(dt)

g(dt)

𝜋
∗
F,t

=
𝜙F,t

𝛾

+

⎛
⎜⎜⎝
𝜎d,1

�
1−𝜌2

Sd,1
0

0 𝜎d,2

�
1−𝜌2

Sd,2

⎞
⎟⎟⎠
𝜕dg(dt)

g(dt)

gt(dt) ∶ = Et

[
exp

(
−R∫

T

t

(r + 0.5𝜃�
u
𝜃u)du − R∫

T

t

𝜃
�
u
d ̃Wu

)]

= exp (−rR(T−t))Et

[
exp

(
−
R

2 ∫
T

t

(
d̃�
u
(𝜎S𝜎

�
S
)−1d̃u+𝜙

�
F,u

𝜙F,u

)
du

)

exp

(
−R∫

T

t

d̃�
u
(𝜎�

S
)−1dWS,u−R∫

T

t

𝜙
�
F,u

dWd,u

)]

(17)𝜋̃S,t = 𝜋
∗
S,t

+ (𝜎S𝜎
�
S
)−1𝜆̃S,t ∈ K

(18)𝜋
∗
S,t
𝜆̃S,t + 𝜆̃

�
S,t
(𝜎S𝜎

�
S
)−1𝜆̃S,t + 𝛿K(𝜆̃S,t) = 0,
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where A1 = �
∗
1
�
2
1
+�∗

2
�1�2�12 and A2 = �

∗
2
�
2
2
+�∗

1
�1�2�12.

An interesting remark of the closed-form solution in (19) is that it can be applied 
on other investment opportunity sets, since it only depends on the covariance matrix 
of both assets and the unconstrained portfolio rule on such market setting.

The last step step is to derive a closed-form approximation for �dgt(dt)∕gt(dt) . 
To derive �F,t , the same methodology as in the one-asset case is used. Similarly, 
J0(X0,�F) is minimized when �F,u = 0 , thus:

Let B = diag

(
exp (−�1(u−t))

exp (−�2(u−t))

)
 . To derive gt(dt) , du can be approximated with

du = Bdt+d∞[I−B] . Then

with

Therefore, the closed-form unconstrained allocation for the risky assets equals

(19)

𝜆̃
S
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0) if (𝜋∗
1
,𝜋∗

2
) ∈ K

−(𝜎2

1
𝜋
∗
1
(1−𝜌2

12
), 0) if {0 ≤ A2 ≤ 𝜎

2

2
,𝜋∗

1
< 0}

−(0, 𝜎2

2
𝜋
∗
2
(1−𝜌2

12
)) if {0 ≤ A1 ≤ 𝜎

2

1
,𝜋∗

2
< 0}

−(A1,A2) if {A1<0,A2<0, (𝜋
∗
1
<0 ∪ 𝜋

∗
2
<0)}

−(A1−𝜎
2

1
, if {A1 > 𝜎

2

1
,𝜋∗

2
< 0} ∪ {A1>𝜎

2

1
,

A2−𝜎1𝜎2𝜌12) A2≤A1−(𝜎
2

1
−𝜎1𝜎2𝜌12),𝜋

∗
1
≥0,𝜋∗

2
≥0,𝜋∗

1
+𝜋∗

2
>1}

−(A1−𝜎1𝜎2𝜌12, if {A2>𝜎
2

2
,𝜋∗

1
<0} ∪ {A2>𝜎

2

2
,

A2−𝜎
2

2
) A2≥A1+(𝜎

2

2
−𝜎1𝜎2𝜌12),𝜋

∗
1
≥0,𝜋∗

2
≥0,𝜋∗

1
+𝜋∗

2
>1}

−
𝜎
2

1
𝜎
2

2
(𝜋∗

1
+𝜋∗

2
−1)

𝜎
2

2
−2𝜎1𝜎2𝜌12+𝜎

2

1

(1, 1) otherwise

ĝt(dt) = exp

[
−R

(
r(T−t)+

(1−R)

2 ∫
T

t

̃d�
u
(𝜎S𝜎

�
S
)−1 ̃dudu

)]

𝜕dĝt(dt)

ĝt(dt)
= −

R

𝛾

(
𝛼
2
1

0

0 𝛼
2
2

)
1

2
𝜕d ∫

T

t

d�
u
(𝜎S𝜎

�
S
)−1dudu = −

R

𝛾

(
𝛼
2
1

0

0 𝛼
2
2

)
D

𝜅1,𝜅2
t,T

(D
�1,�2
t,T

)1 ∶= (�S�
�
S
)−1
1,∗

[
diag

( 1−exp (−2�1(T−t))

2�1
1−exp (−(�1+�2)(T−t))

�1+�2

)
(dt − d∞) +

1 − exp (−�1(T−t))

�1

d∞

]

(D
�1,�2
t,T

)2 ∶= (�S�
�
S
)−1
2,∗

[
diag

( 1−exp (−(�1+�2)(T−t))

�1+�2
1−exp (−2�2(T−t))

2�2

)
(dt − d∞) +

1 − exp (−�2(T−t))

�2

d∞

]



	 L. Reus 

1 3

2.2.1 � Pruning suboptimality example

Note also that the solution proposed can be different from the one obtained by prun-
ing the unconstrained optimal solution to the nearest solution meeting the long-only 
constraints.2 For illustration purposes, suppose that the dividend yield is constant, in 
which case the unconstrained optimal solution does not change over time and equals 
the myopic component. Under this assumption and by applying Itô’s Lemma to (15), 
it is not hard to see that the indirect utility function is

Instead of using J0(X0) to measure the performance of a portfolio rule, the cer-
tainty equivalent (CE) is used. The CE is the initial wealth value XCE

0
 such that 

U0(X
CE
0

) = J0(X0) ⇔ XCE
0

(�S) = [(1−�)J0(X0)]
1

1−� . Note that in the example

In the following setting �1 = 5%, �1 = 20%,�
S
= (0%, 10%)�, �12 = 0.7, r = 2%, � = 4 , the 

unconstrained optimal solution �∗
S
=

1

�

(�S�
�
S
)−1(�S−r) = (−20∕3, 7∕3)� . From (19), 

𝜆̃S = (0.0085, 0)� , which implies 𝜋̃S = (0, 0.5)� . For X0 = 1, T = 50 , then 
XCE
T

(𝜋̃S) = 7.39 (or annual return of 4%). The nearest feasible solution from �∗
S
 is 

�
near
S

= (0, 1)� , with XCE
T

(�near
S

) = 2.71 (or annual return of 2%).

3 � Results

To test the methodology with data from the US equity market, a sample of monthly 
dividend yields and prices were taken from the stocks of the Dow Jones index. For 
calibration purposes, the stocks chosen were those for which data were available 
from Jan-1990 to Feb-2024. Stocks that did not pay dividends for long periods of 
time (e.g. APPL) were not considered. The final sample consisted of 16 stocks out 
of the 30 stocks composing the index. Figure 4 in Appendix 3 depicts the dividend 
yields and prices of these 16 stocks. 

The next step was to calibrate the model for each of the 16 stocks. For illustra-
tion purposes, Table 1 shows the calibration results for the eight stocks that have the 
highest hedging demands, relative to the unconstrained solution of Eq. (13), when 

(20)

𝜋̂
S,t =

(𝜎
S
𝜎
�
S
)−1

𝛾

(
𝛼1 0

0 𝛼2

)
d
t
−(𝜎�

S
)−1

(
𝜎
d,1𝜌Sd,1 0

0 𝜎
d,2𝜌Sd,2

)(
𝛼
2

1
0

0 𝛼
2

2

)
D

𝜅1,𝜅2

t,T

1

𝛾

(
1−

1

𝛾

)

J0(X0) =
X
1−�

0

1 − �

exp
(
(r + (�S − r)��S −

�

2
�
�
S
�S�

�
S
�S)T(1 − �)

)

(21)XCE
0

(�S) = X0 exp
(
(r + (�S − r)��S −

�

2
�
�
S
�S�

�
S
�S)T

)

2  With one risky asset, Eq. (11) shows that the solution proposed coincides with the nearest solution 
meeting the long-only constraints.



1 3

Merton portfolio allocation under stochastic dividends﻿	

t = 0 , T = 50 and � = 2 . A priori, these eight stocks are the ones presenting the 
highest potential for the methodology to outperform the myopic solution. Calibra-
tion results for the other eight stocks can be found in Table 2 (Appendix 3).

3.1 � Market with one risky asset

Figure  1 shows the increase in the CE obtained by the dynamic solution with 
respect to the CE of the myopic solution, in the presence of long-only constraints, 
i.e. �S,t ∈ [0, 1] . Note that the formula in (21) cannot be used to estimate the CE, 
because the dividend yield is dynamic (thus �S,t and 𝜋̃S,t are dynamic too). Hence, 
the CE is estimated through simulations. The CE is obtained by performing 200,000 
simulations of the risky asset and the dividend yield process, with a discretization 
of dt = 1∕200 (200 times in a year). These simulations were done in MATLAB 
R2021b on a personal computer, specifically a MacBook Pro with a Quad-Core Intel 
Core i5 and 16 GB RAM. For T = 50 , a simulation is completed in approximately 
one minute.

As expected, the stocks with higher (lower) differences in CE coincide with 
the ones with higher (lower) HDs/𝜋̂ ratios from Table 1. This relationship is use-
ful because the potential benefit given by the non-myopic solution for a stock can 
be measured before the simulation is run. Results for the other eight stocks can be 

Table 1   (Upper): Estimation results for eight stocks from the Dow Jones index

The sample consists of monthly dividend yields and stock prices, from the period Jan-90 to Feb-24. The 
estimation was done with AR(1) regressions on the dividend yield, and regressions on the stock’s return 
and the dividend yield. (Lower): Myopic and dynamic unconstrained allocations for t = 0 , T = 50 and 
� = 2 , as in Eq. (13). The first rows show the HD decomposition, i.e. HD�

t,T
=

[
−

�
d
�
Sd

�
S

(
�

�
S

)2D�

t,T

]
1

�

(1−
1

�

) . 
The risk-free rate r equals to the Dec-23 yield of the 10-year US treasury bond ( r = 3.8% ). The yield at 
t = 0 is set to d0 = d∞ for every stock

HD AXP HON WMT MCD JPM JNJ KO

� 6.3 5.8 4.8 4.1 4.4 2.9 3.1 2.4
�
S

26% 30% 27% 22% 20% 32% 19% 20%
� 0.10 0.19 0.17 0.08 0.12 0.40 0.19 0.14
d∞ 1.4% 2.0% 2.7% 1.2% 1.7% 3.7% 2.3% 2.3%
�
d

.5% .9% .7% .3% .4% 2.5% .4% .4%
�
Sd

−0.70 −0.85 −0.89 −0.76 −0.65 −0.63 −0.91 −0.89

�
d
�
Sd
∕�

S

−1.22% −2.43% −2.38% −1.04% −1.43% −5.12% −2.02% −1.91%
(�∕�

S
)2 570.5 359.9 303.3 357.0 466.1 82.7 281.0 151.4

D
�

0,50
0.14 0.10 0.16 0.16 0.15 0.09 0.12 0.17

HD
�=2

t=0,T=50
25% 22% 29% 15% 25% 10% 18% 12%

Myopic ��=2

t=0,T=50
64% 62% 86% 54% 92% 54% 104% 73%

𝜋̂
𝛾=2

t=0,T=50
89% 84% 115% 69% 117% 64% 122% 85%

HD∕𝜋̂ 28% 26% 25% 22% 21% 16% 14% 14%
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Fig. 1   Increase in CE (%) from the proposed solution with respect to the CE of the myopic solution, for 
different risk aversion levels � and horizons T (years). The CE is obtained by doing 200,000 simulations 
of the risky asset and the dividend yield process, with a discretization of dt = 1∕200 (200 times in a 
year). As a remark, the CE increase is equivalent to the loss defined in Larsen and Munk[8]

Fig. 2   Average allocations obtained by the proposed solution (black) and the myopic solution (dashed 
black) when horizon T = 50 and � = {2, 6} . The green (blue) lines are the average allocations of the 
solution when the dividend yield is above (below) the long-term dividend yield d∞ (color figure online)
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found in Fig. 5 (Appendix 3). Figure 2 shows the average allocations to the risky 
asset for cases � = {2, 6} . Since the HD is positive, it is expected that the dynamic 
solution will over-weight the allocation to the risky asset. This is because a negative 
shock to the price of the risky asset generally comes with a positive shock to the div-
idend yield ( 𝜌Sd ≪ 0 ), which increases the drift of that asset (recall �S,t = r + �dt ). 
The figure also shows how allocations to the risky asset increase (decrease) in the 
scenarios where the dividend yield is above (below) the long-term dividend yield 
d∞ . As expected, the HD decreases when approaching the horizon and the allocation 
to the risky asset decreases when the risk aversion is higher.

Appendix 2 shows how to implement the method explained in Bick et  al.
[1] (BKM hereafter) for this dividend model. For the one-asset case, the BKM 
method produces almost the same results as the methodology proposed in this 
study. The reasons are the following: (i) the approximation of gt(dt) to be made 
in BKM is similar to ĝt(dt) in (12) with these data, thus both methods deliver the 
same unconstrained solution, and (ii) the constrained solution found using (11) 
coincides with the pruned solution of BKM. Even if both solutions are simi-
lar, the implementation of the BKM method is more complex than that of the 
method proposed in this study. As explained in Appendix 2, the BKM method 
requires solving an optimization problem to derive the parameters included in 
the artificial market, which has to be done numerically. Function gt(dt) and its 
derivative must be computed using numerical integration methods. Thus, the 
solution cannot be found on a spreadsheet and finding the CE through a simula-
tion can take a considerable amount of time.

3.2 � Market with two risky assets

With these calibration results, the unconstrained solution derived in Eq. (20) is simi-
lar to the unconstrained solution derived using the BKM method. However, there are 
differences when delivering a solution satisfying long-only constrains. Similar to the 
example in Sect. 2.2.1, BKM prunes the unconstrained solution instead of finding the 
Lagrangian solution in (19). The following link provides an spreadsheet that demon-
strates how to find the constrained solution using the method proposed in this study.

Figure 3 shows the CE increase w.r.t. the myopic solution and w.r.t the BKM solu-
tion for four pairs of the eight stocks shown in Table 1. As expected, the CE increase 
is higher w.r.t. the myopic solution in most cases. However, the CE increase w.r.t 
the myopic solution is much higher than the CE increase w.r.t the BKM solution for 
� = 4 and � = 6 . In those settings, this means that considering the HD is more impor-
tant than using the Lagrange duals in (19). When risk aversion increases, allocation 
to both stocks are reduced. Hence, the unconstrained solution satisfies long-only con-
straints, which explains the similarities of the proposed solution to BKM. For � = 2 , 
the unconstrained allocations in both stocks can add more than one. Thus deriving 
the Lagrange duals in (19), instead of pruning the unconstrained solution, produces 
more differences w.r.t. the BKM solution. In terms of computational time, it took 
around 25 min to derive the CE for T = 50 , by performing 200,000 simulations of 
each risky asset and each dividend yield process, with a discretization of dt = 1∕200.

https://docs.google.com/spreadsheets/d/1QuKaS3gESJwYcgqBdOmmxdtUu-MWT6DpQvOPQsNZpPM/edit?usp=sharing
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4 � Conclusion

This work presents an example of how to solve a portfolio problem under the Merton 
framework with closed-form approximations instead of hard-to-implement numerical 
methods. The examples illustrate how important it is to include the time-varying nature 
of markets to prevent welfare losses, and also how to correctly use the non-constrained 
solution to derive the constrained solution. The methodology presented can be reduced 
to solving the following tasks: (i) derive the parameters of the artificial assets (e.g., 
�F,t ), (ii) find closed-form approximations of the HD (e.g., gt(dt) ) and (iii) determine 
the Lagrange processes emerging from portfolio constraints (e.g., 𝜆̃S,t ). Evidently, 
this work can be extended by changing the investment opportunity set. For example, 
include another time-varying driver besides the dividend yield, or develop a method to 
derive 𝜆̃S,t for multiple assets and/or other portfolio constraints. Another possibility is to 
apply the method to a life cycle problem.

Appendix 1: Optimal Lagrange multiplier process

Let (�S��
S
)−1 =

1

�
2
1
�
2
2
(1−�2

12
)

(
�
2
2

− �12�1�2

−�12�1�2 �
2
1

)
 . Conditions (17) and (18) reduce 

to

Fig. 3   (Upper): Increase in CE (%) from the proposed solution with respect to the CE of the myopic 
solution, for four pairs of stocks, risk aversion levels � and horizons T (years). (Lower): Increase in CE 
(%) from the proposed solution with respect to the CE of the BKM solution
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Define A1 = �1�
2
1
+ �2�1�2�12 and A2 = �2�

2
2
+ �1�1�2�12

	 1.	 Case 𝜋1 < 0,𝜋2 < 0 It is not possible to have A1 > 0 and A2 > 0 , otherwise term 
𝜋1A1 + 𝜋2A2 < 0 ⇒ 𝜋

2
1
𝜎
2
1
+ 𝜋

2
2
𝜎
2
2
+ 2𝜋2𝜋1𝜎1𝜎2𝜌12 < 0 , which is a contradiction. 

Thus
		    Solution 1: 𝜋̃ = (0, 0) ⇒ 𝜆̃1 = −𝜋1𝜎

2
1
− 𝜋2𝜎1𝜎2𝜌12 = −A1 and 𝜆̃2 = −A2 . To 

satisfy (18), then �K = 0 must hold. Thus, 𝜆̃1 ≥ 0 and 𝜆̃2 ≥ 0 , that is, A1 ≤ 0 and 
A2 ≤ 0.

		    Solution 2: 𝜋̃ = (𝜋1 +
𝜌12𝜎2

𝜎1

𝜋2, 0) = (
A1

𝜎
2
1

, 0) , where 𝜆̃ = (0,−𝜋2(1 − 𝜌
2
12
)𝜎2

2
) . 

Thus �K = 0 and (18) holds. To satisfy (17), 0 ≤ A1 ≤ �
2
1
 must hold. Since 

0 ≤ A1 , then A2 ≤ 0.
		    Solution 3: 𝜋̃ = (1, 0) . In this case 𝜆̃1 = (1 − 𝜋1)𝜎

2
1
− 𝜋2𝜎1𝜎2𝜌12 = 𝜎

2
1
− A1 

and 𝜆̃2 = −𝜋2𝜎
2
2
+ (1 − 𝜋1)𝜎1𝜎2𝜌12 = −A2 + 𝜎1𝜎2𝜌12 . To satisfy (18), 𝛿K = −𝜆̃1 - 

must hold. Thus, 𝜆̃1 ≤ 0 and 𝜆̃1 ≤ 𝜆̃2 , that is, A1 > 𝜎
2
1
 . Again, A2 ≤ 0 . By sym-

metry, there are two more solutions. In summary

•	 𝜋̃ = (0, 0), 𝜆̃ = (−A1,−A2) if A1 ≤ 0,A2 ≤ 0

•	 𝜋̃ = (𝜋1 +
𝜌12𝜎2

𝜎1

𝜋2, 0), 𝜆̃ = (0,−𝜋2(1 − 𝜌
2
12
)𝜎2

2
) if 0 ≤ A1 ≤ �

2
1
,A2 ≤ 0

•	 𝜋̃ = (1, 0), 𝜆̃ = (𝜎2
1
− A1,−A2+𝜎1𝜎2𝜌12) , if A1 ≥ �

2
1
,A2 ≤ 0

•	 𝜋̃ = (0,𝜋2+
𝜌12𝜎1

𝜎2

𝜋1), 𝜆̃ = (−𝜋1(1 − 𝜌
2
12
)𝜎2

1
, 0) if 0 ≤ A2 ≤ �

2
2
,A1 ≤ 0

•	 𝜋̃ = (0, 1), 𝜆̃ = (−A1 + 𝜎1𝜎2𝜌12, 𝜎
2
2
− A2) , if A2 ≥ �

2
2
,A1 ≤ 0

	 2.	 Case 𝜋1 < 0,𝜋2 ∈ [0, 1]

		    Solution 1: 𝜋̃ = (0, 0), 𝜆̃ = (−A1,−A2) satisfy conditions if A1 ≤ 0,A2 ≤ 0 . In 
this case though, A2 ≤ 0 implies A1 ≤ 0 . Thus A2 ≤ 0 must hold.

		    Solution 2: 𝜋̃ = (0,𝜋2 +
𝜌12𝜎1

𝜎2

𝜋1), 𝜆̃ = (−𝜋1(1 − 𝜌
2
12
)𝜎2

1
, 0) satisfy conditions 

if 0 ≤ A2 ≤ �
2
2
.

		    Solution 3: 𝜋̃ = (0, 1), 𝜆̃ = (−A1 + 𝜎1𝜎2𝜌12, 𝜎
2
2
− A2) satisfy conditions if 

A2 ≥ �
2
2
.

	 3.	 Case 𝜋1 < 0,𝜋2 > 1 : Same solution as case 2.
	 4.	 Case 𝜋1 ∈ [0, 1],𝜋2 < 0 : By symmetry with case 2
		    Solution 1: 𝜋̃ = (0, 0), 𝜆̃ = (−A1,−A2) satisfy conditions if A1 ≤ 0,A2 ≤ 0 . In 

this case though, A1 ≤ 0 implies A2 ≤ 0 . Thus A1 ≤ 0 must hold.
		    Solution 2: 𝜋̃ = (𝜋1 +

𝜌12𝜎2

𝜎1

𝜋2, 0), 𝜆̃ = (0,−𝜋2(1 − 𝜌
2
12
)𝜎2

2
) satisfy conditions 

if 0 ≤ A1 ≤ �
2
1

		    Solution 3: 𝜋̃ = (1, 0), 𝜆̃ = (𝜎2
1
− A1,−A2 + 𝜎1𝜎2𝜌12) satisfy conditions if 

A1 ≥ �
2
1
.

𝜋̃1 = 𝜋1 +
1

𝜎
2

1
(1 − 𝜌

2

12
)
𝜆̃1 −

𝜌12

𝜎1𝜎2(1 − 𝜌
2

12
)
𝜆̃2

𝜋̃2 = 𝜋2 −
𝜌12

𝜎1𝜎2(1 − 𝜌
2

12
)
𝜆̃1 +

1

𝜎
2

2
(1 − 𝜌

2

12
)
𝜆̃2

𝜋̃1𝜆̃1 + 𝜋̃2𝜆̃2 +max{−𝜆̃1,−𝜆̃2, 0} = 0
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	 5.	 Case 𝜋1 > 1,𝜋2 < 0 : Same solution as case 4
	 6.	 C a s e  �1 ∈ [0, 1],�2 ∈ [0, 1],�1 + �2 ≤ 1 :  T h e  o n ly  s o l u t i o n  i s 

𝜋̃ = (𝜋1,𝜋2), 𝜆̃ = (0, 0)

	 7.	 Case 𝜋1 ∈ [0, 1],𝜋2 ∈ [0, 1],𝜋1 + 𝜋2 > 1 : The following cannot hold 

(i)	 A1 < 0  ,  A2 < 0  :  To  s e e  t h i s ,  s u p p o s e  o t h e r w i s e .  Te r m 
𝜋1A1 + 𝜋2A2 < 0 ⇒ 𝜋

2
1
𝜎
2
1
+ 𝜋

2
2
𝜎
2
2
+ 2𝜋2𝜋1𝜎1𝜎2𝜌12 < 0 , which is a contradiction.

(ii)	 A2 < 𝜎
2
2
 , A2 > A1 + (𝜎2

2
− 𝜎1𝜎2𝜌12) : A2 < 𝜎

2
2
 implies A2 < A1 + (𝜎2

2
− 𝜎1𝜎2𝜌12).

(iii)	 A1 < 𝜎
2
1
 , A2 < A1 − (𝜎2

1
− 𝜎1𝜎2𝜌12) : A1 < 𝜎

2
1
 implies A2 > A1 − (𝜎2

1
− 𝜎1𝜎2𝜌12).

(iv)	 A1 < 0 , A2 > A1 + (𝜎2
2
− 𝜎1𝜎2𝜌12) : Since A1 < 0 , then 𝜎1𝜎2𝜌12 < 0 . This implies 

(1 − 𝜋2)(𝜎
2
2
− 𝜎1𝜎2𝜌12) + 𝜋1(𝜎

2
1
− 𝜎1𝜎2𝜌12) > 0 , that is A2 < A1 + (𝜎2

2
−𝜎1𝜎2𝜌12).

(v)	 A2 < 0 , A2 < A1 − (𝜎2
1
− 𝜎1𝜎2𝜌12) : Since A2 < 0 , then 𝜎1𝜎2𝜌12 < 0 . This implies 

(1 − 𝜋1)(𝜎
2
1
− 𝜎1𝜎2𝜌12) + 𝜋2(𝜎

2
2
− 𝜎1𝜎2𝜌12) > 0 , that is A2 > A1 − (𝜎2

1
− 𝜎1𝜎2𝜌12).

	   Solution 1: 𝜋̃ = (1, 0), 𝜆̃ = (𝜎2
1
− A1,−A2 + 𝜎1𝜎2𝜌12) . To satisfy (18), 𝛿K = −𝜆̃1 

must hold. Thus A1 ≥ �
2
1
 and A2 ≤ A1 − (�2

1
− �1�2�12) . Such conditions imply 

0 ≤ A2.
	   Solution 2: 𝜋̃ = (0, 1), 𝜆̃ = (−A1 + 𝜎1𝜎2𝜌12, 𝜎

2
2
− A2) . To satisfy (18), 𝛿K = −𝜆̃2 

must hold. Thus A2 ≥ �
2
2
 and A2 ≥ A1 + (�2

2
−�1�2�12) . Such conditions imply 

0 ≤ A1.
	   Solution 3: 

 which implies 𝜆̃1 = 𝜆̃2 = −
𝜎
2
1
𝜎
2
2
(𝜋1+𝜋2−1)

𝜎
2
2
−2𝜎1𝜎2𝜌12+𝜎

2
1

 . Note that 𝜋̃1 + 𝜋̃2 = 1 and 𝜆̃1 ≤ 0 . 

Thus, (18) holds. To satisfy (17), 0 ≤ 𝜆̃1 ≤ 1 must hold. This means that the 
following two inequalities must hold: A2 ≥ A1 − (�2

1
− �1�2�12) and 

A2 ≤ A1 + (�2
2
− �1�2�12) . Note that both inequalities imply A1 ≤ �

2
1
 and 

A2 ≤ �
2
2
.

	 8.	 Case �1 ∈ [0, 1] , 𝜋2 > 1 : Solutions and conditions are the same as in case 7. 
What changes with respect to case 7 is that 7.(iv) can hold.

	 9.	 Case 𝜋1 > 1 , �2 ∈ [0, 1] : Solutions and conditions are the same as in case 7. 
What changes with respect to case 7 is that 7.(v) can hold.

	10.	 Case 𝜋1 > 1 , 𝜋2 > 1 : Solutions and conditions are the same as in case 7. What 
changes with respect to case 7 is that 7.(iv) and 7.(v) can hold.

Appendix 2: BKM implementation

BKM assumes that both �F,t and �t are affine, i.e. �F,t = �0 + �1t and �S,t = �0 + �1t . 
The first step is to estimate parameters A ∶= {�0,�1, �0, �1} by minimizing the indi-
rect utility function of the artificial market. For the one-asset case, this market has risk-
free rate of r + �[0,1](�S,t) = r +max{−�S,t, 0} , and 𝜃t,1 = 𝛼dt + 𝜆S,t∕𝜎S . Thus

𝜋̃1 = 𝜋1 −
(𝜎2

2
−𝜎1𝜎2𝜌12)(𝜋1+𝜋2−1)

𝜎
2
2
−2𝜎1𝜎2𝜌12+𝜎

2
1

, 𝜋̃2 = 𝜋2 −
(𝜎2

1
−𝜎1𝜎2𝜌12)(𝜋1+𝜋2−1)

𝜎
2
2
−2𝜎1𝜎2𝜌12+𝜎

2
1

,
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Using the approximation du = dt exp (−�(u−t))+d∞[1− exp (−�(u−t))] (same as 
when deriving ĝt(dt) in (12)), then

Under this structure, {�0,�1} can be found independently from {�0, �1} . Similar to 
the results in Sect. 2.1, is not hard to see that the optimal is found with �0 = �1 = 0 . 
Thus the problem reduces in finding

which can be obtained numerically. Let �∗
S,t

= �
∗
0
+ �

∗
1
t be the optimal found previ-

ously. Hence, function gt(dt) can be estimated as

Thus, the approximation of the optimal allocation in the risky asset is similar to Eq. 
(7), that is

Numerical methods must be used to estimate �dg
BKM
t

(dt)

gBKMt (dt)
 ; first to estimate gBKM

t
(dt) and 

then to estimate the derivative with respect to dt . The constrained allocation is

min
A

Jt(dt,�F , �S) ∶= min
A

Et

[
X
1−�

T
∕(1 − �)

]
= min

A

X
1−�
t

1 − �

gt(dt)
� =

min
A

1

1 − �

Et

[
exp

(
−�R∫

T

t

r+max{−�S,u, 0}du−
�R

2 ∫
T

t

(
(
�du

�S

+
�S,u

�S

)2+�2
F,u

)
du

−�R∫
T

t

(
�du

�S

+
�S,u

�S

)dWS,u−�R∫
T

t

�F,udWd,u

)]

min
A

J
t
(d

t
,�

F
, �

S
) = min

A

1

1 − �

exp

(
−�R∫

T

t

max{−�
S,u, 0}du

−
�R(1−R)

2 ∫
T

t

(�d
u
+�

S,u)
2

�
2
S

du−
�R(1−R)

2 ∫
T

t

�
2
F,u

du

)

= min
A

1

1 − �

exp

(
(1−�)∫

T

t

max{−�
S,u, 0}du

−
1 − �

2� ∫
T

t

(�d
u
+�

S,u)
2

�
2
S

du−
1 − �

2� ∫
T

t

�
2
F,u

du

)

min
�0,�1

1

1 − �

exp

(
(1−�)∫

T

t

max{−�S,u, 0}du−
1 − �

2� ∫
T

t

(�du+�S,u)
2

�
2
S

du

)
,

gBKM
t

(dt) = exp

(
−R∫

T

t

max{−�∗
S,u
, 0}du−

R(1−R)

2 ∫
T

t

(�du+�
∗
S,u
)2

�
2
S

du

)

�
BKM
S,t

=
�dt

��
2
S

+
�d�Sd

�S

�dg
BKM
t

(dt)

gBKMt (dt)

𝜋̃
BKM
S,t

= max{min{1,𝜋BKM
S,t

}, 0}
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Appendix 3: Supplementary data and results

Fig. 4   Monthly dividend yields (blue) and prices (green) for 16 stocks of the Dow Jones index, from the 
period Jan-90 to Feb-24 (color figure online)
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Table 2   (Upper): Estimation results for eight stocks from the Dow Jones index

The sample consists of monthly dividend yields and stock prices, from the period Jan-90 to Feb-24. 
(Lower): Myopic and dynamic unconstrained allocations for t = 0 , T = 50 and � = 2 , as in Eq. (13). The 
first rows show the HD decomposition, i.e. HD�

t,T
=

[
−

�
d
�
Sd

�
S

(
�

�
S

)2D�

t,T

]
1

�

(1−
1

�

) . The risk-free rate r equals 
to the Dec-23 yield of the 10-year US treasury bond ( r = 3.8% ). The yield at t = 0 is set to d0 = d∞ for 
every stock

CAT​ MMM PG MRK NKE TRV CVX V

� 6.4 1.1 3.1 2.2 16.3 3.7 2.0 0.5
�
S

31% 21% 19% 24% 30% 24% 22% 22%
� 0.61 0.12 0.27 0.33 0.90 0.69 0.69 0.54
d∞ 2.2% 3.3% 2.4% 3.1% 1.1% 2.7% 3.7% 4.9%
�
d

0.9% 0.7% 0.4% 0.8% 0.4% 0.7% 0.9% 1.0%
�
Sd

−0.90 −0.93 −0.95 −0.92 −0.93 −0.94 −0.95 −0.96

�
d
�
Sd
∕�

S

−2.68% −3.02% −2.16% −3.17% −1.14% −2.89% −3.9% −4.62%
(�∕�

S
)2 425.3 26.8 266.9 83.0 2957.3 235.8 81.0 4.8

D
�

0,50
0.04 0.27 0.09 0.09 0.01 0.04 0.05 0.09

HD
�=2

t=0,T=50
11% 6% 13% 6% 10% 7% 4% 0%

Myopic ��=2

t=0,T=50
75% 44% 102% 58% 102% 86% 75% 25%

𝜋̂
𝛾=2

t=0,T=50
86% 50% 115% 64% 112% 93% 79% 25%

HD∕𝜋̂ 13% 12% 11% 9% 9% 8% 5% 0%

Fig. 5   Increase in CE (%) from the proposed solution with respect to the CE of the myopic solution, for 
different risk aversion levels � and horizons T (years). The CE is obtained by doing 200,000 simulations 
of the risky asset and the dividend yield process, with a discretization of dt = 1∕200 (200 times in a year)
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