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Abstract
In this paper we address the problem of determining the least square prenucleolus 
for games with externalities. Specifically, this solution is based on the minimization 
of the variance of the excess vectors that can be associated to any allocation vector 
over the set of all embedded coalitions using a least square criterion. From a theo-
retical point of view, an axiomatization of this solution is provided. Besides, we ana-
lyse its relations with other proposals of solution in the game-theoretical literature.

Keywords  Games with externalities · Least square prenucleolus · Optimization 
problem · Excess

1 � The least square family for games with externalities

In this section, we briefly remind some notions on games with externalities. The 
model of games with externalities (or games in partition function form) is introduced 
in [14] to describe those situations in which the worth of a coalition substantially 
depends on how the remaining agents (outsiders to the coalition) are organized. In 
this framework the basic organization of agents is called an embedded coalition, 
which is a pair whose first component is an element of a partition and whose second 
component contains the remaining elements of the partition (sometimes, the whole 
partition).

Let N = {1,… , n} be a set of agents and �(N) be the family of partitions of N. 
A coalition S ⊆ N is a subset of s players of N. The number of partitions of the set 
N is given by the Bell number of n, denoted by Bn . Formally, an embedded coali-
tion is given by a pair (S; P) with S ⊆ N and P ∈ �(N ⧵ S) . Although the empty set 
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always belongs to any partition P ∈ �(N) , it is omitted when defining embedded 
coalitions, with the exception of the case (N;�) . The family of those embedded coali-
tions is denoted by

For notational convenience, we also introduce the set of those embedded coalitions 
(S;P) ∈ EC(N) with non-empty coalition S. We will denote this subset of EC(N) by

Thus, the number of non-empty embedded coalitions can be determined as

with Sn,k being the Stirling number of the second kind that quantifies the total 
amount of partitions with k groups that can be formed in a set of n players. That is,

satisfying that S0,0 = 1 and Sn,0 = 0 . Then, notice that the Bell number of n can be 
directly given by Bn =

∑n

k=0
Sn,k.

A game in partition function form or a game with externalities is formally defined 
by a function v ∶ EC(N) ⟶ ℝ such that v(�;P) = 0 for every P ∈ �(N) . We will 
refer to S as the active coalition. We denote by G(N) the family of all games in parti-
tion function form with player set N.

Games with externalities deal with coalitions and allocations, and they consider 
groups of agents willing to allocate the joint benefits derived from their cooperation. 
Let v ∈ G(N) be a partition function form game. An allocation of v is an element 
x ∈ ℝ

n . We say that x satisfies efficiency if 
∑n

i=1
xi = v(N;�) . A solution concept 

(or a value) for games with externalities is a map � that associates to every game 
v ∈ G(N) a vector �(v) ∈ ℝ

n.
Criteria considered for the definition of values for TU games can be used, either 

directly or by redefining their meaning in this new context, when introducing values 
for games with externalities. For instance, minimizing the degree of dissatisfaction 
of players can be naturally considered, also under the presence of externalities and 
similarly to the interpretation that justifies the nucleolus [12] and the prenucleolus 
[13] for TU games. In such context, both solutions minimize, accordingly to the 
lexicographical order, the excess vector among all possible allocations and among 
all those allocations satisfying the property of individual rationality for a TU game, 
respectively. The determination of such allocation vector is based on the principles 
of fairness and stability, that requires the management of the excesses.

To extend these ideas, we firstly introduce the notion of excess of an allocation 
under the presence of externalities. Let x be an allocation of v and (S;P) ∈ G(N) such 
that S ≠ ∅ . The excess of x to (S; P) is given by

(1)EC(N) =
{
(S;P) ∶ P ∈ 𝛱(N ⧵ S) and S ⊆ N

}
.

(2)EC
∗(N) =

{
(S;P) ∶ P ∈ 𝛱(N ⧵ S) and � ≠ S ⊆ N

}
.

n∑
k=1

kSn,k

Sn,k =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n, for every 0 ≤ k ≤ n,
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Notice that e((S; P), x) can be now interpreted as a measure of the dissatisfaction of 
the embedded coalition (S; P) if x is suggested as final allocation, in the sense that as 
greater e((S; P), x), worse-treated would feel agents in (S; P).

Formally, for any v ∈ G(N) , the average of all excesses of v for a given alloca-
tion x over the set of all embedded coalitions is obtained as

Notice that the average excess at any efficient allocation x is always the same, that is, 
e(v, x) does not depend on x. Hence, e(v) will denote e(v, x) in order to simplify the 
notation in the remainder of the paper. Lemma 1 proves this statement.

Lemma 1  For any game with externalities v ∈ G(N) , the sum of the excesses of all 
embedded coalitions is constant for all efficient allocation vectors.

Proof  Take v ∈ G(N) and take x an allocation for v satisfying efficiency, i.e. 
x(N) = v(N;�) . Thus, we immediately have that

where P−S ∈ �(N ⧵ S) denotes the partition induced by any partition P ∈ �(N) 
with S ∈ P . Then, it holds that

Hence, we check that e(v, x) does not vary with the allocation x for v considered. 	� ◻

As [10] and [11] do for the case of TU games, we now analyse the problem of 
of determining that allocation for v that minimizes the variance of the excesses 
over the set of all embedded coalitions using a least square criterion. For this 
purpose, we formalize the following problem for any game with externalities 
v ∈ G(N) , being e(v) the average excess over the set of all non-empty embedded 
coalitions.

e((S;P), x) = v(S;P) − x(S), with x(S) =

s∑
i=1

xi.

e(v, x) =
1∑n

k=1
kSn,k

�
(S;P)∈EC(N)

e((S;P), x).

∑
(S;P)∈EC(N)

e((S;P), x) =
∑

(S;P)∈EC(N)

(v(S;P) − x(S))

=
∑

P∈�(N)

∑
S∈P

(v(S;P−S) − x(S))

=
∑

P∈�(N)

�∑
S∈P

v(S;P−S) − x(N)
�

=
∑

P∈�(N)

∑
S∈P

v(S;P−S) − Bn ⋅ v(N;�),

e(v, x) =
1∑n

k=1
kSn,k

∑
(S;P)∈EC(N)

e((S;P), x)

=
1∑n

k=1
kSn,k

∑
P∈�(N)

∑
S∈P

v(S;P−S) −
Bn∑n

k=1
kSn,k

v(N;�).
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Then, the optimal solution of Problem 1 in (3) determines that allocation vector that 
minimizes the variance of the vector of excesses.

From Lemma 1 and after some basic algebra, we straightforwardly have that the 
objective function of Problem 1 also satisfies for every allocation x that

The fact of that e(v) remains fixed over the feasible region of allocations ensures that 
the optimal solution of Problem 1 in (3) also coincides with the optimal solution of 
its alternative formulation, described below and denoted by Problem 1a.

2 � The least square prenucleolus for games with externalities

In this section we analyse the problem of determining the allocation that mini-
mizes the objective function of Problem 1 for any game with externalities v ∈ G(N) . 
According to the final comments of the previous section, from now on we will con-
sider directly its alternative formulation Problem 1a in (4) for the sake of simplicity.

Definition 1  The least square prenucleolus for games with externalities (hereafter, 
LSE-prenucleolus) is an optimal solution of Problem 1a.

Now we can state the following result that determines the exact expression of the 
LSE-prenucleolus for any game in partition form v ∈ G(N).

Theorem 1  Let v ∈ G(N) be a game with externalities. Then, the LSE-prenucleolus is 
the unique optimal solution of Problem 1a that is given by

(3)

(Problem 1)

min
∑

(S;P)∈EC(N)

�
e((S;P), x) − e(v)

�2

s.t.
∑n

i=1
xi = v(N;�).

∑
(S;P)∈EC(N)

(
e((S;P), x) − e(v)

)2

=
∑

(S;P)∈EC(N)

e((S;P), x)2 −
( n∑

k=1

kSn,k
)
e(v)2.

(4)

(Problem 1a)

min
∑

(S;P)∈EC(N)

�
e((S;P), x)

�2

s.t.
∑n

i=1
xi = v(N;�).

(5)x̂k =
v(N;�)

n
+

1

n𝛼

∑
i∈N

∑
P∈𝛱(N)

(
v(P(k);P−P(k)

) − v(P(i);P−P(i)
)

)
,
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for all k ∈ N , where P(i) ∈ P such that i ∈ P(i) , for all i ∈ N , and 

� =
∑n−1

s=1

�
n − 2

s − 1

�
Bn−s.

Proof  Take v ∈ G(N) and consider Problem  1a in (4). It is easy to check that the 
objective function is strictly convex and the feasible set is also convex. Immediately, 
there exists at most one optimal solution that can be obtained through the Lagran-
gian conditions.

The Lagrangian function of Problem  1a is given, for any x ∈ ℝ
n and for any 

� ∈ ℝ , by

Besides, the partial derivates of L(�, x) are given by

In order to obtain a stationary point, we need to solve the following system:

Below, we determine that point satisfying such conditions. Fix i ∈ N and rewrite 
Eq. (6) using the definition of excess as follows:

By the efficiency of x, i.e. x(N) =
∑

i∈N xi = v(N;�) , we have now that

L(�, x) =
∑

(S;P)∈EC(N)

(e((S;P), x))2 + �

(
n∑
i=1

xi − v(N;�)

)
.

�L

��
=

n∑
i=1

xi − v(N;�)

�L

�xi
= − 2

∑
(S;P) ∈ EC(N)

i ∈ S

e((S;P), x) + �, for all i ∈ N.

(6)

0 =

n∑
i=1

xi − v(N;�)

0 = − 2
∑

(S;P) ∈ EC(N)

i ∈ S

e((S;P), x) + �, for all i ∈ N.

(7)

0 = − 2
∑

(S;P) ∈ EC(N)

i ∈ S

(
v(S;P) − x(S)

)
+ �

0 = − 2
∑

(S;P) ∈ EC(N)

i ∈ S

(
v(S;P) − xi − x(S ⧵ i)

)
+ �.
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Besides, by analysing each addend of the above expression separately, we have that

and

for the third one. Then, rewriting Eq. (7), we alternatively have that

For every k ∈ N ⧵ i , Eq. (8) can be also rewritten as

∑
(S;P) ∈ EC(N)

i ∈ S

(
v(S;P) − xi − x(S ⧵ i)

)
=

∑
(S;P) ∈ EC(N)

S ≠ N, i ∈ S

(
v(S;P) − xi − x(S ⧵ i)

)

=
∑

(S;P) ∈ EC(N)

S ≠ N, i ∈ S

v(S;P) −
∑

S ⊊ N

i ∈ S

∑
P∈𝛱(N⧵S)

xi

−
∑

S ⊊ N

i ∈ S

∑
P∈𝛱(N⧵S)

x(S ⧵ i).

∑
S ⊊ N

i ∈ S

∑
P∈𝛱(N⧵S)

xi = xi

n−1∑
s=1

(
n − 1

s − 1

)
Bn−s,

∑
S ⊊ N

i ∈ S

∑
P∈𝛱(N⧵S)

x(S ⧵ i) =
∑
j∈N⧵i

xj

n−1∑
s=2

(
n − 2

s − 2

)
Bn−s,

(8)

0 = −2

( ∑
(S;P) ∈ EC(N)

S ≠ N, i ∈ S

v(S;P) − xi

n−1∑
s=1

(
n − 1

s − 1

)
Bn−s

)

− 2

(
−

∑
j∈N⧵i

xj

n−1∑
s=2

(
n − 2

s − 2

)
Bn−s

)
+ �.

(9)

0 = −2

( ∑
(S;P) ∈ EC(N)

S ≠ N, k ∈ S

v(S;P) − xk

n−1∑
s=1

(
n − 1

s − 1

)
Bn−s

)

− 2

(
−

∑
j∈N⧵k

xj

n−1∑
s=2

(
n − 2

s − 2

)
Bn−s

)
+ �.
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Thus, if we substract Eqs. (8) and (9), we immediately obtain that

and

To simplify the previous equation, we should use that

and that 
(
n − 1

0

)
=

(
n − 2

0

)
 . Thus, we have that

From the previous equality, it holds that

for all k ∈ N ⧵ {i} . Using the efficiency of the allocation x, we have that

which directly implies that

is the unique optimal solution of Problem 1a . 	�  ◻

n−1∑
s=1

(
n − 1

s − 1

)
Bn−s(xi − xk) + (xk − xi)

n−1∑
s=2

(
n − 2

s − 2

)
Bn−s

−
∑

P∈�(N)

(
v(P(i);P−P(i)

) − v(P(k);P−P(k)
)
)
= 0

(x
i
− x

k
)

((
n − 1

0

)
B
n−1 +

n−1∑
s=2

((
n − 1

s − 1

)
−

(
n − 2

s − 2

))
B
n−s

)

−
∑

P∈�(N)

(
v(P(i);P−P(i)

) − v(P(k);P−P(k)
)
)
= 0.

(
n − 1

r

)
=

(
n − 2

r

)
+

(
n − 2

r − 1

)
, for every r = 0,… , n − 2, with

(
n − 2

−1

)
= 0,

(xi − xk)

n−1∑
s=1

(
n − 2

s − 1

)
Bn−s −

∑
P∈�(N)

(
v(P(i);P−P(i)

) − v(P(k);P−P(k)
)
)
= 0.

xi = xk +
1

∑n−1

s=1

�
n − 2

s − 1

�
Bn−s

�
P∈�(N)

�
v(P(i);P−P(i)

) − v(P(k);P−P(k)
)
�
,

v(N;�) = nxk +
1

∑n−1

s=1

�
n − 2

s − 1

�
Bn−s

�
i∈N

�
P∈�(N)

�
v(P(i);P−P(i)

) − v(P(k);P−P(k)
)
�

x̂k =
v(N;�)

n
+

1

n
∑n−1

s=1

�
n − 2

s − 1

�
Bn−s

�
i∈N

�
P∈𝛱(N)

�
v(P(k);P−P(k)

) − v(P(i);P−P(i)
)
�
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First, we provide some alternative formulations for the LSE-prenucleolus of a 
game with externalities v ∈ G(N) in Expression (5), that can be useful in the anal-
ysis of their theoretical properties.

Remark 1  The LSE-prenucleolus of a game with externalities v ∈ G(N) in Expres-
sion (5) can be also rewritten as

Also from Expression (5), some aspects related to the interpretation of the 
least square prenucleolus of a game with externalities v ∈ G(N) can be mentioned.

Remark 2  The least square prenucleolus for games with externalities in Expression 
(5) enables the following alternative formulation:

for all k ∈ N , being ŷk such that

In practice, each coordinate k of vector ŷ , with k ∈ N , represents the average value 
of that function defining the game with externalities for those embedded coalitions 
in which k belongs to the active coalition.

Since the quantity 
∑n−1

s=1

�
n − 2

s − 1

�
Bn−s represents the total amount of embedded 

coalitions of the form (S;  P) to which player k belongs to S, the first addend of 
Expression (10) can be interpreted as the average worth of those embedded coali-
tions in which player k is a member of S. So, this implies that the alternative expres-
sion of the least square prenucleolus can be naturally introduced as an additive nor-
malization of the allocation given by (ŷk)k∈N.

x̂k =
v(N;�)

n
+

1

n

n−1∑
s=1

�
n − 2

s − 1

�
Bn−s

�
n

�

(S;P) ∈ EC(N)

k ∈ S

v(S;P) −
�
i∈N

� �

(S;P) ∈ EC(N)

i ∈ S

v(S;P)

��
.

(10)
x̂k = ŷk +

1

n

�
v(N;�) −

1

∑n−1

s=1

�
n − 2

s − 1

�
Bn−s

�
i∈N

�
P∈𝛱(N)

v(P(i);P−P(i)
)

�
,

ŷk =
1

∑n−1

s=1

�
n − 2

s − 1

�
Bn−s

�
P∈𝛱(N)

v(P(k);P−P(k)
)

=
1

∑n−1

s=1

�
n − 2

s − 1

�
Bn−s

�
S⊆N⧵k

�
P∈𝛱(N⧵(S∪k))

v(S ∪ k;P).
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3 � TU game‑based analysis for the least square prenucleolus

As mentioned, the task of allocating the profit or the cost of the cooperation is 
also relevant under the presence of externalities. In literature, there exist some 
proposals that make use of games with transferable utility for this purpose that 
can be intuitively associated to any v ∈ G(N) . Recall that a game with transferable 
utility or TU game is a pair (N, w), where N is a finite set of agents and w is a map 
from 2N to ℝ that satisfies that w(�) = 0 (cf. [6]). The class of TU games with a 
set of agents N is denoted by GN.

Let v ∈ G(N) be a game with externalities. Among other proposals, [2] assigns 
to v, the TU game (N, v̄) ∈ GN given by

for every S ⊆ N . Each coalition S ⊆ N obtains the expected worth of the cooperation 
of the members of S in v, that is, the average over the whole set of the embedded 
coalitions (S; P) with P ∈ �(N ⧵ S) when they are equally likely.

The study of the least square prenucleolus was already considered in [10] for the 
case of TU games when denoting by e(w, x) = 1

2n−1

∑
S⊆N e(S, x) the average excess 

of a given allocation x for every (N,w) ∈ GN , and being the excess defined by 
e((S;P), x) = w(S) − x(S) for each S ⊆ N . Thus, the least square prenucleolus of a gen-
eral TU game (N, w) (hereafter, LS-prenucleolus) is the optimal solution of

[10] determine and characterize the least square prenucleolus of a given TU game 
(N, w), the LS-prenucleolus for w, that is given by

and that corresponds to the optimal solution of Problem 1∗ in (12).
Moreover, [11] extend the original problem by using a coalitional weight function 

m ∶ 2|N|⧵� ⟶ ℝ , that assigns to every non-empty coalition S of N a real number 
m(S). Specifically, the weight function m is assumed positive, with m(S) > 0 for all 
S ⊆ N , and symmetric, with m(S) = m(T) for any pair of coalitions S, T ⊆ N such that 
s = t . The interpretation of this function usually refers to the distribution of probability 
of any coalition S forming.

Directly, Problem 1∗W formalized a weighted version of Problem 1∗.

(11)v̄(S) =

�
v(N;�) if S = N,
1

Bn−s

∑
P∈𝛱(N⧵S)

v(S;P) otherwise,

(12)

(Problem 1∗)

min
∑
S⊆N

�
e(S, x) − e(w, x)

�2

s.t.
n∑
i=1

xi = w(N).

(13)

zk =
w(N)

n
+

1

n2n−2

(
n

∑
S ⊆ N

k ∈ S

w(S) −

n∑
j=1

( ∑
S ⊆ N

j ∈ S

w(S)

))
, for all k ∈ N,
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[11] determine and study the optimal solution of Problem  1∗W in (14). Thus, the 
weighted least square prenucleolus for w, denoted by the weighted LS-prenucleolus 
for w, is

with � =
∑n−1

s=1
m(s)

�
n − 2

s − 1

�
.

Using these notions, the LSE-prenucleolus of a given game with externalities 
v can be interpreted as the weighted LS-prenucleolus (cf. [11]) of the TU game 
of Albizuri et  al. in (11). Then, if we consider the coalitional weight function 
m ∶ 2|N|⧵� ⟶ ℝ defined by

it holds that the LSE-prenucleolus for v in (5) coincides with the weighted LS-prenu-
cleolus for the TU game v̄ , given in (11).

Considering all the comments above, the analysis of the properties that LSE-pre-
nucleolus satisfy readily follows. For this purpose, we largely use the ideas in [7] 
about properties to satisfy those solutions for externalities games that are obtained 
from solutions for TU games using an “average approach”.

Let v ∈ G(N) be a game with externalities and take � a value for v. Below, we 
provide an initial list of those more basic properties on � . 

(EFF)	� Efficiency. � satisfies efficiency if it provides an efficient allocation for v, 
i.e. 

∑
i∈N �i(v) = v(N;�).

(L)	� Linearity. � satisfies linearity property if for any pair of games with exter-
nalities v, v� ∈ G(N) , �(v + v�) = �(v) + �(v�) , and for any scalar � ∈ ℝ , 
�(�v) = ��(v).

(C)	� Continuity. � satisfies continuity property if it is a continuous function 
from the set of games with externalities to ℝn.

(14)

(Problem 1∗W)

min
∑
S⊆N

m(S)
�
e(S, x) − e(w, x)

�2

s.t.
n∑
i=1

xi = w(N).

zm
k
=

w(N)

n
+

1

𝛼n

(
n

( ∑
S ⊆ N

k ∈ S

m(S)w(S)

)
−

n∑
j=1

( ∑
S ⊆ N

j ∈ S

m(S)w(S)

))
, for all k ∈ N,

m(S) = Bn−s, for all S ⊆ N,
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(IN)	� Inessential game. � satisfies inessential game property if �i(v) = v(i;⌊N⧵i⌋) 
whenever v is additive, and being ⌊N⧵i⌋ = {{j} ∶ j ∈ N⧵{i}}.1 Notice that 
v ∈ G(N) is said to be additive if v(S;P) =

∑
i∈S v(i;⌊N ⧵ i⌋).

(SE)	� Strategic equivalence. � satisfies strategic equivalence property if, for a 
given 𝜌 > 0 and for a given collection of real numbers �1,… , �n such that 
v2(S;P) = �v1(S;P) +

∑
i∈S �i , for any (S;P) ∈ EC(N) and for any pair of 

games with externalities v1, v2 ∈ G(N) , it holds that 

 In this case, v1 and v2 are said to be games with externalities strategically equivalent.

(S)	� Standard for two person games with externalities. � satisfies this prop-
erty if, for any two person game with externalities v ∈ G(N) , it holds that 

Before going on to introduce those properties that specifically characterize a 
value � built under the least square criterion for v ∈ G(N) , we introduce some nota-
tion. For a given coalition S ⊆ N and a given partition P ∈ �(N⧵S) , �S,PP denotes 
a new partition of N ⧵ S resulting from a permutation of N ⧵ S with as many groups 
as P and with the same distribution of group sizes as P. Besides, we define the 
game �S,Pv ∈ G(N) as (�S,Pv)(S;P) = v(S;�S,PP) , (�S,Pv)(S;�S,PP) = v(S;P) , and 
(�S,Pv)(R;Q) = v(R;Q) for all (R;Q) ∈ EC(N)⧵{(S;P), (S;�S,PP)}.

Next, we complete the previous list by adding the properties of strong symmetry 
and of coalitional monotonicity on � , that are originally introduced in [7]. 

(SSYM)	� Strong symmetry. � satisfies the strong symmetry property if for any 
permutation � of N, �(�v) = ��(v) , and for any (S;P) ∈ EC(N) , and for 
any permutation �S,P , �(�S,Pv) = �(v).

(CM)	� Coalitional monotonicity. � satisfies the coalitional monotonicity prop-
erty if �i(v1) ≥ �i(v2) for all i ∈ S whenever v1 and v2 ∈ G(N) are such 
that v1(S;P) > v2(S;P) for some P ∈ �(N ⧵ S) and v1(R;Q) = v2(R;Q) for 
(R;Q) ≠ (S;P).

�i(v2) = ��i(v1) + �i, for all i ∈ N.

�i(v) = v(i;{j}) +
1

2

(
v(N;�) − v(i;{j}) − v(j;{i})

)
.

1  Unlike the case of TU games, the worth of individually acting each player i under the presence of 
externalities, for every i ∈ N , is usually non-constant over the set of partitions for N ⧵ {i} . In some spe-
cific contexts, the worth of v(i;⌊N⧵i⌋) is clearly tied to the sense of the externalities of v (see [1, 5]). This 
notion requires the introduction of an order relation between partitions. Specifically, given P,Q ∈ �(N) , 
P is finer than Q, P ⪯ Q , if for every S ∈ P there is T ∈ Q such that S ⊆ T  . Thus, v ∈ G(N) has nega-
tive externalities, if for every S ⊆ N , P,Q ∈ �(N ⧵ S) such that P ⪯ Q , v(S;P) ≥ v(S;Q) . This ensures 
the best-case scenario for i since that v(i;⌊N⧵i⌋) = max

P∈�(N⧵{i}) v({i};P) . Conversely, if v ∈ PG(N) has 
positive externalities, for every S ⊆ N , P,Q ∈ �(N ⧵ S) such that P ⪯ Q , v(S;P) ≤ v(S;Q) . This ensures 
the worst-case scenario for i among all the structures of N⧵ i, that is, v(i;⌊N⧵i⌋) = min

P∈�(N⧵{i}) v({i};P).
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Immediately, the next result ensures that least square prenucleolus for games with 
externalities satisfies all of the above properties.

Proposition 1  Let v ∈ G(N) be a game with externalities. Then, the LSE-prenucle-
olus verifies the properties of efficiency (EFF), linearity (L), continuity (C), ines-
sential game (IN), strategic equivalence (SE), strong symmetry (SSYM), coalitional 
monotonicity (CM), and it is standard for two person games with externalities (S).

Proof  Take v ∈ G(N) and take the least square prenucleolus for v given by Expres-
sion (5) in Theorem 1.

By construction, the efficiency (EFF) of the LSE-prenucleolus for v is clearly sat-
isfied. After some basic algebra, the properties of continuity (C) and of strategic 
equivalence (SE) can directly established, as well as the property of being standard 
for two person games with externalities (S). More specifically, the fulfilment of (S) 
can be immediately stated from the expression of the LSE-prenucleolus in (5) for the 
case of only considering two players.

Since that the least square prenucleolus of a game with externalities is the 
weighted least square prenucleolus of the TU game of [2], the fulfilment of the 
remaining properties is plain from the properties that [11] prove for the latter. This is 
an immediate consequence of Theorem 10 in [7]. 	�  ◻

3.1 � Surplus approach‑based analysis for the least square prenucleolus

Below, we extend a solution considered in [10] in the analysis of the least square 
values for TU games for the case of games with externalities. Its definition is based 
on the ideas of surplus of a player against other that justify solution concepts for TU 
games as the kernel ([4]) and the prekernel ([8, 9]).

Below, we formalize the average surplus of player i against j at an efficient allo-
cation vector x for any game with externalities v ∈ G(N) as

for each pair of players i and j ∈ N such i ≠ j.
From the solution given in (15), the following set of allocations can be directly 

established for any game with externalities v ∈ G(N).

Definition 2  Take v ∈ G(N) a game with externalities. The average prekernel for v is 
given by

(15)
𝜎ij(x, v) =

1

∑n−1

s=1

�
n − 2

s − 1

�
Bn−s

�
S⊆N⧵{i,j}

�
P∈𝛱(N⧵(S∪i))

�
v(S ∪ i;P) − x(S ∪ i)

�
,

pK
av(v) =

{
x ∈ ℝ

n ∶
∑
i∈N

x
i
= v(N;�), (�

ij
(x, v) − �

ji
(x, v)) = 0, for all i, j ∈ N, with i ≠ j}.
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Next result study the average prekernel for a given game with externalities v. As 
a direct consequence of Theorem 1, for any game with externalities v, the sum of the 
excesses of all embedded coalitions containing a player at the LSE-prenucleolus for 
v is the same for all players. That is, using Eq. (6) in the proof Theorem 1 yields that

and being x̂ the LSE-prenucleolus for v.

Proposition 2  Take v ∈ G(N) a game with externalities. Thus, the LSE-prenucleolus 
for v is the unique point of the average prekernel.

Proof  The result can be directly proved from the fact of that �ij(x, v) = �ji(x, v) for all 
i, j ∈ N such that i ≠ j ensures that any allocation in pKav(v) satisfies that

Thus, from the condition in (16), the only allocation satisfying the previous equality 
is the LSE-prenucleolus for v. 	�  ◻

4 � An axiomatization of the least square prenucleolus

Although the condition imposed in (16) for LSE-prenucleolus jointly with its effi-
ciency (EFF) provides a first characterization of this solution, we establish in this 
section new results that make use of usual properties of solution concepts.

To do this, we extend the property of Average Marginal Contribution Monoto-
nicity for solutions for TU games considered in [10] to characterize solutions for 
games with externalities. However, the notion of marginal contribution of a player 
that bases it for TU games can not be explicitly handled here. By using its alterna-
tive formulation, we rename it under the presence of externalities as monotonicity in 
the average worth. The property of Monotonicity in the average worth ensures that, 
given v ∈ G(N) , � a value for v and for any pair of players i, j ∈ N , if the average 
worth of those embedded coalitions which player i belongs to but not containing 
player j is larger than the average worth of those containing j but not i, i receives 
more than j when using � . We formalize it below for any game with externalities 
v ∈ G(N) and any value � for v. 

(M)	� Monotonicity in the average worth. � satisfies this property if 

(16)

∑
(S;P) ∈ EC(N)

i ∈ S

e((S;P), x̂) =
∑

(S;P) ∈ EC(N)

j ∈ S

e((S;P), x̂), for all i, j ∈ N,

∑
(S;P) ∈ EC(N)

i ∈ S

e((S;P), x) =
∑

(S;P) ∈ EC(N)

j ∈ S

e((S;P), x).
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 implies that �i(v) ≥ �j(v) , for all i, j ∈ N and for all v ∈ G(N).
Below, we characterize the least square prenucleolus for games with externalities 

but first we must state the following auxiliary result.

Lemma 2  Take v ∈ G(N) a game with externalities. A value � for v verifies efficiency 
(EFF), linearity (L) and monotonicity in the average worth (M), if and only if

for all k ∈ N.

Proof  The scheme of the proof follows the one given for Lemma 14 in [10]. First, 
it is easy to check that the value for v in (17) satisfies the three required properties.

To prove the reverse, we now take a basis of the games with externalities defined 
over the subset of non-empty embedded coalitions of N given by EC∗(N) in (2). 
Thus, we will denote such basis by (w(S;P)){(S;P)∈EC∗(N)} and it will be specified by:

for all (S;P) ∈ EC
∗(N).

In this case, the properties of (EFF) and (M) ensures that �i(w
(N;�)) = 1∕n , for all 

i ∈ N . For each embedded coalition (S;P) ∈ EC
∗(N) , with S ≠ N , using again (EFF) 

and (M), there exists a family of values �(S;P) ≥ 0 satisfying that

As any game with externalities v ∈ G(N) can be expressed in terms of the considered 
basis and using (L), we have that

∑
(S;P) ∈ EC(N)

i ∈ S, j ∉ S

v(S;P) ≥
∑

(S;P) ∈ EC(N)

j ∈ S, i ∉ S

v(S;P)

(17)

�k(v) =
v(N;�)

n
+ �

(
n

∑
(S;P) ∈ EC(N)

k ∈ S

v(S;P) −
∑
i∈N

( ∑
(S;P) ∈ EC(N)

i ∈ S

v(S;P)

))
,

w(S;P)(T;Q) =

{
1, if (S;P) = (T;Q),

0, if (S;P) ≠ (T;Q),

�i(w
(S;P)) =

{
�(S;P)

s
, if i ∈ S,

−�(S;P)

n−s
, if i ∉ S.

(18)

�k(v) =�k

( ∑
(S;P)∈EC∗(N)

v(S;P)w(S;P)

)
=

∑
(S;P)∈EC∗(N)

v(S;P)�k

(
w(S;P)

)

= v(N;�)�k(w
(N;�))

+
∑

(S;P) ∈ EC
∗(N)

S ≠ N, k ∈ S

�(S;P)

s
v(S;P) −

∑
(S;P) ∈ EC

∗(N)

S ≠ N, k ∉ S

�(S;P)

n − s
v(S;P),
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by the linearity property that � satisfies.
Similarly to the reasoning done in [10], by using (L) and (M) on � , we can state 

that there exists a real value � ≥ 0 such that

Using the condition on (18), we immediately have that

concluding the proof. 	�  ◻

Now, we provide the following characterization of the least square prenucleo-
lus for games with externalities.

Theorem  2  Take v ∈ G(N) a game with externalities. The LSE-prenucleolus for v 
is the unique value for v satisfying efficiency (EFF), linearity (L), inessential game 
(IN), and monotonicity in the average worth (M).

Proof  First, Proposition 1 ensures that the LSE-prenucleolus for v satisfies the four 
mentioned properties.

Now, take � a value also satisfying these four conditions. Them, using Lemma 2, 
� can be expressed as in (17) for a certain � ≥ 0 . Besides, if we take an inessential 
game, we have that

and, hence,

� =
�(S;P)

s(n − s)
, for all (S;P) ∈ EC

∗(N).

�k(v) =
v(N;�)

n
+ �

(
n

∑
(S;P) ∈ EC(N)

k ∈ S

v(S;P) −
∑
i∈N

( ∑
(S;P) ∈ EC(N)

i ∈ S

v(S;P)

))
,

(19)

�
(S;P) ∈ EC(N)

k ∈ S

v(S;P) =
�

S ⊆ N

k ∈ S

�
P∈𝛱(N⧵S)

v(S;P) =
�

S ⊆ N

k ∈ S

�
P∈𝛱(N⧵S)

�
j∈S

v(j;⌊N ⧵ j⌋)

= v(k;⌊N ⧵ k⌋)
� n−1�

s=1

�
n − 2

s − 1

�
Bn−s

�

+ v(N;�)

� n�
s=2

�
n − 2

s − 2

�
Bn−s

�
,
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Considering the expressions in (19) and in (20) as well as the property of inessential 
game, we can rewrite the formulation in (17) by

and, by the inessential game property, it also satisfies that �k(v) = v(k;⌊N ⧵ k⌋) . 
Thus, it holds that

and, consequently,

Then, if nv(k;⌊N ⧵ k⌋) − v(N;�) ≠ 0 , we obtain that � =
1

n
∑n−1

s=1

⎛⎜⎜⎝
n − 2

s − 1

⎞⎟⎟⎠
Bn−s

 . Now, if 

we use this value of � on the formulation of � in (17), the unique value for games 
with externalities satisfying efficiency (EFF), linearity (L), inessential game (IN) 
and monotonicity in the average worth (M) is given, for all k ∈ N , by

that coincides with the formulation of the LSE-prenucleolus for games with exter-
nalities shown in Remark 1. 	�  ◻

Next, the independence of the four axioms that are considered in Theorem  2 is 
shown. If we define for all v ∈ G(N) the value

it satisfies linearity (L), inessential game (IN) and monotonicity in the average worth 
(M), but not efficiency (EFF).

To prove the independence of (L), we define the value

(20)

�
j∈N

� �
(S;P) ∈ EC(N)

j ∈ S

v(S;P)

�
=

��
j∈N

v(j;⌊N⧵j⌋)
��

n−1�
s=1

�
n − 2

s − 1

�
Bn−s

�

+ nv(N;�)

�
n�

s=2

�
n − 2

s − 2

�
Bn−s

�
.

�k(v) =
v(N;�)

n
+ �

� n−1�
s=1

�
n − 2

s − 1

�
Bn−s

��
nv(k;⌊N ⧵ k⌋) − v(N;�)

�
.

v(N;�)

n
+ �

�
n−1∑
s=1

�
n − 2

s − 1

�
Bn−s

��
nv(k;⌊N ⧵ k⌋) − v(N;�)

�
= v(k;⌊N ⧵ k⌋)

n�

�
n−1∑
s=1

�
n − 2

s − 1

�
Bn−s

��
nv(k;⌊N ⧵ k⌋) − v(N;�)

�
= nv(k;⌊N ⧵ k⌋) − v(N;�).

�k(v) =
v(N;�)

n
+

1

n

n−1∑
s=1

�
n − 2

s − 1

�
Bn−s

�
n

�

(S;P) ∈ EC(N)

k ∈ S

v(S;P) −
�
i∈N

� �

(S;P) ∈ EC(N)

i ∈ S

v(S;P)

��
,

𝜑̃1(v) = 2LSE(v),
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for all v ∈ G(N) . Clearly, it satisfies (EFF), (IN) and (M), but no (L).
To prove the independence of (IN), we define, for all v ∈ G(N) and for all i ∈ N , the 

value

for all v ∈ G(N) and for all i ∈ N . This solution does not satisfy (IN) but it satisfies 
the rest of the properties.

Finally, we define the value

for all v ∈ G(N) and for all i ∈ N . Then, 𝜑̃4(v) only fails (M).

5 � Concluding remarks

The prenucleolus and the nucleolus for TU games are solution concepts based 
on the excess vector that can be associated to any allocation. Using this idea, we 
explore a new solution concept for games with externalities that provides that 
efficient allocation whose associated excess is the closest to the average excess 
under the least square criterion. Thus, we call the least square prenucleolus for 
games with externalities to such efficient allocation, that minimizes the variance 
of the resulting excesses over the set of all embedded coalitions.

In this paper, we provide the exact expression of the least square prenucleolus and 
we analyse its properties. Besides, an axiomatic characterization of the least square pre-
nucleolus is established. We have also studied its relationship with analogous solution 
concepts for TU games, which assume the absence of externalities, and that were origi-
nally considered in [10, 11] under an analogous perspective. Specifically, this new value 
for games with externalities can be interpreted as the weighted least square prenucleo-
lus for the TU game in [2], that is built using an “average approach” (cf. [7]). A consist-
ency property has been formalized to characterize the family of weigthed least square 
values for TU games studied in [10] and in [11]. A similar solution concept for games 
with externalities, although different in its nature, is the optimistic (pre)-nucleolus for 
games with externalities (cf. [3]), that is also characterized by means of a consistency 
property. In any case, our solution concept does not satisfy either of these perspectives.

Finally, it is noteworthy that the minimization problem for computing the least 
square nucleolus for games with externalities can be analogously raised. The the-
oretical analysis of the consistency property for the least square prenucleolus, the 
study of the nucleolus and the study of alternative solution concepts based on the 
“average approach” will be part of further research.

𝜑̃2(v) =

{
v(N;�)

|N| , if v is a non-additive game,

LSE(v), otherwise,

𝜑̃3
i
(v) =

v(N;�)

|N|

𝜑̃4

i
(v) = v({i}, ⌊N ⧵ {i}⌋) + 1

�N�

�
v(N;�) −

�
j∈N

v({j}, ⌊N ⧵ {j}⌋)
�
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