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Abstract
QR factorization is a key tool in mathematics, computer science, operations 
research, and engineering. This paper presents the roundoff-error-free (REF) QR 
factorization framework comprising integer-preserving versions of the standard and 
the thin QR factorizations and associated algorithms to compute them. Specifically, 
the standard REF QR factorization factors a given matrix A ∈ ℤm×n as A = QDR , 
where Q ∈ ℤm×m has pairwise orthogonal columns, D is a diagonal matrix, and 
R ∈ ℤm×n is an upper trapezoidal matrix; notably, the entries of Q and R are integral, 
while the entries of D are reciprocals of integers. In the thin REF QR factorization, 
Q ∈ ℤm×n also has pairwise orthogonal columns, and R ∈ ℤn×n is also an upper 
triangular matrix. In contrast to traditional (i.e., floating-point) QR factorizations, 
every operation used to compute these factors is integral; thus, REF QR is 
guaranteed to be an exact orthogonal decomposition. Importantly, the bit-length of 
every entry in the REF QR factorizations (and within the algorithms to compute 
them) is bounded polynomially. Notable applications of our REF QR factorizations 
include finding exact least squares or exact basic solutions, x ∈ ℚn , to any given full 
column rank or rank deficient linear system Ax = b , respectively. In addition, our 
exact factorizations can be used as a subroutine within exact and/or high-precision 
quadratic programming. Altogether, REF QR provides a framework to obtain exact 
orthogonal factorizations of any rational matrix (as any rational/decimal matrix can 
be easily transformed into an integral matrix).
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1  Introduction

QR factorization is widely used throughout mathematics, engineering, and 
computer science. Specifically, QR is regularly used to solve linear least squares 
problems [1, 2], reveal the rank of matrices [3–5], solve highly ill-conditioned 
linear systems [6, 7], compute Eigenvalues [8–10], and as a subroutine in 
quadratic programming [11–13].

In the context of quadratic programming, QR factorization was shown to be an 
efficient tool for solving quadratic programs with high (floating-point) accuracy 
[12]. Likewise, on a parallel effort, Gartner and Schonherr [14] developed and 
implemented an exact quadratic programming algorithm for computational 
geometry problems; notably, this exact QP solver was based on an extension of 
an exact linear programming solver, not on QR factorization. This paper bridges 
the gap between these two disjoint approaches by presenting an exact QR 
factorization, which may be subsequently used to develop an exact QP algorithm. 
Specifically, we present a general-purpose roundoff-error-free (REF) QR 
factorization framework that can be used out-of-the-box to exactly and reliably 
solve any numerically-challenging application.

That said, the benefits of REF QR extend well beyond quadratic programming 
because general-purpose (floating point) QR factorizations have been shown 
to suffer from numerical issues in some applications. For example, if A is very 
ill-conditioned, the Q matrix, when computed with traditional floating-point 
approaches, tends to lose orthogonality and thus may lead to incorrect solutions 
[6, 15]. Indeed, in practice, a previous implementation of (floating-point) QR 
factorization in LAPACK was shown to numerically fail in rank-revealing 
computations [16]. Though this shortcoming was successfully addressed 
therein, another far more recent example, in the context of deep neural networks, 
illustrates that state-of-the-art, out-of-the-box floating-point QR factorization 
lacks accuracy when solving some least-square problems [17]. Again, though 
the issue was addressed in that context (via QR code specialized for their 
application), the authors state, “Our experience seems to suggest that presently 
with neural engines, matrix factorizations (QR, LU, Cholesky) are best to be 
co-designed with their applications (linear solver, least square, orthogonalization, 
SVD, etc.) to achieve high performance and adequate accuracy and reliability.” 
While this suggestion is worthwhile, our REF QR factorization may be directly 
used to benchmark specialized floating-point matrix factorizations after they are 
fine-tuned for specific applications.

In pursuit of this, we introduce two new QR factorizations of the form 
A = QDR , where the columns of Q are pairwise orthogonal, D is diagonal, and 
R is upper trapezoidal. Notably, both Q and R are comprised of exclusively 
integer entries with polynomially-bounded bit-lengths, while D (whose entries 
are all reciprocals of integers with also polynomially-bounded bit-lengths) never 
needs to be explicitly computed or applied when using the REF QR factorization. 
Given a matrix A ∈ ℤm×n , with m ≥ n , we present two variants of the REF QR 
factorization: (1) the “thin REF QR Factorization” in which Q ∈ ℤm×n and 
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R ∈ ℤn×n is the REF Cholesky [18, 19] factor of ATA , and (2) the “standard REF 
QR Factorization” in which Q ∈ ℤm×m and R ∈ ℤm×n is the REF Cholesky factor 
of ATA appended by m − n rows of zeros. In addition to proving the existence 
of the REF QR factorizations, we derive several of their properties, which are 
analogous to the properties of the traditional QR factorizations as well as derive 
the algorithms to compute them. Moreover, when A has full column rank, we 
show that solving the linear system Ax = b using the REF QR factorization 
provides the exact least squares solution (i.e., the exact minimizer of the two-
norm of Ax − b ). Conversely, when A is rank deficient, we show that REF QR can 
be used to compute an exact basic solution to the system Ax = b.

We note that Zhou and Jeffrey [20] were the first to present an exact thin QR 
factorization called fraction-free QR. The contributions highlighted above 
significantly expand on their work; as we develop both thin and standard QR 
factorizations, prove that they have properties analogous to traditional QR 
factorizations, and show how to use them to solve both full-rank and rank-deficient 
linear systems. Thus, another contribution of this work is to generalize the ideas of 
[20] and relate them to the broader linear algebra body of knowledge.

2 � Background

This section briefly reviews the theoretical background needed to derive REF 
QR. Hereafter, it is assumed that A ∈ ℤm×n with m ≥ n . Note that if n > m , the 
derived properties apply to AT , while if A is decimal or rational, it can be made 
integral by multiplying by the appropriate power of 10 or the least common 
multiple, respectively. Lastly, as in several authoritative matrix linear algebra 
and numerical analysis textbooks (e.g., [6, 15, 21]), we utilize the MATLAB 
notation, where the (i,  j) element of A, the ith row of A, and the ith column of A 
are denoted as A(i,  j), A(i,    :  ), and A(  :  ,  i) respectively; while the submatrix at 
the intersection of (consecutive) rows i1 to i2 and (consecutive) columns j1 to j2 is 
denoted as A(i1 ∶ i2, j1 ∶ j2) . Sections  2.1, 2.2,  2.3, and 2.4 review the traditional 
QR factorizations, the Pursell & Trimble algorithm to compute the traditional QR 
factorizations via Gaussian elimination, integer-preserving Gaussian elimination, 
and REF Cholesky, respectively.

2.1 � Traditional QR factorization

Given a matrix A ∈ ℝm×n , a QR factorization factors A into the product A = QR , 
where Q is orthonormal and R is upper trapezoidal. There are two classes of QR 
factorization: thin QR and standard QR. Thin QR factorization is typically computed 
via Gram-Schmidt orthogonalization [15, 22] and results in a rectangular Q ∈ ℝm×n 
and a square R ∈ ℝn×n . On the other hand, the standard QR factorization, which 
is typically referred to just as QR factorization, is computed via either Givens 
rotations [23] or Householder reflections [24] and results in a square Q ∈ ℝm×m and 
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a rectangular R ∈ ℝm×n . These traditional QR factorizations have several properties 
of interest to this paper: 

1.	 Q is an orthonormal matrix. In thin QR, Q is left orthonormal; i.e., QTQ = I . 
While, in standard QR, Q is fully orthonormal; i.e., QQT

= QTQ = I and thus 
Q−1

= QT.
2.	 R contains the Cholesky factor of ATA . Specifically, in thin QR, R is square 

and the Cholesky factor of ATA ; i.e., RTR = ATA . While, in standard QR, R is 
rectangular, and its first n rows are the Cholesky factor of ATA (its last m − n rows 
of R are zeros).

For an in-depth look at QR factorization, we refer the reader to [15].

2.2 � QR factorization via Gaussian elimination

The three standard approaches to computing a QR factorization (Gram-Schmidt, 
Givens, and Householder) are orthogonalization algorithms that construct the 
orthogonal matrix Q̂ . Pursell and Trimble present a totally different approach 
to computing a QR factorization [25], which is based on Gaussian elimination. 
Specifically, they show that performing Gaussian elimination on the matrix 
[ATA ∣ AT

] to obtain its row echelon form yields [R̂ ∣ Q̂T
] , where A = Q̂R̂ is a scaled 

version (because the columns of Q̂ are not normalized) of the thin (floating-point) 
QR factorization of A. While the computational complexity of this approach is not 
competitive with that of the other three approaches, Pursell and Trimble’s approach 
is quite useful in proving several of the theorems in this paper.

2.3 � IPGE

Integer-preserving Gaussian elimination (IPGE) is an exact variant of Gaussian 
elimination used for solving a system of linear equations Ax = b . Given a full rank 
matrix A ∈ ℤn×n and right hand side vector b , denote the kth iteration IPGE matrix 
as A(k) for k = 0,… , n (where A(0) ≜ A)1. Then, assuming there are no row 
permutations, let a(k)

i,j
 and �k ≜ a

(k−1)

k,k
 denote the individual entries of A(k) and the kth 

pivot element for 1 ≤ i ≤ n , 1 ≤ j ≤ n , and 0 ≤ k ≤ n (with �0 ≜ 1 ), respectively. 
Then, at iteration k, the IPGE algorithm computes the entries a(k)

i,j
 as follows:

(1)a
(k)

i,j
=

⎧
⎪⎨⎪⎩

a
(k−1)

i,j
if i = k,

�ka
(k−1)

i,j
−a

(k−1)

k,j
a
(k−1)

i,k

�k−1
otherwise

1  Throughout the paper, the symbol ≜ means “is defined as.”
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Note that Equation (1) differs from traditional Gaussian elimination only in the 
denominator (in traditional Gaussian elimination, the division is by the current 
pivot, �k , instead of the previous pivot). This seemingly minor modification leads to 
the following two key properties:

Lemma 2.1  Throughout all of the IPGE algorithm, the divisions in Equation (1) are 
guaranteed to be integral (have a zero reminder) [26–28].

Lemma 2.2  Given a matrix A, with � ≜ max
i,j

∣ a
(0)

i,j
∣ , the maximum bit length to store 

any IPGE entry, �max , is upper-bounded polynomially as follows [18, 29]:

This polynomial bound on IPGE entries is generally pessimistic and is tight if and 
only if A is diagonal (when A is SPD) or A has orthogonal columns (when A is not 
SPD). [18, 29–31]

2.4 � REF Cholesky

The REF Cholesky factorization [18], based on IPGE, factors an SPD matrix A into 
the product A = LDLT , where L is a lower triangular matrix comprised of integer 
entries and D = diag(�0�1, �1�2,… , �n−1�n)−1 . Notably, D is never needed to 
compute the factorization or when using the factorization to solve an SPD linear 
system. Along with associated REF forward and backward substitution algorithms, 
REF Cholesky can exactly solve the SPD linear system Ax = b exclusively in 
integer arithmetic. Additionally, the left-looking and up-looking sparse REF 
Cholesky factorization algorithms were derived in [19]. Notably, these algorithms 
solve a sparse SPD linear system Ax = b in asymptotically efficient time complexity, 
meaning that the dominant cost in these algorithms’ complexities is that of the 
arithmetic operations and do not have ancillary operations such as greatest common 
divisor operations—required by rational-arithmetic algorithms. Accordingly, 
these exact factorizations outperform competitor rational-arithmetic LDL and 
unsymmetric exact factorizations [19].

3 � Roundoff‑error‑free QR factorizations

This section derives two REF QR factorizations, with which a given matrix A is 
factored as A = QDR , and proves their key properties. Specifically, Sects.  3.1 
and  3.2 formally present the thin REF QR factorization (i.e., where Q ∈ ℤm×n 
and R ∈ ℤn×n ) and the standard REF QR factorization (i.e., where Q ∈ ℤm×m and 
R ∈ ℤm×n ), respectively. Lastly, Sects. 3.4 establishes the relationship between the 
REF QR factorizations and the traditional (floating-point) QR factorizations.

�
�max ≤ ⌈n log(�)⌉ if A is SPD,

�max ≤ ⌈n log(√n�)⌉ if A is not SPD
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3.1 � Thin REF QR factorization

Theorem 3.1 presents the thin REF QR factorization and its key properties.

Theorem 3.1  Every full column rank integral matrix A ∈ ℤm×n has a unique integral 
factorization A = QDR with the following properties: 

(a)	 Q and R are both integral matrices; specifically, Q ∈ ℤm×n and R ∈ ℤn×n.
(b)	 DR is the REF Cholesky factorization of ATA ; that is RTDR = ATA , where R 

is an upper triangular integral matrix, and D is a diagonal matrix. Moreover, 
D = diag(�0�1, �1�2,… , �n−1�n)−1 , where �i is the ith pivot element of the REF 
Cholesky factorization of ATA , and thus D−1

∈ ℤn×n.
(c)	 R can be computed as R = QTA (just like in the traditional QR factorization 

A = QR).
(d)	 The columns of Q are pairwise orthogonal. Namely, QTQ = D−1.

Proof  We prove this by constructing the matrices Q and R and showing that they 
satisfy properties (a)-(e) and that A = QDR . First, we obtain R by performing the 
REF Cholesky factorization on the SPD matrix ATA . Specifically, we factorize 
ATA = RTDR where R is the upper triangular integral REF Cholesky factor of ATA 
and D = diag(�0�1, �1�2,… , �n−1�n)−1 . Since this factorization can be computed 
by performing IPGE operations on ATA in order to reduce it to an upper triangu-
lar matrix, R; these IPGE operations on ATA are equivalent to left-multiplying a 
matrix by (RTD)−1 . Next, by left multiplying [ATA ∣ AT

] by (RTD)−1 we obtain the 
integral matrix [R ∣ (RTD)−1AT

] . Again, note that this matrix, [R ∣ (RTD)−1AT
] , is 

an integral matrix because multiplying by (RTD)−1 is equivalent to performing the 
associated IPGE operation on the full matrix [ATA ∣ AT

] which are guaranteed to be 
integral [26, 27]. Now letting QT

= (RTD)−1AT (i.e., Q = A(DR)−1 ), it follows that 
QDR = A(DR)−1(DR) = A . We next show that the R and Q integral matrices, which 
satisfy properties (a) and (b), also satisfy properties (c) and (d).

Property (c) is proved by expanding the product QTA as (RTD)−1ATA , then since 
ATA = RTDR , we obtain:

In a similar fashion, property (d) is proved by expanding the product QTQ as 
(RTD)−1ATA(DR)−1 , then since ATA = RTDR , we obtain:

Finally, the uniqueness of the thin REF QR follows from the following observations: 
(1) DR is unique (because it is the REF Cholesky factorization of ATA ) and (2) 
Q = AR−1D−1 is a unique product (because A has full column rank). 	�  ◻

QTA = (RTD)−1RTDR = R.

QTQ = (RTD)−1RTDR(DR)−1 = D−1.
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3.2 � Standard REF QR factorization

Similar to the thin REF QR factorization, the standard REF QR constructs the 
factorization A = QDR where Q and R are comprised of exclusively integer 
entries. In contrast to the thin REF QR, the standard REF QR results in a square 
Q ∈ ℤm×m and an upper trapezoidal R ∈ ℤm×n . Theorem 3.2 formally introduces 
this version of REF QR and proves some of its properties.

Theorem  3.2  Given a full column rank integral matrix A ∈ ℤm×n , there exists an 
integral factorization A = QDR with the following properties: 

(a)	 Q and R are both integral matrices. Specifically Q ∈ ℤm×m and R ∈ ℤm×n.
(b)	 The REF Cholesky factorization of ATA , ATA = R̃TD̃R̃ , is embedded in DR. 

Specifically, the first n rows of R and D(1 : n, 1 : n) are the REF Cholesky factors 
R̃ and D̃.

(c)	 R can be computed as R = QTA (just like in the traditional QR factorization 
A = QR).

(d)	 The columns of Q are pairwise orthogonal. Namely QTQ = D−1 (note that D−1 
is a diagonal integral matrix).

(e)	 Q resembles an orthogonal matrix in that Q−1
= DQT  (whereas, in a truly 

orthogonal matrix, Q−1
= QT).

Proof  To prove this theorem, we define several useful matrices. Without loss of gen-
erality, since A is full column rank, assume the first n rows of A are linearly inde-

pendent. Construct the matrix Ā ≜

[
A

�

Im−n

]
≜ [A Ī] where 0 is the zero matrix of 

the appropriate size. Let the thin REF QR decompositions of A and Ā be given as 
A = Q̃D̃R̃ and Ā = Q̄D̄R̄ , respectively.

From the sequence of equations

we make the following observations: 

1.	 Comparing the first and last terms, we obtain A = Q̄1D̄11R̄11 . Furthermore, 
Q̄1 = Q̃ , D̄11 = D̃ , and R̄11 = R̃ because the thin REF QR factorization of 
A = Q̃D̃R̃ is unique.

2.	 Let R =

[
R̄11

0

]
 . Then, A = Q̄D̄R (this can be observed by ignoring the second 

column in the decomposition of R̄ , and performing the matrix multiplication 
yielding Q̄1D̄11R̄11 , which in turn equals A).

[
A Ī

]
= Ā = Q̄D̄R̄ =

[
Q̄1 Q̄2

] [D̄11 0

0 D̄22

] [
R̄11 R̄12

0 R̄22

]

=

[
Q̄1D̄11R̄11 Q̄1D̄11R̄12 + Q̄2D̄22R̄21

]
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The second observation establishes that A can always be factorized as A = Q̄D̄R . 
With this factorization in hand, we now proceed to prove properties  3.2(a) 
to 3.2(e).

Observing how the matrices Q̄ and R were obtained (via thin QR factorizations of 
A and Ā ), we conclude that the matrices Q̄ and R are integral matrices of the sizes 
specified in Theorem 3.2; i.e., Q̄ ∈ ℤm×m and R ∈ ℤm×n . This proves Property 3.2(a).

Since A = Q̃D̃R̃ and Property  3.1(b), we have that R̃TD̃R̃ is the Cholesky 
factorization of ATA . Thus, Property  3.2(b) follows from Observation 2 above.

Since Q̄T Ā = R̄ , the following sequence of equations shows how Property 3.2(c) 
follows from Property 3.1(c).

Thereby showing that Q̄TA = R.
Next, Property 3.2(d) Q̄TQ̄ = D̄−1 follows from Property 3.1(d).
Finally, to show Property  3.2(e), we utilize Property  3.1(d) again. Specifically, 

since QTQ = D−1 , we can left multiply by D to obtain DQTQ = I . Finally, since Q is 
a full rank m × m matrix, which follows from Property  3.1(d), we can right multiply 
by Q−1 and we obtain Q−1

= DQT thereby completing the proof. 	�  ◻

3.3 � Computing REF QR and theoretical bounds

The proofs above, as well as Pursell & Trimble [25] and Zhou & Jeffrey [20], give 
a method to compute thin REF QR based on performing IPGE on [ATA ∣ AT

] . By 
exploiting the properties of our REF QR factorizations, this section presents (1) 
a slightly modified yet expedited version of the algorithm for thin REF QR, (2) a 
new algorithm for standard REF QR, (3) proof that the bit-length of each entry is 
bounded polynomially, and (4) the computational complexity of both algorithms.

3.3.1 � Thin REF QR algorithm

Perform the REF Cholesky factorization of [ATA] , carrying the row operations 
throughout AT . By using REF Cholesky, this approach efficiently exploits the 
symmetry in ATA and thus requires about n3∕2 fewer operations than Zhou and 
Jeffrey because they compute a full LU factorization on [ATA ∣ AT

] . The total 
number of operations required to compute thin REF QR with our algorithm is 
O(m2n + n3) , as one must compute ATA ( O(n2m) ), perform REF Cholesky on 
ATA ( O(n3) ) and, concurrently, carry on the row operations on AT ( O(n2m) ). This 
algorithm returns the unique thin REF QR factorization A = QDR . Note that D 
does not need to be explicitly calculated as its entries are known directly from R, 
and, furthermore, as the ensuing sections describe, D is not needed to use the QR 
factorization.

Q̄T Ā =

[
Q̄T

1

Q̄T
2

] [
A Ī

]
=

[
R̄11 R̄12

0 R̄22

]
⇒ Q̄TA =

[
R̄1,1

0

]
= R
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3.3.2 � Standard REF QR algorithm

Convert A to an appropriate full-rank square matrix Ā = [AĪ] where Ī is the last 
m − n columns of the m × m identity matrix (note that the augmented matrix needs 
only be one which guarantees Ā has full rank). Then, perform thin QR on Ā to obtain 
A = Q̄D̄R̄ . The standard REF QR is then A = Q̄D̄R where R comprises the first n 
columns of R̄ . This approach requires O(m3

) operations (it simply performs thin 
QR discussed above with n = m ). While Standard REF QR is not necessary for the 
applications discussed in the next section, this approach gives a method to obtain it 
if desired.

Theorem 3.3 gives the maximum bit-length required to store (and compute) any 
entry in REF QR.

Theorem 3.3  Given a matrix A ∈ ℤm×n , let � denote the absolute value of the largest 
entry in A. The maximum bit-length of every entry in the REF QR factorizations of 
A, denoted �max , is bounded above by:

Proof  For thin QR, R and Q can be obtained by applying IPGE on [ATA ∣ AT
] . 

Every entry in [ATA ∣ AT
] is of at most size m�2 , which would occur only if A has a 

fully dense row of entries of magnitude � . Though this matrix is of size n × n + m , 
Edmonds [26] showed that every entry throughout IPGE is the determinant of a 
square submatrix (in this case, at most a n × n matrix); thus, using Lemma  2.2, we 
obtain:

The proof is complete by noting that the standard QR bound applies by just changing 
the dimension of the matrix to be m × m instead of m × n . 	�  ◻

Theorem 3.3 gives a pessimistic bound for two reasons: (1) Hadamard’s bound 
itself is pessimistic, and (2) it assumes A contains a fully dense row comprised of the 
largest entries in A. Despite these drawbacks, Theorem 3.3 is valuable as it shows 
that every entry in REF QR and within their computation is polynomially bounded.

Finally, we present the complexity of computing each factorization.

Corollary 3.1  Let A ∈ ℤm×n and let �max be the maximum bit-length of any entry in 
the REF QR factorization of A. Then, the worst-case complexity of computing REF 
QR is:

The above result follows directly from combining Theorem 3.3 with the number 
of operations within each algorithm discussed above.

(2)
�

�max ≤ ⌈2n log(m�)⌉ for thin REF QR,

�max ≤ ⌈2m log(m�)⌉ for standard REF QR.

�max ≤ n log(
√
nm�2

) ≤ n log(m2�2
) = 2n log(m�).

(3)
{

O(n2m(�max log �max log log �max)) for thin REF QR,

O(m3
(�max log �max log log �max)) for standard REF QR.
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3.4 � Relationship of REF QR and traditional QR

This section gives the mathematical relation between the thin REF QR factorization 
and the traditional thin QR factorization. Through this relation, one can obtain, from 
the REF QR, the traditional QR factorization in floating-point to any desired level of 
precision. Note that this section focuses solely on the thin QR factorization as it is 
the only unique QR factorization.

Theorem 3.4  Let A ∈ ℤm×n be factored via the thin REF QR as A = QDR and via 
the traditional thin QR factorization as A = Q̂R̂ . Then, Q̂ = Q

√
D and R̂ =

√
DR.

Proof  Recall that, given a matrix A ∈ ℤm×n and its traditional QR factorization 
( A = Q̂R̂ ), R̂ is the (unique) Cholesky factor of ATA ; namely, R̂T R̂ = ATA . Like-
wise, given the REF QR factorization of A, A = QDR , and RTDR = ATA . Thus, √
DR = R̂ . Therefore, A = QDR = Q

√
DR̂ . Furthermore, since Q̂ and Q are full 

rank and unique, it must be the case that Q̂ = Q
√
D . 	�  ◻

Interestingly, due to the square root operations, Theorem  3.4 implies that it is 
effectively impossible for a matrix to have a rational QR factorization (at least with-
out some diagonal matrix akin D to “hide” the square roots).

4 � Solving linear systems with REF QR

The linear system Ax = b where A ∈ ℤm×n and b ∈ ℤm is not guaranteed to have an 
exact solution because the product Ax lies in the span of the columns of A which is 
a proper subspace of ℚm (since n < m ). In spite of this, several techniques exist to 
find an acceptable solution to such systems. Specifically, if A has full column rank, 
the typical strategy is to find the least squares solution to the system Ax = b ; i.e., to 
find the vector x which uniquely minimizes the two-norm of Ax − b . Alternatively, 
if A does not have full column rank, the least squares problem has an infinite 
number of solutions; thus, a common QR factorization-based approach is to find a 
basic solution. This section describes how to use REF QR to obtain either an exact 
solution to the least squares problem (full rank A) or a basic solution (rank deficient 
A).

4.1 � Full‑column‑rank linear systems

Given a linear system Ax = b where A ∈ ℤm×n , n < m , b ∈ ℤm , and A has full 
column rank, the typical strategy is to find the unique least squares solution of the 
given system, x , which is the unique vector minimizing the two-norm of Ax − b . 
Theorem  4.1 and Corollary  4.1 show how to use the thin and standard REF QR 
factorizations, respectively, to obtain the unique least squares solution to Ax = b.
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Theorem  4.1  Given a full column rank matrix, A ∈ ℤm×n , and a vector, b ∈ ℤm , 
the unique least squares solution to Ax = b can be obtained by solving Rx = QT

b , 
where R and Q are the thin REF QR factors of A.

Proof  First, note that the system Rx = QT
b has a unique solution because R has a 

full rank (as it is the REF Cholesky factor of ATA).
Second, we show that the solution to Rx = QT

b is the exact least squares solution 
to Ax = b . In particular, we give below a series of equivalent systems that show that 
Rx = QT

b is equivalent to the “normal equations” ATAx = AT
b , whose solution is 

well-known to be the unique least squares solution to Ax = b [15].
Per Theorem 3.1, using the thin REF QR factorization on A yields A = QDR and 

ATA = RTDR ; moreover since D is diagonal, AT
= RTDTQT

= RTDQT . Substituting 
these expressions for ATA and AT into the normal equations ATAx = AT

b , we obtain 
the equivalent system:

The proof is completed by left multiplying both sides by (RTD)−1 (note that both R 
and D have full rank and thus are invertible), thereby yielding:

	�  ◻

Corollary 4.1  Given a full column rank matrix A ∈ ℤm×n and vector b ∈ ℤm , 
the exact least squares solution to Ax = b can be obtained by solving 
R(1 ∶ n, 1 ∶ n)x = [QT

b](1 ∶ n) , where R and Q are the standard REF QR factors 
of A.

Proof  The proof follows directly from Theorems  3.2 and 4.1. Specifically, Theo-
rem 3.2 states that R and Q contain as submatrices the R and Q from the thin REF 
QR factorization. Using this, this proof follows directly from Theorem 4.1. 	�  ◻

Given the relationship between the QR matrices of the thin and standard QR 
factorizations used in the above proof and in Theorem  3.2, for simplicity, the 
remainder of this section uses only the matrices from thin QR factorization.

Theorem 4.1 and Corollary 4.1 establish that the solution to Rx = QT
b is the 

least squares solution to Ax = b . Next, Theorem  4.2 shows how to solve the 
system Rx = QT

b exactly, and thus how to obtain the unique least squares solution 
to Ax = b exactly (free of roundoff errors). Specifically, by scaling the right-hand 
side vector, one can obtain the exact rational solution to Rx = QT

b almost entirely 
in integer arithmetic, using rational numbers only in a final division.

Theorem  4.2  The exact solution to the linear system Rx = QT
b can be obtained 

entirely in integer arithmetic.

RTDRx = RTDQT
b

Rx = QT
b
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Proof  The proof follows from Theorem 4.1, Cramer’s rule, and REF backward sub-
stitution [18]. From Theorems 4.1 and 4.1, we know that the systems Rx = QT

b and 
ATAx = AT

b are equivalent. By Cramer’s rule and since the determinant of ATA is 
R(n, n) [18], the system Rx = R(n, n)QT

b has an integral solution vector. Therefore, 
applying REF backward substitution [18] to this scaled system, one can obtain its 
solution entirely in integer arithmetic. Then, the exact solution of the original sys-
tem is given as an integral numerator vector x and integral denominator R(n, n). 	� ◻

Note that as a consequence of Theorem 4.2, one can obtain the exact two-norm 
solution either as the above rational vector or to any level of precision. To conclude 
this subsection, we note that solving the normal equations directly with Cholesky 
would have an equivalent worst-case computational complexity to QR factorization. 
Yet, depending on the application and structure of the matrix, one method can be 
preferred over the other, and it is not always trivial to determine in advance which 
method would be better (see, for example, the detailed discussion in [15, 32] 
comparing both approaches in the floating-point case). Examining the same nuances 
computationally in the exact case would be an interesting problem, but it is beyond 
the scope of this paper.

4.2 � Rank‑deficient linear systems

Given a linear system Ax = b where A ∈ ℤm×n , n < m , b ∈ ℤm , and A is rank-
deficient, there are an infinite number of solutions to the linear least squares problem 
Ax = b . Several approaches exist, including finding the minimum norm solution, 
the truncated SVD solution, or a basic solution [15]. The first approach relies on 
performing either a complete orthogonal decomposition or finding a pseudoinverse 
(see [33, 34]), the second approach is SVD based, and the third approach uses QR 
factorization. This subsection shows how to use the third approach and REF QR to 
find an exact basic solution of Ax = b.

The QR-based approach is to perform QR with column pivoting; that is, the 
factorization QR = AP is performed, where P is a permutation matrix chosen during 
factorization (specifically if a rank-deficient column is found—i.e., a column where 
one cannot find an eligible non-zero element to pivot—, the rank-deficient column 
is replaced with a different column; this process is repeated until no more linearly 
independent columns exist). Given a matrix A with rank r such that r < n , without 
loss of generality, assume that the first r columns of A are linearly independent. 
Then, the following lemma shows the structure of the thin REF QR factorization of 
A.

Lemma 4.1  Given a rank-deficient matrix A ∈ ℤm×n with rank r < n , the thin REF 
QR decomposition of A has the following structure:

where Q11,D11,R11 are all of dimension r × r.

A = QDR =

[
Q11 0

Q21 0

] [
D11 0

0 0

] [
R11 R12

0 0

]
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Proof  Consider performing IPGE on the matrix [ATA ∣ AT
] . Since A has column 

rank r, ATA ∈ ℤn×n has rank r and AT has row rank r. The result follows trivially 
from the fact that IPGE on this matrix will lead to a row of n − r zeros on both ATA 
and AT , giving the factorization shown above. 	�  ◻

Thus, a basic solution is found by solving the system Rx = QT
b , which expands 

to:

Thus, a unique exact basic solution is found by setting x2 = 0 , and solving the 
square linear system R11x1 = QT

11
b1 . Note that Golub & Pareyra [35] show that such 

a solution minimizes the two-norm if and only if R12 = 0 . Finding exact two-norm 
minimizers of rank-deficient systems which have R12 ≠ 0 is an important topic but 
requires methods outside the scope of this paper.

5 � Conclusion

This paper presents and thoroughly analyzes a comprehensive REF QR factorization 
framework to obtain exact factorizations of any matrix. Specifically, this paper 
presents the thin and standard REF QR factorizations, which exactly factorize the 
matrix A into the product A = QDR where Q has pairwise orthogonal columns, D is 
diagonal, and R is upper trapezoidal. Matrices Q and R comprise exclusively integer 
entries, while the diagonal matrix D, whose entries are reciprocal of integers, is 
never explicitly needed (nor computed by the algorithms). Importantly, we derive 
properties of our REF QR factorizations that are analogous to those of the floating 
point QR factorizations and illustrate how our exact factorizations are related to the 
traditional (inexact) floating-point QR factorizations—specifically, we show how 
to obtain the inexact factorizations from our REF QR factorizations. Furthermore, 
we present algorithms to compute each factorization and prove that the size of each 
entry in REF QR (and throughout their computation) is bounded polynomially. 
Finally, we discuss solving the system Ax = b for both full-column rank and rank-
deficient systems. Specifically, if A has full column rank, REF QR finds the exact 
least squares solution to Ax = b . Conversely, if A is rank deficient, utilizing column 
pivoting, REF QR can find an exact basic solution of Ax = b.
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[
R11 R12

0 0

] [
x1

x2

]
=

[
QT

11
QT

21

0 0

] [
b1

b2

]
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