
Vol.:(0123456789)

Optimization Letters (2024) 18:1053–1069
https://doi.org/10.1007/s11590-023-02072-y

1 3

ORIGINAL PAPER

On the exact solution of the multi‑depot open vehicle
routing problem

Vinícius Carvalho Soares1 · Marcos Roboredo2 

Received: 7 July 2022 / Accepted: 26 September 2023 / Published online: 23 October 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
The multi-depot open vehicle routing problem (MDOVRP) is a variant of the classi-
cal capacitated vehicle routing problem, where the vehicles can depart from differ-
ent depots and they do not need to go back to the depot at the end of the route. This
paper presents an exact branch-cut-and-price algorithm for the problem that is coded
within the VRPSolver framework. In order to prove the robustness of the proposed
method, we present several computational experiments over 24 MDOVRP bench-
mark instances. The results allow us to draw two important conclusions. The first
one is that the proposed algorithm solves to the optimality all literature instances
including eight that were open so far while the second one is that our algorithm out-
performs the former state-of-art. Besides, we propose 440 MDOVRP instances with
up to 200 nodes, where 418 of them are solved to the optimality by the proposed
method. Another contribution of this paper is to show how to adapt the proposed
method for the MDOVRP variant with time windows constraints (MDOVRPTW).
We also apply our approach to MDOVRP and MDOVRPTW variants with a single
depot. The results for all variants show that our method find the optimal solution for
almost all tested instances in reasonable computational times.

Keywords  Open vehicle routing · Multi-depot · Branch-and-cut-and-price

 *	 Marcos Roboredo
	 mcroboredo@id.uff.br

	 Vinícius Carvalho Soares
	 vinicius_soares@id.uff.br

1	 Pós‑Graduação em Engenharia de Produção, Universidade Federal Fluminense, Niterói, Brazil
2	 Departamento de Engenharia de Produção, Universidade Federal Fluminense, Niterói, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-023-02072-y&domain=pdf
http://orcid.org/0000-0002-2398-5207

1054	 V. C. Soares, M. Roboredo

1 3

1  Introduction

The vehicle routing problem (VRP) consists of designing a set of minimal cost
routes for a set o vehicles aiming to serve the demand of several customers. That
problem was presented in [5]. Since then, several variants have been proposed
involving different characteristics such as multiple depots, heterogeneous fleet,
time windows, among others.

This paper deals with the multi-depot open vehicle routing problem
(MDOVRP) that is formally defined as follows. Given an undirected graph
G = (V ,A) . The set of vertices V = {1,… , n + m} is partitioned into a subset of
customers V+ = {1,… , n} and a subset of depots D = {n + 1,… , n + m} . The
set of arcs A is defined as A = {(i, j)|i, j ∈ V+, i ≠ j} ∪ {(k, i)|k ∈ D, i ∈ V+} . For
each customer i ∈ V+ , a positive demand wi is given. We assume wk = 0 for each
k ∈ D . For each arc a = (i, j) ∈ A , a positive travel cost cij is given. To serve the
customers, there is a homogeneous fleet of vehicles, each one with capacity Q.
The problem consists of designing a set of routes minimizing the total travel cost
where the designed routes satisfy the following constraints: each route starts
at one of the depots and ends at one of the customers; each customer is visited
exactly once in a single route; the sum of the demands of the visited customers in
a given route does not exceed the vehicle capacity Q.

The MDOVRP was presented in [17]. The authors presented a stochastic
search meta-heuristic algorithm termed as the list-based threshold accepting
(LBTA) algorithm. Since then, several methodologies has been proposed for the
problem, where we can highlight the ones proposed in [6–8, 10, 13, 15, 19].

To the best of our knowledge, the best exact approach for the MDOVRP is
the Mixed Integer Linear Programming (MILP) formulation with two indexes
proposed in [8]. That formulation was able to solve to the optimality several
instances with up to 240 customers and outperformed the other two existing exact
formulations proposed in [7, 10]. Despite the good results presented in [8], 8 out
of 24 instances remained open after that research.

This paper proposes an exact branch-and-cut-and-price (BCP) algorithm for
the MDOVRP that is coded within the VRPSolver framework [11]. The proposed
algorithm contains the main state-of-art BCP elements such as automatic sta-
bilization by dual price smoothing, limited-memory rank-1 cuts, reduced cost-
based arc elimination, enumeration of elementary routes, and hierarchical strong
branching.

Another contribution of this paper is to show how to adapt the proposed model
to the MDOVRP variant that considers time windows constraints so-called Multi-
Depot Open Vehicle Routing with Time Windows (MDOVRPTW). To the best of
our knowledge the MDOVRPTW that we deal with in this paper was studied only
in [1] where the authors proposed a heuristic algorithm approach.

We report several computational experiments over the benchmark set of 24
MDOVRP instances with up to 288 customers frequently used by the literature
about this problem. The results show that our method outperforms the MILP
formulation proposed in [8]. Moreover, our method solves to the optimality all

1055

1 3

On the exact solution of the multi‑depot open vehicle routing…

instances including eight that were open so far. For the MDOVRPTW, we test
the proposed method on 20 benchmark instances and the results show that our
method solved to the optimality all of them in reasonable computational times.
We also test the proposed approach on benchmark instances of the Open Vehi-
cle Routing Problem (OVRP) and Open Vehicle Routing Problem With Time
Windows (OVRPTW), which are particular cases of respectively MDOVRP and
MDOVRPTW when there is a single depot. The results on OVRP and OVRPTW
literature instances show that just few instances were not solved to the optimality
by our method.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the VRPSolver framework. Section 3 presents the VRPSolver model
proposed in this paper for the MDOVRP. Instances and the results are discussed
in Sect. 4. Finally, Sect. 5 presents our conclusions and suggestions for future
researches.

2 � Overview of the VRPSolver framework

We present in this section an overview of the VRPSolver framework in order to
make this paper self-contained.

The VRPSolver solves a Mixed Integer Linear Programming (MILP) formulation
that contains variables associated with resource constrained paths in one or several
directed graphs. That formulation is solved by a generic BCP algorithm where the
path variables are generated on demand by solving the pricing subproblems that are
Resource Constrained Shortest Path Problems (RCSPP). The so-called VRPSolver
model is composed of the MILP formulation and all graph information that are pro-
vided by the framework user and have to follow some generic structures that we
describe now. We provide simpler versions of those structures that are enough to
understand the proposed VRPSolver model. For a detailed description about those
structures, we refer to [11].

2.1 � Generic path generator graphs

One of the VRPSolver framework user modelling tasks are to define one or more
directed graphs, as well all the information necessary to obtain resource constrained
paths on them that follow the generic structures described now. Let K be the finite
set of graphs defined by the user. The following elements must to be defined by
the modeller for each graph Gk = (Vk,Ak) ∈ K : two vertices vk

source
 and vk

sink
 in Vk

to indicate where each path should start and end respectively. vk
source

 and vk
sink

 can be
even the same vertex; a set of resources Rk ; a resource consumption of the resource r
on the arc a denoted by qr

a
 , for each a ∈ Ak and r ∈ Rk ; an interval [lv,r, uv,r] , for each

r ∈ Rk and v ∈ Vk.

1056	 V. C. Soares, M. Roboredo

1 3

For a given graph Gk ∈ K , we say that a path
p = (vk

source
= v0, a1, v1,… , an, vn = vk

sink
) over Gk is resource constrained if the fol-

lowing constraints are satisfied: n ≥ 1 ; vj ≠ vk
source

 and vj ≠ vk
sink

, 1 ≤ j ≤ n − 1 ; For a
given resource r, the total consumption of r when the vertex vj is visited denoted by Sjr
is within the interval [lvj,r, uvj,r] , 0 ≤ j ≤ n , where Sjr is calculated in the following way:
Sj,r = 0 if j = 0 . Otherwise, we have two possibilities: Sj,r = Sj−1,r + qr

aj
 if

Sj−1,r + qr
aj
≥ lvj,r and Sj,r = lvj,r otherwise. In other words, the consumption of the

resource is null at the beginning of the path and it increases as the arcs are being used
by the path. For VRP variants, it is very common that each resource constrained path
represents a route for the problem. In these cases, the use of resources can be very use-
ful to model classical constraints such as capacity and time windows ones.

2.2 � Generic formulation

The VRPSolver user also defines a formulation that must be encompassed by the
generic one described in this section. For each graph Gk ∈ K , let Pk be the set of all
resource constrained paths on Gk . Let also P =

⋃
k∈K Pk . For each path p ∈ P and each

arc a ∈ ∪k∈KA
k , the constant hpa computes how many times the arc a appears in the

path p. The master formulation uses generic integer variables xj , 1 ≤ j ≤ n1 , where n1
is the number of variables x. For VRPs, is very common to define a variable x for each
arc that can be traveled by the routes indicating how many times this arc is traveled. In
this case, we would have n1 equal to the number of arcs. The formulation also uses a
variable �p , p ∈ P , to indicate how many times the path p appears in the optimal solu-
tion. Finally, the formulation uses generic constants m ∈ ℤ+, c

� ∈ ℝ
n1 , � ∈ ℝ

m×n1 and
d ∈ ℝ

m . The generic Mixed Integer Linear Programming (MILP) formulation follows.

(1a)Min

n1∑
j=1

c�
j
xj,

(1b)S.t.

n1∑
j=1

�ijxj ≥ di, ∀i = 1,… ,m,

(1c)xj =
�
p∈P

⎛⎜⎜⎝
�

a∈M(xj)

hp
a

⎞⎟⎟⎠
�p, ∀j = 1,… , n1,

(1d)Lk ≤
∑
p∈Pk

�p ≤ Uk, ∀k ∈ K,

(1e)�p ∈ ℤ+, ∀p ∈ P,

1057

1 3

On the exact solution of the multi‑depot open vehicle routing…

The MILP Formulation (1) contains a very generic objective function (1a) and
the very generic constraints (1b). The constraints (1c) show the relation between
the variables x and � . That relation is based on the so-called Mapping sets M that is
defined for each variable xj in a way that M(xj) ⊆ ∪k∈KA

k . The definition of a proper
function M is an important user modelling task. The constraints (1d) present, for
each graph Gk ∈ K , a lower and an upper bounds for the number of paths on that
graph. Such bounds are also defined by the framework user.

2.3 � Solving a specific problem through VRPSolver framework

The idea behind the VRPSolver framework is that if the user is able to model a
problem by defining one or more resource constrained graphs and a MILP formu-
lation within the generic characteristics described respectively in Sect. 2.1 and in
the formulation (1) then the framework solves the formulation (1) through a generic
BCP algorithm. In Sects. 3.1 and 3.2 we present the graph and the formulation that
defines the proposed VRPSolver model for the MDOVRP.

The master formulation for the BCP algorithm solved by the framework is the
linear programming relaxation of (1) without the variables x that are eliminated
through the constraints (1c). The master formulation is then solved by an iterative
procedure based on column generation algorithm. In each iteration, a restricted ver-
sion of the formulation with a subset of variables � is solved. Variables � with nega-
tive reduced cost are then added to the restricted master formulation. The framework
finds such variables by solving RCSPP over the provided resource constrained path
generator graphs. If there is no variable with negative reduced cost then the current
solution is optimal for the master formulation.

In every node of the branch-and-bound search tree, the master formulation is
solved by the BCP algorithm. Branching on variables x are then used to solve MILP
formulation (1) to optimality.

2.4 � Using state‑of‑art BCP algorithm components

When the user defines the so-called packing sets for a VRPSolver model, then the
main state-of-art BCP algorithms components can be activated such as ng-path
relaxation, rounded capacity cuts separators, limited-memory rank-1 cutting planes,
and elementary route enumeration.

The packing sets can be defined on vertices or arcs. In this paper we present the
definition for vertices. Let P ⊂ 2V

′ be a collection of mutually disjoint subsets of V ′ ,
where V � =

⋃
k∈K Vk ⧵ {vk

source
, vk

sink
} . We say that the subsets of P are packing sets

if there is at least one optimal solution for the master problem satisfying the con-
straints (2), where each hpv computes the number of times that a vertex v is visited in
a path p.

(1f)xa ∈ ℤ, ∀a ∈ A.

1058	 V. C. Soares, M. Roboredo

1 3

According to constraints (2), for a given packing set S ∈ P , at most one vertex of S
appears in the optimal solution and at most one time. The definition of proper pack-
ing sets is an important modelling task of the framework user. In VRPs, commonly
the routes are modeled as paths on the graphs and the customers are modeled as
packing sets.

The use of packing sets on vertices also allows the framework user to use some
state-of-art BCP components, such as ng-path relaxation, generation of rounded
capacity and limited-memory rank-1 cuts, and route enumeration. For more details
about it, we refer to [11]. Besides, the user can define Rounded Capacity Cuts
(RCCs) separator. To add a RCC separator, the modeler has to define a capacity Q
and a demand function d ∶ P ∪ � → ℝ+ such that d(�) = 0 and such taht there is
an optimal solution (x∗, y∗, �∗) of Formulation (1) such the following conditions are
satisfied:

1.	
∑

v∈p d(S(v)) ≤ Q , ∀p ∈ P , where S(v) is the packing set that contains v ( S(v) = �
if v does not belong to any packing set).

2.	 for all S ∈ P such that d(S) > 0 , the corresponding constraints in (2) should be
satisfied with equality by (x∗, y∗, �∗).

Based on the function d and capacity Q provided by the user, the following valid
inequality represents a Rounded Capacity Cut for a given S ⊆ P:

where hp
S
 is the number of times that an arc in path p ∈ P enters in S . The definition

of proper and valid RCC separators is a modelling user task. For classical capacity
constraint that is considered by the MDOVRP and MDOVRPTW, a RCC separa-
tor can be defined by associating the function d with the demand of the customers
and by considering Q equal to the vehicle capactity. This kind of RCC separator is
defined for several VRPSolver models in [11].

3 � A VRPSolver model for the MDOVRP

In this section, we present the proposed VRPSolver model for the MDOVRP accord-
ing to the notation described in Sect. 2.

(2)
∑
p∈P

(∑
v∈S

hp
v

)
�p ≤ 1, ∀S ∈ P

(3)
�
p∈P

h
p

S
�p ≥

�∑
S∈S d(S)

Q

�
,

1059

1 3

On the exact solution of the multi‑depot open vehicle routing…

3.1 � Path generator graph for the proposed VRPSolver model

We define a path generator graph G1 = (V1,A1) with
the following characteristics: V1 = {vi|i ∈ V ∪ {0}} and
A1 = {(v0, vk)|k ∈ D} ∪ {(vk , vi)|k ∈ D, i ∈ V+} ∪ {(vi, vj), (vj, vi)|i, j ∈ V+} ∪ {(vi, v0)|i ∈ V+}   ;
Each path starts and ends at v0

1
 ( v1

source
= v1

sink
= v0 ); R1 = {r} , where r is a

resource created in order to ensure the capacity constraint for each vehicle;
qr
a
= (wi + wj)∕2, a = (vi, vj) ∈ A1 (we consider w0 = 0 ); [lr

i
, ur

i
] = [0,Q], i ∈ V1.

The idea behind the graph G1 is that each resource constrained path is associated
with a route for the MDOVRP. The vertex v0 represents the beginning and ending of
the paths but this vertex does not represent a vertex of the original set V. All the arcs
in A1 that start at v0 they ends at a vertex vk , k ∈ D . Thus when an (v0, vk) is traversed
by a path then it indicates that the route starts at depot k. Similarly, all the arcs in A1
that end at v0 they start at a vertex vi , i ∈ V+ . Those arcs indicate the last customer
visited by the routes. Note that the resource r ensures that any resource constrained
path is associated with a route that satisfies the capacity constraint.

3.2 � MILP formulation for the proposed VRPSolver model

The MILP formulation corresponding to the Formulation (1) uses two types of non
negative integer variables: x and � . For each a ∈ A , the variable xa indicates the
number of times that the arc a is traversed. Each variable �p indicates the number
of times that a given resource constrained path p on G1 is used at optimal solution.
Besides, the formulation uses the following notation: �−(i) indicates the set of arcs
in A that are incident to i; hpa indicates the number of times that the arc a appears
in the path p; P indicates the set of resource constrained paths on G1 . Finally, for
each a = (i, j) ∈ A such i, j ≠ 0 , the mapping M(xa) is defined as M(xa) = {(vi, vj)} ,
for each arc a ∈ A . Here we emphasize that there are no arcs in A that arrive to the
depots. Thus, the routes in the solution are all open as the MDOVRP definition. The
formulation follows.

(4a)Min
∑
a∈A

caxa

(4b)S.a.
∑

a∈�−(i)

xa = 1, ∀i ∈ V+.

(4c)xa =
∑
p∈P

(∑
a�∈M(xa)

h
p

a�

)
�p, ∀a ∈ A,

(4d)0 ≤
∑
p∈P

�p ≤ |V+|,

1060	 V. C. Soares, M. Roboredo

1 3

The objective function (4a) aims to minimize the total travel cost. The con-
straints (4b) ensure that each customer is visited exactly once. The constraints
(4c) show the relation between variables x and � . Basically, each variable xa is
given by the number of times that the arcs in M(xa) are traversed considering
all paths at the optimal solution. The mapping sets M are defined in a way that
each feasible route for the problem is represented by a resource constrained path
over G1 . The constraints (4d) ensure that at most |V+| paths are used at optimal
solution.

In addiction to the graphs described in the Sect. 3.1 and the MILP Formulation
(4), we also provide the packing sets P = ∪i∈V+

{vi} . in order to activate state-
of-art BCP algorithm elements. In other words, there is a different packing set
for each customer, which is very common in VRPSolver models where each cus-
tomer is visited exactly once. Moreover, we define a RCC separator such that the
capacity Q = Q and the demand function d returns d

(
S = {vi}

)
= wi from a given

packing set S = {vi} ∈ P . This kind of RCC separator is frequently used in VRP-
Solver models for VRP variants that consider classical capacity constraint [11].

3.3 � Toy example for the proposed VRPSolver model

In order to illustrate the main proposed VRPSolver model concepts, we present a
toy MDOVRP instance. That instance has three customers ( |V+| = 3 ), two depots

(4e)�p ∈ ℤ+, ∀p ∈ P,

(4f)xa ∈ ℤ, ∀a ∈ A.

Fig. 1   Path generator graph G1 for the toy MDOVRP instance

1061

1 3

On the exact solution of the multi‑depot open vehicle routing…

(|D| = 2),Q = 6,w1 = 2,w2 = 3 , w3 = 4 , w4 = 0 e w5 = 0 . The travel costs are
the following: c(1,2) = c(2,1) = c(2,3) = c(3,2) = 2 , c(1,3) = c(3,1) = c(5,2) = 1 , c(4,1) = 4 ,
c(4,2) = 6 , c(4,3) = 7 , c(5,1) = 3 and c(5,3) = 5.

The Fig. 1 illustrates the path generator graph G1 . The vertex marked in yellow
represents the vertex where the paths should start and end, the vertices marked in
red represent the depots and the vertices marked in green represent the custom-
ers. We put on each arc its resource consumption denoted by q. We put an interval
[0, 6] close each vertex indicating that this vertex can be visited by a path only
if the accumulated resource consumption does not exceed Q = 6 before the visit.
Finally, we put a variable x on a given arc a if a ∈ M(x).

The set P of all feasible resource constrained paths is composed of the following
paths: p1 = (v0 → v4 → v1 → v0), p2 = (v0 → v4 → v2 → v0), p3 = (v0 → v4 →

v3 → v0), p4 = (v0 → v4 → v1 → v2 → v0), p5 = (v0 → v4 → v2 → v1 → v0), p6 =

(v0 → v4 → v1 → v3 → v0), p7 = (v0 → v4 → v3 → v1 → v4), p8 = (v0 → v5 → v1

→ v0), p9 = (v0 → v5 → v2 → v0), p10 = (v0 → v5 → v3 → v0), p11 = (v0 → v5 →

v1 → v2 → v0), p12 = (v0 → v5 → v2 → v1 → v0), p13 = (v0 → v5 → v1 → v3 → v0)
and p14 = (v0 → v5 → v3 → v1 → v0) . The complete formulation, corresponding to
(4), is the following

(5a)
Min 4x41 + 6x42 + 7x43 + 3x51 + x52 + 5x53 + 2x12 + 2x21

+ x13 + x31 + 2x23 + 2x32

(5b)S.a. x21 + x31 + x41 + x51 = 1

(5c)x12 + x32 + x42 + x52 = 1

(5d)x13 + x23 + x43 + x53 = 1

(5e)x41 = �1 + �4 + �6

(5f)x42 = �2 + �5

(5g)x43 = �3 + �7

(5h)x51 = �8 + �11 + �13

(5i)x52 = �9 + �12

(5j)x53 = �10 + �14

(5k)x12 = �4 + �11

1062	 V. C. Soares, M. Roboredo

1 3

The optimal routes for the proposed instance are: r1 ∶ 5 → 1 → 3 and r2 ∶ 5 → 2 .
The cost for that solution is equal to 5.0.

3.4 � Considering time windows constraints

We also apply the proposed VRPSolver model to the MDOVRPTW [1]. In
MDOVRPTW, For each customer i ∈ V+ , a service time sti and a time window
[ai, bi] are given. For each arc a ∈ A is given its travel time ta . For each depot d, the
service time is equal to 0 and and a time window [0, b0] is also given. The previous
time windows is equal for all depots, where b0 represents the maximum time spent
by a vehicle during a route. In addition to the other constraints of the MDOVRP, we
have to ensure in MDOVRPTW that each node is visited within its time windows
(including depot nodes).

The proposed model also can handle the MDOVRPTW if we add a new
resource r2 to the path generator graph with the following characteristics. For each
a = (i, j) ∈ A1 , we define qr2a = ta + sti if i ≠ v0 (we consider ta = 0 if j = v0 ). Other-

wise, we define qr2a = 0 . Besides, [lr2
i
, u

r2
i
] = [ai, bi] for each i ∈ V1 if i ≠ v0 . Other-

wise, [lr2
i
, u

r2
i
] = [0, b0].

3.5 � Hierarchical objetives

The OVRPTW instances tested in this paper consider hierarchical objectives. The
first objective is to minimizing the number of routes while the second one is to
minimize the total distance traveled. To deal with that characteristic, we first set
R =

∑
i∈V+ wi∕Q . We round R up if it is not an integer number. Next, we execute our

approach considering that the number of routes is equal to R. To ensure this char-
acteristic, we replace the constraints (4d) with R ≤

∑
p∈Pk �p ≤ R . If the problem

(5l)x21 = �5 + �12

(5m)x13 = �6 + �13

(5n)x31 = �7 + �14

(5o)x23 = x32 = 0

(5p)0 ≤

14∑
i=1

�i ≤ 3

(5q)�p ∈ ℤ+, p ∈ P

(5r)xa ∈ ℤ+, a ∈ A

1063

1 3

On the exact solution of the multi‑depot open vehicle routing…

is infeasible, we set R = R + 1 and we execute the algorithm again. Otherwise, R is
the minimum number of routes and we return the minimum distance total distance
traveled associated with R.

4 � Computational experiments

In this section, we present several computational experiments over MDOVRP,
MDOVRPTW, OVRP and OVRPTW instances. All experiments were performed
on a computer with an Intel Core i7-3770 processor with 3.40 GHz and 16 GB of
RAM on Ubuntu 18.04.2 LTS operating system. We used the VRPSolver v0.4.1 that
can be downloaded at https://​vrpso​lver.​math.u-​borde​aux.​fr/. Each instance is solved
using a single thread. CPLEX v12.10 is used as linear programming and MILP solv-
ers. All source and configuration as well all instances tested in this paper are avail-
able at https://​github.​com/​mcrob​oredo/​MDOVRP.

In this section, we present only average statistics but we provide a supplementary
online material with detailed statistics for each instance. The tables presented in this
section have the following common columns. Column # Inst. indicates the number
of instances of a given group. Column # opt. indicates the number of optimal solu-
tions found for a given group within the time limit. Column Avg Time(s) indicates
the average CPU time in seconds considering all instances of the group. When the
instance is not solved to the optimality, we compute the time limit for the average
time.

The remainder of this section is organized as follows. In Sect. 4.1 we pre-
sent a comparison between our method and the best exact MILP formulation for
the MDOVRP proposed in [8]. In Sect. 4.2, we present results for 440 MDOVRP
instances that are being proposed in this paper. In Sects. 4.3, 4.4 and 4.5, we present
the results of our method over respectively MDOVRPTW, OVRP and OVRPTW
instances.

4.1 � Comparison with the literature for MDOVRP instances

The 24 MDOVRP literature instances tested in this paper were initially proposed
in [3, 4] for another Multi-Depot Vehicle Routing Problem that considers closed
routes and a maximum time limit for the routes. To adapt those instances for the
MDOVRP, we ignore the maximum time limit of a route and we do not consider

Table 1   Average results of the proposed algorithm over the 24 MDOVRP literature instances

Description # Inst. Proposed method

Literature With ub0 Without ub0

#opt Avg. time (s) #opt Avg. time (s) #opt Avg. time (s)

Literature Inst 24 16 2518.7 24 138.3 24 239.8

https://vrpsolver.math.u-bordeaux.fr/
https://github.com/mcroboredo/MDOVRP

1064	 V. C. Soares, M. Roboredo

1 3

the arcs incidents to depots. That adaptation for the same instances was also used by
other papers that deal with MDOVRP such as [2, 6–8, 10, 13, 15].

Table 1 presents a comparison between the proposed BCP algorithm and the
MILP formulation proposed in [8]. For a fair comparison, we implement the literature
formulation. Therefore, the proposed and the literature algorithms are run using the
same machine specifications. Our algorithm is tested in two ways for each instance:
in the first one, the algorithm receives an initial valid upper bound given by the best
solution value among the heuristics proposed in [2, 6, 10,13, 15]; in the second way,
our algorithm does not receive any limit. We set the time limit to 7200 s.

Observing Table 1, we can note that both versions of our algorithm outper-
form the literature one. Besides, our method solved to the optimality all 24 lature
instances even when that method did not receive any initial upper limit.

4.2 � Tests on proposed MDOVRP instances

We also propose new 440 MDOVRP instances. Those instances are based on the 22
instances with up to 200 nodes proposed in [18] for the classical Capacitated Vehicle
Routing Problem (CVRP). The name of each original CVRP instance has 3 terms
separated by "-". The first term is always "X" that is the class of the instances. The
second term indicates the total number of nodes. The third term indicates the num-
ber of vehicles. For example, the instance X-n106-k14 has 106 nodes and 14 vehi-
cles. For each one of the 22 instances, we generate 20 different MDOVRP instances.
The number of depots |D| varies from 2 to 5. One of the depots is located in the
same location as the instance’s original depot. We randomly select the remaining
depots among the other nodes of the instance. For each value of |D| ∈ {2, 3, 4, 5} ,
we generate five different instances.

Table 2 presents results of our algorithm over the proposed 440 instances. Each
instance was executed initially with a time limit of 18000 s without any valid upper
bound. Next, we execute the instance again with the best upper bound found.

The columns of Table 2 are described in the following way. The Column Group
indicates the name of the CVRP instance that was used to generate 20 different
MDOVRP instances. The Column #opt indicates the number of instances that were
solved to the optimality within 18000 s of execution. The Column Avg. Time(s) indi-
cates the average time considering the 20 instances of the group. When the instance
is not solved to the optimality, the calculus of the average time considers 18000 s.

Observing Table 2, we note that we do not solved to the optimality 22 and 12
instances when our method is executed respectively without and with an initial
upper limit.

4.3 � Tests on MDOVRPTW instances

For the MDOVRPTW, we considered the 20 instances proposed in [4] for a version
of the problem with close routes (the last node of the route is the depot where the

1065

1 3

On the exact solution of the multi‑depot open vehicle routing…

route started) and a maximum time limit for the routes. To adapt those instances for
the MDOVRPTW, we ignore the maximum time limit of a route and we do not con-
sider the arcs incidents to depots.

Table 3 presents our results for the MDOVRPTW instances. Each instance was
executed initially without any valid upper bound. Next, we execute the instance
again with the best upper bound found.

Table 2   Average results of
the proposed algorithm over
the proposed 440 MDOVRP
instances

Group #Inst Proposed method

Without ub0 With ub0

#opt Avg. time (s) #opt Avg. time (s)

X-n101-k25 20 20 253.12 20 22.16
X-n106-k14 20 20 611.15 20 74.10
X-n110-k13 20 20 146.62 20 15.60
X-n115-k10 20 20 173.77 20 21.68
X-n120-k6 20 20 134.41 20 34.72
X-n125-k30 20 20 793.94 20 91.05
X-n129-k18 20 20 479.11 20 39.95
X-n134-k13 20 20 2124.79 20 366.15
X-n139-k10 20 20 596.96 20 59.24
X-n143-k7 20 20 1725.27 20 779.44
X-n148-k46 20 20 209.90 20 10.74
X-n153-k22 20 20 1166.88 20 64.08
X-n157-k13 20 20 180.55 20 39.96
X-n162-k11 20 20 2853.38 20 238.63
X-n167-k10 20 19 2039.27 20 918.21
X-n172-k51 20 16 5572.06 18 2677.76
X-n176-k26 20 18 6085.03 20 1,152.35
X-n181-k23 20 20 558.72 20 156.44
X-n186-k15 20 19 6205.71 20 422.50
X-n190-k8 20 19 6730.07 20 1114.80
X-n195-k51 20 12 11,938.67 14 6286.89
X-n200-k36 20 15 6782.60 16 3941.77
Total 440 418 428

Table 3   Average results of the proposed algorithm over 20 MDOVRPTW instances

Description # Inst. With ub0 Without ub0

opt Avg. time (s) # opt Avg. time (s)

MDOVRTW Inst 20 20 31.3 20 315.1

1066	 V. C. Soares, M. Roboredo

1 3

Observing Table 3, we note that our method solved to the optimality all 20
instances with a reasonable average time even when that method did not receive any
valid upper limit.

4.4 � Tests on OVRP instances

We also test our method on benchmark instances of the OVRP, which is particu-
lar case of the MDOVRP arising when |D| = 1 . All the instances were originally
proposed for the classical Capacitated Vehicle Routing Problem (CVRP), but they
can be easily adapted to the OVRP by not considering the arcs incidents to depot.
In total we use 100 OVRP instances, where 91 of them were tested by the exact
method proposed in [9] while 9 of them were tested by several OVRP heuristic
algorithms such as those proposed by [12, 16, 21].

To the best of our knowledge, the only exact approach for the OVRP is the
branch-and-cut algorithm proposed in [9]. That algorithm was tested on classical
91 CVRP instances from the classes A,B,E,F,M and P. These classes are widely
used for testing CVRP approaches and for more details about them, we refer to [18].
Those instances consider a fixed number of vehicles R. To ensure this characteris-
tic, we replace the constraints constraints (4d) by R ≤

∑
p∈Pk �p ≤ R, k ∈ D , where R

represents the fixed number of routes.
Table 4 presents a comparison between the number of optimal solutions found

by our method and by the branch-and-cut algorithm proposed in [9]. The literature
algorithm considered a time limit of 3600 s for each experiment. For a fair com-
parison, we compared the processors of the computers used by us and by the litera-
ture through the site https://​www.​cpube​nchma​rk.​net/. We considered the time limit
540 s for each experiment carried out by our algorithm base on that comparison.
Each column in Table 4 is labeled as follows. The Column Class indicates the name
of the corresponding class of instances. The Column #Inst indicates the number of
instances in the corresponding class. The Columns # opt Literature and # opt This

Table 4   Comparison between
our method and the branch-and-
cut algorithm proposed in [9]

Class #Inst. #opt

Literature This paper

A 27 27 27
B 23 19 23
E, F, M 17 11 15
P 24 19 24
Total 91 76 89

Table 5   Results of our approach
for 9 OVRP benchmark
instances

Description # Inst. Not fixed nr Fixed nr

opt Avg. time (s) # opt Avg. time (s)

OVRP Inst 9 9 294.75 7 1621.68

https://www.cpubenchmark.net/

1067

1 3

On the exact solution of the multi‑depot open vehicle routing…

paper indicate the number of instances solved to the optimality by respectively the
literature and the proposed algorithms within the time limit.

Observing Table 4, we can note that our method outperforms the literature
one since our method did not solved to the optimality within the time limit just 2
instances while the literature algorithm did not prove the optimal solution for 15
instances.

We also test the proposed algorithm on 9 OVRP benchmark instances C1, C2,
C3, C4, C5, C11, C12, F11 and F12. For more details about them we refer to [21].
Table 5 shows our results for those instances where each one is tested in two ways:
without and with a fixed number of routes (nr). We provide our algorithm an initial
valid upper bound for each instance. For the case without a fixed number of vehi-
cles, that bound was taken from [21]. For the other case, that bound was taken from
[16].

Analysing Table 5, we conclude that our method just does not solve to the opti-
mality just two instances within 7200 s of execution.

4.5 � Tests on OVRPTW instances

For the OVRPTW, we follow [20] and generated instances based on classical
Solomon instances [14] which is divided in six groups R101-R112, C101-C109,
RC101-RC108, R201-R211, C201-C208, RC201-RC208. As in [20], we consider
that the instances have the hierarchical objectives described in Sect. 3.5. Thus, we
execute the procedure described in that section. We set a time limit of 18000 s for
each experiment. Table 6 presents the results of our approach over each group of
OVRPTW instances.

Analysing Table 6, we conclude that our method solves to the optimality
within the time limit all instances in the groups C101-C109, RC101-RC108 and
C201-C208. However our approach solved to the optimality only 2 instances in the
group R201-R208 and 1 instance in the group RC201-RC208. It happened because
the vehicle capacity is large for the instances in those groups. Thus, the routes in the
solution tend to be long and it decreases the performance of our approach.

Table 6   Average results of
the proposed algorithm over
OVRPTW instances

Group #Inst #opt Avg. time (s)

R101-R112 12 10 832.6
C101-C109 9 9 5.7
RC101-RC108 8 8 1064.7
R201-R211 11 2 10351.7
C201-C208 8 8 860.0
RC201-RC208 8 1 5825.5

1068	 V. C. Soares, M. Roboredo

1 3

5 � Conclusions

This paper presented a BCP algorithm for the MDOVRP that was coded within the
VRPSolver framework. We tested the performance of the proposed algorithm on 24
instances frequently used by the literature about the problem. The results showed
that our method outperformed the best exact MILP formulation proposed in [8].
Besides, our method solved to the optimality all instances including eight instances
that were open so far.

We also applied the proposed approach to instances of the MDOVRPTW, OVRP,
OVRPTW. For all the variants, our method solved to the optimality almost all
instances in reasonable computational times.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s11590-​023-​02072-y.

References

	 1.	 Bezerra, S.N., de Souza, S.R., Souza, M.J.F.: A general vns for the multi-depot open vehicle routing
problem with time windows. Optim. Lett. (2023). https://​doi.​org/​10.​1007/​s11590-​023-​01990-1

	 2.	 Brandão, J.: A memory-based iterated local search algorithm for the multi-depot open vehicle rout-
ing problem. Eur. J. Oper. Res. 284(2), 559–571 (2020)

	 3.	 Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and multi-depot vehi-
cle routing problems. Netw. Int. J. 30(2), 105–119 (1997)

	 4.	 Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle routing problems
with time windows. J. Op. Res soc. 52(8), 928–936 (2001)

	 5.	 Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91 (1959)
	 6.	 Lahyani, R., Gouguenheim, A.L., Coelho, L.C.: A hybrid adaptive large neighbourhood search for

multi-depot open vehicle routing problems. Int. J. Prod. Res. 57(22), 6963–6976 (2019)
	 7.	 Lalla-Ruiz, E., Expósito-Izquierdo, C., Taheripour, S., Voß, S.: An improved formulation for the

multi-depot open vehicle routing problem. OR Spectr. 38(1), 175–187 (2016)
	 8.	 Lalla-Ruiz, E., Mes, M.: Mathematical formulations and improvements for the multi-depot open

vehicle routing problem. Optim. Lett. 15(1), 271–286 (2021)
	 9.	 Letchford, A.N., Lysgaard, J., Eglese, R.W.: A branch-and-cut algorithm for the capacitated open

vehicle routing problem. J. Op. Res. Soc. 58(12), 1642–1651 (2007)
	10.	 Liu, R., Jiang, Z., Geng, N.: A hybrid genetic algorithm for the multi-depot open vehicle routing

problem. OR Spectr. 36(2), 401–421 (2014)
	11.	 Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F.: A generic exact solver for vehicle routing and

related problems. Math. Progr. 183(1), 483–523 (2020)
	12.	 Ruiz, E., Soto-Mendoza, V., Barbosa, A.E.R., Reyes, R.: Solving the open vehicle routing problem

with capacity and distance constraints with a biased random key genetic algorithm. Comput. Ind.
Eng. 133, 207–219 (2019)

	13.	 Sadati, M.E.H., Çatay, B., Aksen, D.: An efficient variable neighborhood search with tabu shaking
for a class of multi-depot vehicle routing problems. Comput. Op. Res. 133, 105269 (2021)

	14.	 Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window
constraints. Oper. Res. 35(2), 254–265 (1987)

	15.	 Soto, M., Sevaux, M., Rossi, A., Reinholz, A.: Multiple neighborhood search, tabu search and ejec-
tion chains for the multi-depot open vehicle routing problem. Comput. Ind. Eng. 107, 211–222
(2017)

	16.	 Subramanian, A., Uchoa, E., Ochi, L.S.: A hybrid algorithm for a class of vehicle routing problems.
Comput. Op. Res. 40(10), 2519–2531 (2013)

	17.	 Tarantilis, C., Kiranoudis, C.: Distribution of fresh meat. J. Food Eng. 51(1), 85–91 (2002)
	18.	 Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A.: New benchmark instances

for the capacitated vehicle routing problem. Eur. J. Oper. Res. 257(3), 845–858 (2017)

https://doi.org/10.1007/s11590-023-02072-y
https://doi.org/10.1007/s11590-023-02072-y
https://doi.org/10.1007/s11590-023-01990-1

1069

1 3

On the exact solution of the multi‑depot open vehicle routing…

	19.	 Yao, B., Hu, P., Zhang, M., Tian, X.: Improved ant colony optimization for seafood product delivery
routing problem. Promet-Traffic Transp. 26(1), 1–10 (2014)

	20.	 Yu, N., Qian, B., Hu, R., Chen, Y., Wang, L.: Solving open vehicle problem with time window by
hybrid column generation algorithm. J. Syst. Eng. Electron. 33(4), 997–1009 (2022)

	21.	 Zachariadis, E.E., Kiranoudis, C.T.: An open vehicle routing problem metaheuristic for examining
wide solution neighborhoods. Comput. Op. Res. 37(4), 712–723 (2010)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	On the exact solution of the multi-depot open vehicle routing problem
	Abstract
	1 Introduction
	2 Overview of the VRPSolver framework
	2.1 Generic path generator graphs
	2.2 Generic formulation
	2.3 Solving a specific problem through VRPSolver framework
	2.4 Using state-of-art BCP algorithm components

	3 A VRPSolver model for the MDOVRP
	3.1 Path generator graph for the proposed VRPSolver model
	3.2 MILP formulation for the proposed VRPSolver model
	3.3 Toy example for the proposed VRPSolver model
	3.4 Considering time windows constraints
	3.5 Hierarchical objetives

	4 Computational experiments
	4.1 Comparison with the literature for MDOVRP instances
	4.2 Tests on proposed MDOVRP instances
	4.3 Tests on MDOVRPTW instances
	4.4 Tests on OVRP instances
	4.5 Tests on OVRPTW instances

	5 Conclusions
	References

