
Vol.:(0123456789)

Optimization Letters (2024) 18:1131–1149
https://doi.org/10.1007/s11590-023-02040-6

1 3

ORIGINAL PAPER

A sequential reduction algorithm for the large‑scale
fixed‑charge network flow problems

Lu Yang1 · Zhouwang Yang1

Received: 2 March 2023 / Accepted: 29 June 2023 / Published online: 13 July 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
The fixed-charge network flow problem (FCNFP) is widely used in industrial pro-
duction and can be exactly solved by converting to mixed-integer linear program-
ming (MILP). However, the long solving time of MILP solvers limits their applica-
bility to large-scale problems. This paper proposes a sequential reduction algorithm
called adaptive dynamic slope scaling procedure (ADSSP). ADSSP introduces an
adaptive edge deletion strategy to improve solution quality and efficiency. Theo-
retical analysis proves the algorithm convergence and provides the best-case and
worst-case time upper bounds of ADSSP. Numerical experiments show that ADSSP
outperforms the previous linear programming-based iterative algorithms on differ-
ent scales. In instances with hundreds of thousands of variables, ADSSP achieves
a 2% improvement in the objective and takes only 3% solving time compared to the
Cplex MILP Solver. The results demonstrate that ADSSP can significantly improve
the solution quality with high efficiency for large-scale FCNFP. As a widely applica-
ble optimization method, ADSSP can be a valuable tool for optimizing FCNFP and
other similar problems.

Keywords  Fixed-charge network flow · Heuristic algorithm · Edge deletion ·
Transportation problem

1  Introduction

The fixed-charge network flow problem (FCNFP) appears widely in the field of net-
work optimization, in areas such as transportation science [1–4], integrated schedul-
ing of production [5] and sources supply networks [6]. FCNFP is a subtype of the

 *	 Zhouwang Yang
	 yangzw@ustc.edu.cn

	 Lu Yang
	 yl0501@mail.ustc.edu.cn

1	 University of Science and Technology of China, Hefei, Anhui, P. R. China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-023-02040-6&domain=pdf

1132	 L. Yang, Z. Yang

1 3

fixed cost linear programming problem, a nondeterministic polynomial-time hard
(NP-hard) problem, introduced in [7].

Let G = (V ,E) be a directed graph with n nodes and m edges, where V is the set
of nodes and E is the set of edges. Each node i ∈ V is associated with a supply bi .
Each edge e ∈ E is associated with a flow xe , a capacity ue , a unit cost ce , and a fixed
cost se . The cost function Ce(xe) of edge e is discontinuous and can be expressed as:

Let x = (x1, x2,… , xm) be the vector of flow, u = (u1, u2,… , um) be the vector of
capacity, A be the node-edge incidence matrix of G, and b = (b1, b2,… , bn) be the
node supply vector. The FCNFP can be formulated as the following problem:

where x, u ∈ ℝm, b ∈ ℝn, and A ∈ ℝn×m.
The algorithms for solving FCNFP mainly include integer programming algo-

rithms, linear programming-based (LP-based) iterative algorithms, and meta-heu-
ristic algorithms. FCNFP can be formulated as a mixed-integer linear program-
ming (MILP) problem by adding a 0–1 integer variable for each edge to indicate
whether the flow is greater than zero. MILP can be directly solved by algorithms
based on techniques such as cutting plane [8], Benders decomposition [9], column
generation [10], lagrangian relaxation [11], and Dantzig-Wolfe decomposition [12].
LP-based iterative algorithms can quickly find suboptimal solutions by approximat-
ing discontinuous cost functions using (piecewise) linear functions [13–15]. Meta-
heuristic algorithms, such as genetic algorithms [16] and population algorithms [1],
are also used to solve FCNFP. While MILP is exact, its solving time can be uncer-
tain or computationally infeasible, especially on large-scale problems. In addition,
meta-heuristic algorithms lack theoretical guarantees of optimality and efficiency,
and their long solving time makes them impractical for use in industrial production.
Despite the advantages in efficiency for problem-solving, the performance of LP-
based iterative algorithms still requires improvement.

This paper presents a novel algorithm called adaptive dynamic slope scaling
procedure (ADSSP) for solving the fixed-charge network flow problem. ADSSP
improves upon existing LP-based iterative algorithms by incorporating the dynamic
slope scaling procedure (DSSP) and an edge deletion strategy. DSSP can explore the
feasible domain by iteratively adjusting the slope scaling factors to guide the search
toward promising solutions. The edge deletion strategy can reduce the interference
of fixed cost from invalid edges on DSSP by eliminating the edges with zero flow.
The alternating iteration framework of DSSP and edge deletion sequentially reduce

(1)Ce(xe) =

{
0 xe = 0

se + cexe xe ∈ (0, ue]

(2)

min
x

C(x) =
∑

e∈E

Ce(xe)

s.t. Ax = b

0 ⩽ x ⩽ u

1133

1 3

A sequential reduction algorithm for the large‑scale…

the feasible domain of FCNFP, enabling ADSSP to converge efficiently to a good
solution. Through extensive experiments on large-scale instances, we demonstrate
that ADSSP outperforms previous LP-based iterative algorithms and the commer-
cial solver Cplex in both solution quality and computational efficiency. Our research
contributes to the development of more effective and scalable optimization methods
for real-world problems.

The remainder of this paper is organized as follows. Section 2 lists related work on
LP-based iterative algorithms. Section 3 outlines the details of the proposed ADSSP
algorithm, while Sect. 4 describes and discusses simulation results. This study con-
cludes in Sect. 5 with a summary of the results.

2 � Related work

The development of LP-based iterative algorithms for the FCNFP can be roughly
divided into three stages. The first LP-based iterative framework for solving FCNFP
called DSSP was proposed in [13]. This pioneering approach approximates the
FCNFP as a series of linear programming problems. The linear objective through
the origin allows the approximate problems to be solved quickly. Based on the
DSSP framework, the meta-heuristic technique called Tabu Scheme was explored
to produce promising search neighborhoods for high-quality solutions by iteratively
adjusting the linear factors [17]. However, the lack of descent and convergence guar-
antee makes the solving time of DSSP uncertain, and the simple structure of the
single-layer iterative framework makes it far from the optimal solution.

An approximate model using a piecewise linear function to approximate the
discontinuous objective of FCNFP was proposed in [14] called the concave piece-
wise linear network flow (CPLNF) model. The complex piecewise linear objec-
tive is closer to the objective of FCNFP than the linear objective, but it also makes
the CPLNF model hard to solve. That paper transformed the CPLNF model into a
mixed-integer linear programming model and linearly relaxed the integer variables,
and proposed an algorithm called the dynamic cost updating procedure to solve. An
improved algorithm called adaptive dynamic cost updating procedure (ADCUP)
dynamically modified the objective of CPLNF to approach the original objective
function in iterations [18].

The complex objective function challenges the efficiency of problem-solving.
The objective function of CPLNF can be simplified to a new approximate model
called the continuous bilinear network flow (CBLNF), which can also be solved by
ADCUP [15]. On this basis, ADCUP can be modified by transferring the two-layer
iteration into a single-layer iteration to improve the efficiency, which is introduced
in an algorithm called the dynamic problem updating procedure (DPUP) [19]. How-
ever, these algorithms yield solutions that might be far from optimal, with objectives
up to ten percent larger than the optimal one.

1134	 L. Yang, Z. Yang

1 3

3 � Algorithm

3.1 � Adaptive dynamic slope scaling procedure

This section introduces the heuristic algorithm ADSSP, an iterative framework com-
bining an edge deletion strategy with DSSP. The edge deletion strategy aims to delete
the edges unlikely to appear in the optimal solution, which improves the solution
optimality and decreases the problem scale for the next iteration. Therefore, ADSSP
can quickly find a good solution by solving FCNFP on sequentially reduced feasible
domains. Fig. 1 displays the whole solving process of ADSSP. The initialized graph,
G(0)(V ,E(0)) , generates an initial FCNFP to trig the solving process of ADSSP. In each
iteration, DSSP solves the FCNFP induced by the current graph, G(k)(V ,E(k)) , to pro-
vide the solution {x(k)

e
} . Based on the selected deletable edge set ΔE(k)

D
 generated from

{x(k)
e
} , edge deletion can update E(k) by deleting edges in ΔE(k)

D
 . This iteration terminates

when the generated ΔE(k)

D
 is empty.

DSSP approximates FCNFP by a series of linear programming problems, where
each edge’s cost is redefined as a linear cost through the origin. The slope can be
expressed as:

where xe > 0 is a given flow of edge e. An optional initialization of the slope is
c̄(0)
e

= ce + se∕ue . The dynamic slope update formula is

 DSSP stops when the solution in current iteration satisfies x(k−1)
e

= x(k)
e

 for all edge e.
Because the stopping criterion lacks the guarantee of finite-step termination, a maxi-
mum number of iterations is set to avoid excessively long solving time, denoted as
Md . For accelerating the computation, we apply an efficient algorithm [20] to solve

(3)c̄e = ce + se∕xe

(4)c̄(k+1)
e

=

{
max
1≤l≤k

{c̄(l)
e
∶ x(l)

e
> 0} x(k)

e
= 0

ce + se∕x
(k)
e

x(k)
e

> 0

Fig. 1   The flowchart of ADSSP

1135

1 3

A sequential reduction algorithm for the large‑scale…

the minimum-cost flow problem in DSSP. The detail of DSSP is shown in Algo-
rithm 1, where MCF

(
c̄(k)
e

)
 represents the solution of a minimum-cost flow problem.

In the k-th iteration, the set of deletable edges is defined as
ΔE(k) = {e ∈ E(k) se > 0, x(k)

e
= 0} , where x(k)

e
 is obtained from the solution of

DSSP. Since DSSP is not an exact algorithm, deleting all edges in ΔE(k) may
cause the algorithm to converge to a poor solution. An alternative approach is to
delete a certain ratio of edges from ΔE(k) . The selection on the deleting edges in
ΔE(k) relies on the value �e calculated as follows.

•	 TYPE 1: Randomly select a proportion of edges from ΔE(k) to delete.
•	 TYPE 2: Delete the edges with large fixed costs, that is �e = se.
•	 TYPE 3: Delete the edges with large values �e = ce + se∕ue.
•	 TYPE 4: Delete the edges with large values �e = ce + se.

Among these four optional calculations, the first type is not affected by the costs
on edges, which can be applied to any graph structure. The second type prior-
itizes the removal of the zero-flow edges with higher fixed costs. However, it is
ineffective when the unit cost is significantly larger than the fixed cost. The third
and fourth types rely on the average cost on edges with maximum flow and unit
flow, respectively, which are more versatile than the previous two. The set of
deleted edges is denoted as ΔE(k)

D
 , which can be expressed as

where � is the deleting ratio and Q1−�(�) is the (1 − �) quantile of the set
{�e ∶ e ∈ ΔE} . After updating the edge set by E(k+1) = E(k) − ΔE

(k)

D
 , the subproblem

on the graph G(k+1)(V ,E(k+1)) is also an FCNFP. The stopping criteria is defined as
ΔE

(k)

D
= � . Without loss of generality, the number of forced termination steps is set

to m. The detail of ADSSP is shown in Algorithm 2.

ΔE
(k)

D
= {e ∈ ΔE(k) 𝜙e > Q1−𝛼(�)}

1136	 L. Yang, Z. Yang

1 3

3.2 � Algorithm convergence and time complexity

DSSP lacks time complexity analysis because its termination condition does not
provide a definite number of iterations. However, ADSSP sets the iteration upper
limit of DSSP as Md , which makes Algorithm 2 terminates in a finite number of
iterations. Thus, theoretical analysis of time complexity is allowed for ADSSP.

Proposition 1  The ADSSP solves the FCNFP in a finite number of iterations. The
worst-case scenario is that the iteration number is m − 1 , while the best-case sce-
nario is that the iteration number is ⌈log 1

1−�

(m − 1)⌉ + 1 , where m is the number of
edges in the graph and � is the deleting ratio.

Proof  Assuming that the optimal solution consists of only one edge with the nonzero
flow in the graph. The worst-case scenario means that only one edge can be deleted
per iteration, resulting in a total of m − 1 iterations. In the best case, all edges except
the nonzero flow edge can be deleted in each iteration. The maximum number of
iterations K satisfies (1 − �)(K−1)(m − 1) = 1 , where � is the proportion of edges to
be deleted. The upper bound on the number of iterations for ADSSP in the best case
is K = ⌈log 1

1−�

(m − 1)⌉ + 1 . 	� ◻

Theorem 1  The time bound of ADSSP is O(nm log(n2) log(nC)Γ(m, �)) , where
Γ(m, �) = m in the worst case and Γ(m, �) = 1−(1−�)K

�
 in the best case.

Proof  The time bound of O(nm log(n2∕m) log(nC)) on a graph with m edges for
minimum-cost circulation problems is given in [20], which is the time complexity

1137

1 3

A sequential reduction algorithm for the large‑scale…

of the function MCF(⋅) in Algorithm 1. Since the other operations in loop is O(m)
and the number of iteration Md is a constant, the time bound of Algorithm 1 is also
O(nm log(n2∕m) log(nC)).

The time bound of the function DSSP(⋅) in Algorithm 2 is
O(nmk log(n

2∕mk) log(nC)) . In the worst case, the time bound of ADSSP is

In the best case, the time bound of ADSSP is1

	� ◻

4 � Numerical experiment

This section consists of a data illustration and three experiments. First, we introduce
the construction of the synthetic data and provide the topological information and
generated distributions of parameters for instances. Second, we give the range of
choices for algorithm hyperparameters and the selection of the edge-deleting rule
through comparative experiments. Based on the selected hyperparameters and rule,
we demonstrate the advantages of ADSSP from two perspectives: problem scale
and combinatoriality. The combinatoriality of the problem is defined in terms of the
order of magnitude difference between unit cost and fixed cost.

By solving the following MILP model that is equivalent to FCNFP, the solution
provides a good benchmark for comparing algorithms.

O

(
m∑

i=2

ni log(n2∕i) log(nC)

)

= O

(
n log(n2) log(nC)

m∑

i=2

i − n log(nC)

m∑

i=2

i log(i)

)

= O
(
nm2 log(n2) log(nC)

)

O

(
K−1∑

i=0

n(1 − �)im log(
n2

(1 − �)im
) log(nC)

)

= O

(
nm log(n2) log(nC)

K−1∑

i=0

(1 − �)i − nm log(nC)

K−1∑

i=0

(i log(1 − �) + logm)(1 − �)i

)

= O

(
nm log(n2) log(nC)

1 − (1 − �)K

�

)1

1  A more accurate upper bound can be obtained by considering the second item, but it is not used here as
a conclusion since the complicated form.

1138	 L. Yang, Z. Yang

1 3

Cplex is an advanced commercial solver used for solving MILP, capable of finding
the optimal solution. However, as the problem scale increase and combinatoriality
enhance, the solving time of Cplex becomes unpredictable. By setting a time limit
for solving, Cplex can provide the optimal solution for small-scale problems and
suboptimal solutions for large-scale problems.

In this paper, numerical experiments are conducted in C++ 17 on a Windows 10
platform with an Intel Core i7 2.50 GHz processor and 32.0 GB of RAM. The ver-
sion of Cplex MILP Solver is 12.10.0, and the time limit for solving MILP is 3600 s.

4.1 � Data

The experimental instances are constructed on the graph with given parameters,
including small-scale and large-scale ones. The scale of FCNFP relies on its number
of nodes and edges. Referring to [19], we set nine scales for small-scale instances
and four for large-scale instances. The instance with the largest scale in this paper
contains ten thousand nodes and one million edges. In graph generation, nodes are
selected randomly from a two-dimensional plane and labeled in order. Each node
is associated with a supply, the type of which is determined by its relationship with
zero. Edges are generated between nodes whose distance is smaller than a specified
threshold. The structure data of the graph are shown in Table 1.

In each instance, we need to generate the supply on nodes, and the capacity, unit
cost, and fixed cost on edges. The experimental data construction in the related work
does not specify how these parameters generating. To construct instances more real-
istic, we sample these parameters according to distributions in Table 2. In addition,
the combinatoriality coefficient � aims to adjust the magnitude difference between
the unit and fixed cost, making the instances with different combinatoriality. The
instance feasibility is verified by a minimum-cost flow algorithm by setting the fixed
cost to zero.

4.2 � Hyperparameters and deleting rule in ADSSP

The hyperparameters Md and � are pre-given in ADSSP. The parameter selec-
tion is guided by comparing the relative error between the optimal value and the
objective of ADSSP on a grid of parameter values. We choose Md from the set
{i ∈ ℤ ∶ 1 ≤ i ≤ 30} and select � from the set {0.05 ∗ k ∶ k = 1, 2,… , 20} . The
experiments are conducted on multiple groups of small-scale instances with strong
combinatoriality to make the results more illustrative. Figure 2 shows the relative
errors on gridded parameters. The darker area, i.e., the area with smaller relative

(5)

min
x,y

CI(x) =
∑

e∈E

cexe + seye

s.t. Ax = b

0 ≤ xe ≤ ueye,∀e ∈ E

ye ∈ {0, 1},∀e ∈ E

1139

1 3

A sequential reduction algorithm for the large‑scale…

error, is mainly concentrated in {(Md, 𝛼) ∶ 0 < Md ⩽ 5;0 < 𝛼 ⩽ 0.5} , which is veri-
fied across these four scales. When Md is set to one, the relative error between the
objective of ADSSP and the optimal value is more than 10%, which causes the red,
steep slope in Fig. 2. However, as Md increases, the relative error also increases

Table 1   The topological
information of the graph for
each instance

The values of Source, Intermediate, and Sink are the average number
of corresponding nodes in each scale, where the supply of source is
over zero, that of the intermediate node is zero, and that of sink is
below zero

Node Edge Source Intermediate Sink

Small scales 20 100 1.3 16.9 1.8
60 400 5.2 49.5 5.3

120 1500 7.3 104.5 8.2
150 2500 8.3 132.5 9.1
200 4000 10.6 178.2 11.2
250 7500 9.8 230.1 10.0
300 9000 9.9 279.4 10.7
500 10000 10.4 479.1 10.5

1000 20000 10.6 978.1 11.4
Large scales 6000 250000 91.7 5816.7 91.6

7500 500000 101.4 7296.7 101.9
9000 750000 137.1 8726.1 136.8

10000 1000000 153.6 9693.6 152.8

Table 2   The distributions of
parameters on the graph

a The supply of node i obeys distribution U(3, 30) when i is a source,
and obeys distribution U(−30,−3) when i is a sink

 Item Name Illustration

 1 Supplya
b
i
∼ ±U(3, 30)

 2 Capacity u
e
∼ U(3, 30)

 3 Unit cost c
e
∼ U(0, 10) + 1

 4 Fixed cost s
e
∼ � ⋅ U(0, 10) + 1

 5 Combinatoriality
coefficient

� ∈ {10−4, 10−3,… , 103, 104}

Fig. 2   Relative error between ADSSP and the Cplex MILP Solver under gridded parameters

1140	 L. Yang, Z. Yang

1 3

relatively. Therefore, a few steps of dynamic slope scaling in ADSSP can improve
the correctness of edge deletion. Also, the smaller value of � can reduce the impact
of incorrect judgments in edge deletion on the solution.

The edge deleting rules for ADSSP cannot be directly specified. We compare
them through necessary experiments on small-scale instances. Regarding the solu-
tion obtained by Cplex as a benchmark, we calculate the relative error between it
and the solutions of ADSSP with different deleting rules. Table 3 shows the average
solving time and relative error of ADSSP with different deleting rules on multi-scale
instances. The relative error is calculated as

where CA is the objective of FCNFP solved by ADSSP and CI is the objective of
MILP solved by the Cplex MILP Solver. Different edge-deleting rules do not sig-
nificantly affect the efficiency of problem-solving. However, TYPE 2 and 4 help the
algorithm find better solutions, which indicates that fixed costs have a major impact
on the effectiveness of edge deletion.

In the following experiments, we set the number of iterations in DSSP as three
and the deleting ratio as 0.5. The performance of ADSSP under four deleting rules
shows that TYPE 2 and TYPE 4 are good choices for edge deletion. Considering
that the TYPE 2 rule can not handle the case when the unit cost is much larger than
the fixed cost, we apply the TYPE 4 rule on ADSSP to delete edges.

4.3 � Simulation on instances with different scale

This section discusses the simulation results on problems with different scales.
In small-scale problems, we calculate the relative error between the solutions of

(6)Relative Error (%) =
C
A
− C

I

C
I

× 100%

Table 3   Performance of ADSSP under four deleting rules for small-scale instances

Bolded the minimal average solving time and minimal average relative error in each line to emphasize
the advantages of ADSSP

Scale Average solving time (ms) Average relative error (%)

TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 1 TYPE 2 TYPE 3 TYPE 4

(20, 100) 4.80 4.83 4.27 4.50 0.55 0.45 0.52 0.44
(60, 400) 22.77 23.10 24.17 24.3 2.17 1.71 2.17 1.81
(120, 1500) 95.83 99.03 101.3 101.2 2.38 1.83 2.21 1.50
(150, 2500) 155.2 157.5 181.0 175.6 2.55 1.70 2.48 1.91
(200, 4000) 276.3 265.7 296.2 292.8 2.23 1.47 1.88 1.53
(250, 7500) 491.5 489.3 505.0 510.5 1.94 1.58 1.80 1.47
(300, 9000) 600.9 605.1 625.7 604.7 2.01 1.22 1.84 1.19
(500, 10000) 773.5 754.0 802.8 779.7 2.90 1.94 2.84 2.05
(1000, 20000) 1519 1453 1619 1622 2.54 1.99 2.47 2.05
Mean 2.13 1.54 2.02 1.55
Std. 0.64 0.45 0.63 0.48

1141

1 3

A sequential reduction algorithm for the large‑scale…

ADSSP and Cplex solver and compare it with the previous LP-based iterative algo-
rithms DSSP, ADCUP, and DPUP. In large-scale problems, we compare the perfor-
mance of DSSP, ADSSP, and Cplex to explore the impact of problem combinatori-
ality on ADSSP.

4.3.1 � Small‑scale instances

Small-scale instances are divided into nine groups with the topological informa-
tion listed in Table 1, and each group contains 30 instances. Table 4 indicates that
Cplex can find the optimal solution or a suboptimal solution with low optimal-
ity gaps2 for the small-scale instance. By regarding the solution of Cplex as the
benchmark, we compare the relative errors of solutions solved by DSSP, ADCUP,
DPUP, and ADSSP. Table 5 shows the results of the algorithms on small-scale
problems, with the minimum value of indicators highlighted in bold. The first
column states the problem scale of this group. The second to fifth columns list
the average solving times for the four algorithms. The sixth to ninth columns list
the average relative error between the benchmark and the solutions of these four
algorithms.

The results indicate that ADSSP far exceeds other LP-based iterative algorithms
in performance and stability. For small-scale problems, the average solving time of
ADSSP can be less than 1.7 s, and the average relative error of the objective can be
controlled within 2%. Although the solving time of ADSSP is slightly longer than
DSSP in the instances where the number of edges is less than 1000, ADSSP finds a
better solution through the edge deletion strategy. However, judging from optimality
alone, the solution of ADSSP cannot reach the optimal solution. ADSSP can find a

Table 4   Performance of Cplex
on small-scale instances

*The column Solving Time shows the average solving time and the
standard deviation. The column Success shows the counting number
of instances that Cplex has found its optimum on 30 instances. The
column Optimality Gap shows the average optimality gap and its
standard deviation

Scale Solving time (s) Success Optimality gap (%)

(20, 100) 0.012 (0.01) 30/30 0.00 (0.00)
(60, 400) 0.331 (0.75) 30/30 0.00 (0.00)
(120, 1500) 426.362 (1073.15) 27/30 0.04 (0.00)
(150, 2500) 1079.326 (1484.90) 23/30 0.15 (0.00)
(200, 4000) 2302.578 (1707.13) 11/30 0.31 (0.00)
(250, 7500) 2441.885 (1638.82) 10/30 0.41 (0.00)
(300, 9000) 2517.281 (1551.13) 10/30 0.43 (0.00)
(500, 10000) 2626.966 (1430.04) 10/30 0.70 (0.01)
(1000, 20000) Limit 0/30 1.29 (0.01)

2  The introduction and calculation of Optimality Gap was shown on IBM website that https://​www.​ibm.​
com/​docs/​en/​icos/​12.9.​0?​topic=​mip-​progr​ess-​repor​ts-​inter​preti​ng-​node-​log.

https://www.ibm.com/docs/en/icos/12.9.0?topic=mip-progress-reports-interpreting-node-log
https://www.ibm.com/docs/en/icos/12.9.0?topic=mip-progress-reports-interpreting-node-log

1142	 L. Yang, Z. Yang

1 3

solution within 2% relative error on average in less than 1.7 s, while the Cplex MILP
Solver takes much longer, even reaching the time limit.

The complexity of FCNFP is related to the number of variables and constraints.
Using the total number of nodes and edges as the problem scale, Fig. 3 shows the
trend of solving time with the problem scale. The solving time of ADSSP is not
only significantly smaller than that of the other three algorithms, but the slope of

Table 5   Performance of DSSP, ADCUP, DPUP, and ADSSP on small-scale instances

Bolded the minimal average solving time and minimal average relative error in each line to emphasize
the advantages of ADSSP
a The solving time is reported with four significant digits

Scale Average solving timea (seconds) Average relative error (%)

DSSP ADCUP DPUP ADSSP DSSP ADCUP DPUP ADSSP

(20, 100) 0.002 0.051 0.004 0.005 1.19 5.50 3.38 0.44
(60, 400) 0.016 0.294 0.028 0.024 2.54 10.22 5.68 1.81
(120, 1500) 0.159 2.118 0.190 0.101 4.03 12.52 5.89 1.50
(150, 2500) 0.333 4.691 0.422 0.176 3.50 13.89 6.65 1.91
(200, 4000) 0.643 11.13 1.048 0.293 3.47 14.16 7.22 1.53
(250, 7500) 1.623 27.97 3.092 0.511 3.95 15.17 7.98 1.47
(300, 9000) 2.478 30.91 3.821 0.605 3.30 14.41 7.45 1.19
(500, 10000) 2.241 67.02 6.956 0.780 4.73 19.07 9.03 2.05
(1000, 20000) 5.123 287.5 30.88 1.622 5.75 21.30 9.55 2.05
Mean 3.61 14.03 6.98 1.55
Std. 1.21 4.34 1.77 0.48

Fig. 3   Scatter plot of solving time and fitting line of problem scale. The solving time of each algorithm is
from Table 5. The problem scale is equal to the total number of nodes and edges. To facilitate the display
and comparison of algorithms, the solving time and problem scale are logarithmic

1143

1 3

A sequential reduction algorithm for the large‑scale…

the fitting line is also noticeably narrower than the others. ADSSP outperforms the
currently available LP-based iterative algorithms in terms of both the solution qual-
ity and the solving efficiency. The better result with less solving time indicates that
ADSSP is more advantageous in solving large-scale problems.

4.3.2 � Large‑scale instances

We construct four groups of instances on large scales, and the number of nodes and
edges are (6000, 250000), (7500, 500000), (9000, 750000), and (10000, 1000000).
Each group includes nine classes with different combinatoriality coefficients, and
each class contains ten instances. We compare the performance of DSSP, ADSSP,
and Cplex in these instances. Table 6 shows the optimality gap of Cplex with var-
ying scales and combinatoriality coefficients, which increases with respect to the
combinatoriality coefficient. Table 7 shows the relative error calculated by Eq.
(6). Regarding the solution of Cplex as the benchmark, the relative error of DSSP
on average is greater than zero, increasing with � . On the other hand, the relative
error of ADSSP on average is less than zero with a decreasing trend as � increases.
Table 8 shows the solving time of DSSP, ADSSP, and Cplex on the instances. The
solving time of FCNFP significantly increases with the increasing magnitude of � . In
Table 8, ADSSP shows the slowest growth trend in solving time, with a maximum
value of 91.6 s in large-scale instances, which is significantly smaller than Cplex and
only one-tenth of DSSP.

ADSSP outperforms the Cplex MILP Solver when the problem scale reaches
at least 250,000, finding a better solution faster with a relative error that decreases
by 2%, while DSSP performs vastly worse than Cplex. Also, the solving time of
ADSSP in large-scale instances is further short than DSSP and Cplex, and it is less
affected by the combinatoriality of the problem. The results demonstrate that the
edge deletion strategy brings a breakthrough improvement in the effectiveness and

Table 6   Optimality gap of Cplex on large-scale instances

a There is an instance in this group that Cplex has not solved out, which is not included in the calculation
of the metrics

� Average Optimality Gap (%)

(6000, 250000) (7500, 500000) (9000, 750000) (10000, 1000000)

10−4 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

10−3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

10−2 0.06 (0.00) 0.07 (0.00) 0.05 (0.02) 0.04 (0.02)
0.1 0.51 (0.06) 0.66 (0.13) 0.55 (0.21) 0.57 (0.18)
1 4.33 (0.48) 4.85 (1.25) 3.87 (1.22) 3.20 (0.97)
10 12.21 (0.98) 12.02 (1.35) 11.11 (2.40) 9.05 (1.91)
102 19.93 (2.25) 17.20 (1.10) 16.58 (3.92) 14.50 (2.46)

103 23.54 (2.50) 24.12a (2.79) 21.52 (4.37) 17.79 (3.66)

104 24.08 (2.60) 25.03 (2.77) 20.05 (4.08) 19.95 (4.23)

1144	 L. Yang, Z. Yang

1 3

efficiency of problem-solving in the large-scale FCNFP. This strategy helps ADSSP
quickly find better solutions than the commercial solver in a short time. Therefore,
ADSSP is a practical and effective algorithm for solving large-scale FCNFP.

4.4 � Simulation on instances with different combinatoriality

The impact of combinatoriality on the solution of ADSSP is evident. Table 7 clearly
shows a noticeable difference in relative errors between groups with different � . Fig-
ure 4 illustrates that ADSSP performs similarly to the Cplex MILP Solver for weakly
combinatorial problems while finding better solutions than the Cplex MILP Solver
for strongly combinatorial problems. The relative error of the objectives decreases
as the combinatoriality enhances.

Table 8 does not reveal a clear relationship between the combinatoriality coef-
ficient and the solving time. To shed light on the impact of combinatoriality on the
solving process of ADSSP, Table 9 provides the iterative number in Algorithm 2 for
different values of � , with the best-case iterative number as a reference mentioned in
Proposition 1. The findings indicate that the combinatoriality coefficient has a effect
on the iterative number, as the difference between the average iterative number and
the theoretical best case increases with � . Although this suggests that combinatorial-
ity will lengthen the solving time, the increase is slight. When the unit cost is much
higher than the fixed cost, the iterative number for all instances equals the best-case
scenario. Even when the fixed cost is significantly greater than the unit cost, the
iterative process of ADSSP only requires an additional iteration for solving FCNFP.
Overall, the experimental results demonstrate that ADSSP typically solves FCNFP
in a best-case or near-best-case iterative process.

Table 7   Performance of DSSP and ADSSP on large-scale instances

� Relative Error to CPLEX on varying scales (%)

(6000, 250000) (7500, 500000) (9000, 750000) (10000, 1000000)

DSSP ADSSP DSSP ADSSP DSSP ADSSP DSSP ADSSP

10−4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10−3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10−2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.1 0.07 0.00 0.13 0.02 0.06 −0.03 0.10 0.01
1 3.18 −1.09 6.70 −0.47 4.29 −0.86 2.66 −0.86
10 10.89 −3.07 32.02 −1.38 18.07 −2.95 10.85 −3.14
102 32.09 −5.16 51.78 −2.87 42.74 −5.08 32.13 −4.62

103 45.45 −4.89 76.69 −4.24 62.88 −6.58 44.46 −5.99

104 46.17 −3.99 76.70 −5.57 56.77 −6.39 48.23 −7.27
Min 0.00 −11.11 −0.03 −11.18 0.00 −11.40 0.00 −10.49
Mean 15.32 −2.02 26.56 −1.58 20.53 −2.43 15.38 −2.43
Max 65.73 0.27 103.37 4.89 108.93 0.04 114.89 0.13

1145

1 3

A sequential reduction algorithm for the large‑scale…

Ta
bl

e 
8  

S
ol

vi
ng

 ti
m

e
of

 D
SS

P,
 A

D
SS

P,
 a

nd
 C

PL
EX

 o
n

la
rg

e-
sc

al
e

in
st

an
ce

s

a  Li
m

it
m

ea
ns

 th
at

 th
e

so
lv

in
g

tim
e

of
 a

ll
in

st
an

ce
s i

n
th

is
 g

ro
up

 re
ac

he
s 3

60
0

s

�
So

lv
in

g
tim

e
on

 v
ar

yi
ng

 sc
al

es
 (s

)

(6
00

0,
 2

50
00

0)
(7

50
0,

 5
00

00
0)

(9
00

0,
 7

50
00

0)
(1

00
00

, 1
00

00
00

)

D
SS

P
A

D
SS

P
C

PL
EX

D
SS

P
A

D
SS

P
C

PL
EX

D
SS

P
A

D
SS

P
C

PL
EX

D
SS

P
A

D
SS

P
C

PL
EX

1
0
−
4

3.
8

8.
7

7.
4

9.
0

20
.1

10
.9

15
.7

30
.5

22
.8

44
.9

63
.6

29
.3

1
0
−
3

6.
5

12
.2

18
.3

16
.1

25
.9

26
.9

42
.4

49
.7

36
7.

2
11

0.
8

73
.7

38
7.

5

1
0
−
2

14
.5

12
.6

Li
m

ita
37

.1
23

.1
Li

m
it

11
0.

8
45

.2
Li

m
it

21
0.

6
72

.0
Li

m
it

0.
1

46
.6

11
.6

Li
m

it
12

1.
5

21
.7

Li
m

it
36

9.
5

43
.4

Li
m

it
81

3.
2

54
.8

Li
m

it
1

13
9.

5
11

.3
Li

m
it

27
4.

8
19

.9
Li

m
it

80
6.

5
40

.3
Li

m
it

15
84

.7
64

.6
Li

m
it

10
14

5.
8

12
.3

Li
m

it
34

1.
8

21
.7

Li
m

it
79

2.
7

45
.2

Li
m

it
12

69
.8

69
.6

Li
m

it
1
0
2

15
2.

5
13

.7
Li

m
it

40
1.

6
27

.3
Li

m
it

77
2.

8
51

.6
Li

m
it

12
41

.9
77

.8
Li

m
it

1
0
3

15
2.

6
15

.6
Li

m
it

42
7.

5
29

.2
Li

m
it

67
4.

9
52

.6
Li

m
it

11
45

.1
89

.3
Li

m
it

1
0
4

14
8.

6
16

.4
Li

m
it

44
7.

4
29

.9
Li

m
it

58
6.

2
60

.4
Li

m
it

90
5.

2
91

.6
Li

m
it

M
ea

n
90

.1
12

.7
28

03
.5

23
0.

8
27

.6
28

05
.1

46
3.

5
46

.5
28

45
.1

81
2.

9
73

.0
28

48
.7

St
d.

65
.8

2.
5

–
17

4.
8

5.
8

–
31

7.
8

14
.7

–
55

3.
2

18
.2

–

1146	 L. Yang, Z. Yang

1 3

Ta
bl

e 
9  

T
he

 av
er

ag
e

nu
m

be
r o

f i
te

ra
tio

ns
 fo

r A
D

SS
P

a  K
∗ i

s t
he

 b
es

t-c
as

e
ite

ra
tiv

e
nu

m
be

r o
f A

D
SS

P,
 w

hi
ch

 sa
tis

fie
s K

=
⌈−

lo
g
1
−
�
(m

−
1
)⌉

+
1

b  ̄Δ
K

 is
 th

e
m

ea
n

of
 K

−
K

∗ f
or

 a
ll

sc
al

es

Sc
al

e
A

ve
ra

ge
 it

er
at

iv
e

nu
m

be
r K

K
∗
a

�
=
1
0
−
4

�
=
1
0
−
3

�
=
1
0
−
2

�
=
0
.1

�
=
1

�
=
1
0

�
=
1
0
2

�
=
1
0
3

�
=
1
0
4

(6
00

0,
 2

50
00

0)
19

19
19

19
19

19
.2

19
.3

19
.8

19
.9

19
(7

50
0,

 5
00

00
0)

20
20

20
20

.1
20

20
.2

20
.6

20
.9

20
.9

20
(9

00
0,

 7
50

00
0)

21
21

21
21

21
21

21
21

21
.2

21
(1

00
00

, 1
00

00
00

)
21

21
21

21
21

.6
21

.8
21

.9
22

22
21

Δ̄
b K

0
0

0
0.

02
5

0.
15

0.
3

0.
45

0.
67

5
0.

75
–

1147

1 3

A sequential reduction algorithm for the large‑scale…

5 � Conclusion

The FCNFP has a wide range of applications in real-world scenarios. Although
FCNFP can be transformed into an integer programming problem and solved by
commercial solvers, finding the exact solution in a finite time or a sufficiently
good suboptimal solution in a short time is challenging, especially for problems
with large scales or strong combinatoriality. This paper proposes an LP-based
iterative algorithm called ADSSP to reduce the scale of the subproblem in iter-
ations by deleting edges to converge quickly to a suboptimal solution. ADSSP
outperforms the commercial solver Cplex on large-scale problems and achieves
a controllable relative error with the optimal solution on small-scale problems.
Furthermore, this paper analyzes the convergence and time complexity of ADSSP
from theoretical and experimental perspectives. Finally, the hyperparameter
selection experiments guide the optimal selection interval for the parameters,
allowing the algorithm to be better employed.

Acknowledgments  The work is supported by Anhui Center for Applied Mathematics, the NSF of
China (No. 92270205), and the Major Project of Science & Technology of Anhui Province (Nos.
202203a05020050, 202103a07020011).

Data availibility  The datasets generated and analyzed during the current study are available in our reposi-
tory https://​github.​com/​lufiz​yang/​Data-​and-​Method-​for-​FCNFP. And the C++ code of ADSSP is also in
there.

Fig. 4   The curve of relative error between objectives of ADSSP and Cplex MILP Solver on large-scale
problems

https://github.com/lufizyang/Data-and-Method-for-FCNFP

1148	 L. Yang, Z. Yang

1 3

Declarations 

Conflict of interest  The authors declared that there is no confict of interest.

References

	 1.	 Sadeghi-Moghaddam, S., Hajiaghaei-Keshteli, M., Mahmoodjanloo, M.: New approaches in metaheuris-
tics to solve the fixed charge transportation problem in a fuzzy environment. Neural Comput. Appl.
31(1), 477–497 (2019). https://​doi.​org/​10.​1007/​s00521-​017-​3027-3

	 2.	 Hajiaghaei-Keshteli, M., Aminnayeri, M., Ghomi, S.F.: Integrated scheduling of production and rail trans-
portation. Comput. Ind. Eng. 74, 240–256 (2014). https://​doi.​org/​10.​1016/j.​cie.​2014.​05.​026

	 3.	 Molla-Alizadeh-Zavardehi, S., Nezhad, S.S., Tavakkoli-Moghaddam, R., Yazdani, M.: Solving a fuzzy
fixed charge solid transportation problem by metaheuristics. Math. Comput. Model. 57(5–6), 1543–
1558 (2013). https://​doi.​org/​10.​1016/j.​endm.​2017.​03.​019

	 4.	 Golmohamadi, S., Tavakkoli-Moghaddam, R., Hajiaghaei-Keshteli, M.: Solving a fuzzy fixed charge solid
transportation problem using batch transferring by new approaches in meta-heuristic. Electron. Notes
Discret. Math. 58, 143–150 (2017). https://​doi.​org/​10.​1016/j.​endm.​2017.​03.​019

	 5.	 Moccia, L., Cordeau, J.-F., Laporte, G., Ropke, S., Valentini, M.P.: Modeling and solving a multimodal
transportation problem with flexible-time and scheduled services. Networks 57(1), 53–68 (2011).
https://​doi.​org/​10.​1002/​net.​20383

	 6.	 Willet, J., Wetser, K., Dykstra, J.E., Bianchi, A.B., Essink, G.H.O., Rijnaarts, H.H.: Waterroute: a model
for cost optimization of industrial water supply networks when using water resources with varying
salinity. Water Res. 202, 117390 (2021). https://​doi.​org/​10.​1016/j.​watres.​2021.​117390

	 7.	 Hirsch, W.M., Dantzig, G.B.: The fixed charge problem. Naval Res. Logist. Q. 15(3), 413–424 (1968).
https://​doi.​org/​10.​1002/​nav.​38001​50306

	 8.	 Jünger, M., Reinelt, G., Thienel, S.: Cutting plane algorithms. Comb. Optim. Papers DIMACS Special
Year 20, 111 (1995)

	 9.	 Costa, A.M.: A survey on benders decomposition applied to fixed-charge network design problems. Com-
put. Oper. Res. 32(6), 1429–1450 (2005). https://​doi.​org/​10.​1016/j.​cor.​2003.​11.​012

	10.	 Zhao, Y., Larsson, T., Rönnberg, E., Pardalos, P.M.: The fixed charge transportation problem: a strong
formulation based on lagrangian decomposition and column generation. J. Glob. Optim. 72(3), 517–
538 (2018). https://​doi.​org/​10.​1007/​s10898-​018-​0661-y

	11.	 Sáez Aguado, J.: Fixed charge transportation problems: a new heuristic approach based on lagrangean
relaxation and the solving of core problems. Ann. Oper. Res. 172(1), 45–69 (2009). https://​doi.​org/​10.​
1007/​s10479-​008-​0483-2

	12.	 Vanderbeck, F., Savelsbergh, M.W.: A generic view of Dantzig–Wolfe decomposition in mixed integer
programming. Oper. Res. Lett. 34(3), 296–306 (2006). https://​doi.​org/​10.​1016/j.​orl.​2005.​05.​009

	13.	 Kim, D., Pardalos, P.M.: A solution approach to the fixed charge network flow problem using a
dynamic slope scaling procedure. Oper. Res. Lett. 24(4), 195–203 (1999). https://​doi.​org/​10.​1016/​
S0167-​6377(99)​00004-8

	14.	 Nahapetyan, A., Pardalos, P.M.: A bilinear relaxation based algorithm for concave piecewise linear net-
work flow problems. J. Ind. Manag. Optim. 3(1), 71 (2007). https://​doi.​org/​10.​3934/​jimo.​2007.3.​71

	15.	 Rebennack, S., Nahapetyan, A., Pardalos, P.M.: Bilinear modeling solution approach for fixed charge
network flow problems. Optim. Lett. 3(3), 347–355 (2009). https://​doi.​org/​10.​1007/​s11590-​009-​0114-0

	16.	 Adlakha, V., Kowalski, K.: A simple heuristic for solving small fixed-charge transportation problems.
Omega 31(3), 205–211 (2003). https://​doi.​org/​10.​1016/​S0305-​0483(03)​00025-2

	17.	 Kim, D., Pan, X., Pardalos, P.M.: An enhanced dynamic slope scaling procedure with tabu scheme for
fixed charge network flow problems. Comput. Econ. 27(2), 273–293 (2006). https://​doi.​org/​10.​1007/​
s10614-​006-​9028-4

	18.	 Nahapetyan, A., Pardalos, P.: Adaptive dynamic cost updating procedure for solving fixed charge
network flow problems. Comput. Optim. Appl. 39(1), 37–50 (2008). https://​doi.​org/​10.​1007/​
s10589-​007-​9060-x

	19.	 Nie, Z., Wang, S.: A dynamic method to solve the fixed charge network flow problem. IFAC-PapersOn-
Line 53(2), 11231–11236 (2020). https://​doi.​org/​10.​1016/j.​ifacol.​2020.​12.​344

	20.	 Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive approximation. Math.
Oper. Res. 15(3), 430–466 (1990). https://​doi.​org/​10.​1287/​moor.​15.3.​430

https://doi.org/10.1007/s00521-017-3027-3
https://doi.org/10.1016/j.cie.2014.05.026
https://doi.org/10.1016/j.endm.2017.03.019
https://doi.org/10.1016/j.endm.2017.03.019
https://doi.org/10.1002/net.20383
https://doi.org/10.1016/j.watres.2021.117390
https://doi.org/10.1002/nav.3800150306
https://doi.org/10.1016/j.cor.2003.11.012
https://doi.org/10.1007/s10898-018-0661-y
https://doi.org/10.1007/s10479-008-0483-2
https://doi.org/10.1007/s10479-008-0483-2
https://doi.org/10.1016/j.orl.2005.05.009
https://doi.org/10.1016/S0167-6377(99)00004-8
https://doi.org/10.1016/S0167-6377(99)00004-8
https://doi.org/10.3934/jimo.2007.3.71
https://doi.org/10.1007/s11590-009-0114-0
https://doi.org/10.1016/S0305-0483(03)00025-2
https://doi.org/10.1007/s10614-006-9028-4
https://doi.org/10.1007/s10614-006-9028-4
https://doi.org/10.1007/s10589-007-9060-x
https://doi.org/10.1007/s10589-007-9060-x
https://doi.org/10.1016/j.ifacol.2020.12.344
https://doi.org/10.1287/moor.15.3.430

1149

1 3

A sequential reduction algorithm for the large‑scale…

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	A sequential reduction algorithm for the large-scale fixed-charge network flow problems
	Abstract
	1 Introduction
	2 Related work
	3 Algorithm
	3.1 Adaptive dynamic slope scaling procedure
	3.2 Algorithm convergence and time complexity

	4 Numerical experiment
	4.1 Data
	4.2 Hyperparameters and deleting rule in ADSSP
	4.3 Simulation on instances with different scale
	4.3.1 Small-scale instances
	4.3.2 Large-scale instances

	4.4 Simulation on instances with different combinatoriality

	5 Conclusion
	Acknowledgments
	References

