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Abstract
The fixed-charge network flow problem (FCNFP) is widely used in industrial pro-
duction and can be exactly solved by converting to mixed-integer linear program-
ming (MILP). However, the long solving time of MILP solvers limits their applica-
bility to large-scale problems. This paper proposes a sequential reduction algorithm 
called adaptive dynamic slope scaling procedure (ADSSP). ADSSP introduces an 
adaptive edge deletion strategy to improve solution quality and efficiency. Theo-
retical analysis proves the algorithm convergence and provides the best-case and 
worst-case time upper bounds of ADSSP. Numerical experiments show that ADSSP 
outperforms the previous linear programming-based iterative algorithms on differ-
ent scales. In instances with hundreds of thousands of variables, ADSSP achieves 
a 2% improvement in the objective and takes only 3% solving time compared to the 
Cplex MILP Solver. The results demonstrate that ADSSP can significantly improve 
the solution quality with high efficiency for large-scale FCNFP. As a widely applica-
ble optimization method, ADSSP can be a valuable tool for optimizing FCNFP and 
other similar problems.

Keywords  Fixed-charge network flow · Heuristic algorithm · Edge deletion · 
Transportation problem

1  Introduction

The fixed-charge network flow problem (FCNFP) appears widely in the field of net-
work optimization, in areas such as transportation science [1–4], integrated schedul-
ing of production [5] and sources supply networks [6]. FCNFP is a subtype of the 
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fixed cost linear programming problem, a nondeterministic polynomial-time hard 
(NP-hard) problem, introduced in [7].

Let G = (V ,E) be a directed graph with n nodes and m edges, where V is the set 
of nodes and E is the set of edges. Each node i ∈ V  is associated with a supply bi . 
Each edge e ∈ E is associated with a flow xe , a capacity ue , a unit cost ce , and a fixed 
cost se . The cost function Ce(xe) of edge e is discontinuous and can be expressed as:

Let x = (x1, x2,… , xm) be the vector of flow, u = (u1, u2,… , um) be the vector of 
capacity, A be the node-edge incidence matrix of G, and b = (b1, b2,… , bn) be the 
node supply vector. The FCNFP can be formulated as the following problem:

where x, u ∈ ℝm, b ∈ ℝn, and A ∈ ℝn×m.
The algorithms for solving FCNFP mainly include integer programming algo-

rithms, linear programming-based (LP-based) iterative algorithms, and meta-heu-
ristic algorithms. FCNFP can be formulated as a mixed-integer linear program-
ming (MILP) problem by adding a 0–1 integer variable for each edge to indicate 
whether the flow is greater than zero. MILP can be directly solved by algorithms 
based on techniques such as cutting plane [8], Benders decomposition [9], column 
generation [10], lagrangian relaxation [11], and Dantzig-Wolfe decomposition [12]. 
LP-based iterative algorithms can quickly find suboptimal solutions by approximat-
ing discontinuous cost functions using (piecewise) linear functions [13–15]. Meta-
heuristic algorithms, such as genetic algorithms [16] and population algorithms [1], 
are also used to solve FCNFP. While MILP is exact, its solving time can be uncer-
tain or computationally infeasible, especially on large-scale problems. In addition, 
meta-heuristic algorithms lack theoretical guarantees of optimality and efficiency, 
and their long solving time makes them impractical for use in industrial production. 
Despite the advantages in efficiency for problem-solving, the performance of LP-
based iterative algorithms still requires improvement.

This paper presents a novel algorithm called adaptive dynamic slope scaling 
procedure (ADSSP) for solving the fixed-charge network flow problem. ADSSP 
improves upon existing LP-based iterative algorithms by incorporating the dynamic 
slope scaling procedure (DSSP) and an edge deletion strategy. DSSP can explore the 
feasible domain by iteratively adjusting the slope scaling factors to guide the search 
toward promising solutions. The edge deletion strategy can reduce the interference 
of fixed cost from invalid edges on DSSP by eliminating the edges with zero flow. 
The alternating iteration framework of DSSP and edge deletion sequentially reduce 

(1)Ce(xe) =

{
0 xe = 0

se + cexe xe ∈ (0, ue]

(2)

min
x

C(x) =
∑

e∈E

Ce(xe)

s.t. Ax = b

0 ⩽ x ⩽ u
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the feasible domain of FCNFP, enabling ADSSP to converge efficiently to a good 
solution. Through extensive experiments on large-scale instances, we demonstrate 
that ADSSP outperforms previous LP-based iterative algorithms and the commer-
cial solver Cplex in both solution quality and computational efficiency. Our research 
contributes to the development of more effective and scalable optimization methods 
for real-world problems.

The remainder of this paper is organized as follows. Section 2 lists related work on 
LP-based iterative algorithms. Section 3 outlines the details of the proposed ADSSP 
algorithm, while Sect.  4 describes and discusses simulation results. This study con-
cludes in Sect. 5 with a summary of the results.

2 � Related work

The development of LP-based iterative algorithms for the FCNFP can be roughly 
divided into three stages. The first LP-based iterative framework for solving FCNFP 
called DSSP was proposed in [13]. This pioneering approach approximates the 
FCNFP as a series of linear programming problems. The linear objective through 
the origin allows the approximate problems to be solved quickly. Based on the 
DSSP framework, the meta-heuristic technique called Tabu Scheme was explored 
to produce promising search neighborhoods for high-quality solutions by iteratively 
adjusting the linear factors [17]. However, the lack of descent and convergence guar-
antee makes the solving time of DSSP uncertain, and the simple structure of the 
single-layer iterative framework makes it far from the optimal solution.

An approximate model using a piecewise linear function to approximate the 
discontinuous objective of FCNFP was proposed in [14] called the concave piece-
wise linear network flow (CPLNF) model. The complex piecewise linear objec-
tive is closer to the objective of FCNFP than the linear objective, but it also makes 
the CPLNF model hard to solve. That paper transformed the CPLNF model into a 
mixed-integer linear programming model and linearly relaxed the integer variables, 
and proposed an algorithm called the dynamic cost updating procedure to solve. An 
improved algorithm called adaptive dynamic cost updating procedure (ADCUP) 
dynamically modified the objective of CPLNF to approach the original objective 
function in iterations [18].

The complex objective function challenges the efficiency of problem-solving. 
The objective function of CPLNF can be simplified to a new approximate model 
called the continuous bilinear network flow (CBLNF), which can also be solved by 
ADCUP [15]. On this basis, ADCUP can be modified by transferring the two-layer 
iteration into a single-layer iteration to improve the efficiency, which is introduced 
in an algorithm called the dynamic problem updating procedure (DPUP) [19]. How-
ever, these algorithms yield solutions that might be far from optimal, with objectives 
up to ten percent larger than the optimal one.
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3 � Algorithm

3.1 � Adaptive dynamic slope scaling procedure

This section introduces the heuristic algorithm ADSSP, an iterative framework com-
bining an edge deletion strategy with DSSP. The edge deletion strategy aims to delete 
the edges unlikely to appear in the optimal solution, which improves the solution 
optimality and decreases the problem scale for the next iteration. Therefore, ADSSP 
can quickly find a good solution by solving FCNFP on sequentially reduced feasible 
domains. Fig. 1 displays the whole solving process of ADSSP. The initialized graph, 
G(0)(V ,E(0)) , generates an initial FCNFP to trig the solving process of ADSSP. In each 
iteration, DSSP solves the FCNFP induced by the current graph, G(k)(V ,E(k)) , to pro-
vide the solution {x(k)

e
} . Based on the selected deletable edge set ΔE(k)

D
 generated from 

{x(k)
e
} , edge deletion can update E(k) by deleting edges in ΔE(k)

D
 . This iteration terminates 

when the generated ΔE(k)

D
 is empty.

DSSP approximates FCNFP by a series of linear programming problems, where 
each edge’s cost is redefined as a linear cost through the origin. The slope can be 
expressed as:

where xe > 0 is a given flow of edge e. An optional initialization of the slope is 
c̄(0)
e

= ce + se∕ue . The dynamic slope update formula is

 DSSP stops when the solution in current iteration satisfies x(k−1)
e

= x(k)
e

 for all edge e. 
Because the stopping criterion lacks the guarantee of finite-step termination, a maxi-
mum number of iterations is set to avoid excessively long solving time, denoted as 
Md . For accelerating the computation, we apply an efficient algorithm [20] to solve 

(3)c̄e = ce + se∕xe

(4)c̄(k+1)
e

=

{
max
1≤l≤k

{c̄(l)
e
∶ x(l)

e
> 0} x(k)

e
= 0

ce + se∕x
(k)
e

x(k)
e

> 0

Fig. 1   The flowchart of ADSSP
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the minimum-cost flow problem in DSSP. The detail of DSSP is shown in Algo-
rithm 1, where MCF

(
c̄(k)
e

)
 represents the solution of a minimum-cost flow problem. 

In the k-th iteration, the set of deletable edges is defined as 
ΔE(k) = {e ∈ E(k) se > 0, x(k)

e
= 0} , where x(k)

e
 is obtained from the solution of 

DSSP. Since DSSP is not an exact algorithm, deleting all edges in ΔE(k) may 
cause the algorithm to converge to a poor solution. An alternative approach is to 
delete a certain ratio of edges from ΔE(k) . The selection on the deleting edges in 
ΔE(k) relies on the value �e calculated as follows.

•	 TYPE 1: Randomly select a proportion of edges from ΔE(k) to delete.
•	 TYPE 2: Delete the edges with large fixed costs, that is �e = se.
•	 TYPE 3: Delete the edges with large values �e = ce + se∕ue.
•	 TYPE 4: Delete the edges with large values �e = ce + se.

Among these four optional calculations, the first type is not affected by the costs 
on edges, which can be applied to any graph structure. The second type prior-
itizes the removal of the zero-flow edges with higher fixed costs. However, it is 
ineffective when the unit cost is significantly larger than the fixed cost. The third 
and fourth types rely on the average cost on edges with maximum flow and unit 
flow, respectively, which are more versatile than the previous two. The set of 
deleted edges is denoted as ΔE(k)

D
 , which can be expressed as

where � is the deleting ratio and Q1−�(�) is the (1 − �) quantile of the set 
{�e ∶ e ∈ ΔE} . After updating the edge set by E(k+1) = E(k) − ΔE

(k)

D
 , the subproblem 

on the graph G(k+1)(V ,E(k+1)) is also an FCNFP. The stopping criteria is defined as 
ΔE

(k)

D
= � . Without loss of generality, the number of forced termination steps is set 

to m. The detail of ADSSP is shown in Algorithm 2.

ΔE
(k)

D
= {e ∈ ΔE(k) 𝜙e > Q1−𝛼(�)}
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3.2 � Algorithm convergence and time complexity

DSSP lacks time complexity analysis because its termination condition does not 
provide a definite number of iterations. However, ADSSP sets the iteration upper 
limit of DSSP as Md , which makes Algorithm  2 terminates in a finite number of 
iterations. Thus, theoretical analysis of time complexity is allowed for ADSSP.

Proposition 1  The ADSSP solves the FCNFP in a finite number of iterations. The 
worst-case scenario is that the iteration number is m − 1 , while the best-case sce-
nario is that the iteration number is ⌈log 1

1−�

(m − 1)⌉ + 1 , where m is the number of 
edges in the graph and � is the deleting ratio.

Proof  Assuming that the optimal solution consists of only one edge with the nonzero 
flow in the graph. The worst-case scenario means that only one edge can be deleted 
per iteration, resulting in a total of m − 1 iterations. In the best case, all edges except 
the nonzero flow edge can be deleted in each iteration. The maximum number of 
iterations K satisfies (1 − �)(K−1)(m − 1) = 1 , where � is the proportion of edges to 
be deleted. The upper bound on the number of iterations for ADSSP in the best case 
is K = ⌈log 1

1−�

(m − 1)⌉ + 1 . 	�  ◻

Theorem  1  The time bound of ADSSP is O(nm log(n2) log(nC)Γ(m, �)) , where 
Γ(m, �) = m in the worst case and Γ(m, �) = 1−(1−�)K

�
 in the best case.

Proof  The time bound of O(nm log(n2∕m) log(nC)) on a graph with m edges for 
minimum-cost circulation problems is given in [20], which is the time complexity 
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of the function MCF(⋅) in Algorithm 1. Since the other operations in loop is O(m) 
and the number of iteration Md is a constant, the time bound of Algorithm 1 is also 
O(nm log(n2∕m) log(nC)).

The time bound of the function DSSP(⋅) in Algorithm  2 is 
O(nmk log(n

2∕mk) log(nC)) . In the worst case, the time bound of ADSSP is

In the best case, the time bound of ADSSP is1

	�  ◻

4 � Numerical experiment

This section consists of a data illustration and three experiments. First, we introduce 
the construction of the synthetic data and provide the topological information and 
generated distributions of parameters for instances. Second, we give the range of 
choices for algorithm hyperparameters and the selection of the edge-deleting rule 
through comparative experiments. Based on the selected hyperparameters and rule, 
we demonstrate the advantages of ADSSP from two perspectives: problem scale 
and combinatoriality. The combinatoriality of the problem is defined in terms of the 
order of magnitude difference between unit cost and fixed cost.

By solving the following MILP model that is equivalent to FCNFP, the solution 
provides a good benchmark for comparing algorithms.

O

(
m∑

i=2

ni log(n2∕i) log(nC)

)

= O

(
n log(n2) log(nC)

m∑

i=2

i − n log(nC)

m∑

i=2

i log(i)

)

= O
(
nm2 log(n2) log(nC)

)

O

(
K−1∑

i=0

n(1 − �)im log(
n2

(1 − �)im
) log(nC)

)

= O

(
nm log(n2) log(nC)

K−1∑

i=0

(1 − �)i − nm log(nC)

K−1∑

i=0

(i log(1 − �) + logm)(1 − �)i

)

= O

(
nm log(n2) log(nC)

1 − (1 − �)K

�

)1

1  A more accurate upper bound can be obtained by considering the second item, but it is not used here as 
a conclusion since the complicated form.
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Cplex is an advanced commercial solver used for solving MILP, capable of finding 
the optimal solution. However, as the problem scale increase and combinatoriality 
enhance, the solving time of Cplex becomes unpredictable. By setting a time limit 
for solving, Cplex can provide the optimal solution for small-scale problems and 
suboptimal solutions for large-scale problems.

In this paper, numerical experiments are conducted in C++ 17 on a Windows 10 
platform with an Intel Core i7 2.50 GHz processor and 32.0 GB of RAM. The ver-
sion of Cplex MILP Solver is 12.10.0, and the time limit for solving MILP is 3600 s.

4.1 � Data

The experimental instances are constructed on the graph with given parameters, 
including small-scale and large-scale ones. The scale of FCNFP relies on its number 
of nodes and edges. Referring to [19], we set nine scales for small-scale instances 
and four for large-scale instances. The instance with the largest scale in this paper 
contains ten thousand nodes and one million edges. In graph generation, nodes are 
selected randomly from a two-dimensional plane and labeled in order. Each node 
is associated with a supply, the type of which is determined by its relationship with 
zero. Edges are generated between nodes whose distance is smaller than a specified 
threshold. The structure data of the graph are shown in Table 1.

In each instance, we need to generate the supply on nodes, and the capacity, unit 
cost, and fixed cost on edges. The experimental data construction in the related work 
does not specify how these parameters generating. To construct instances more real-
istic, we sample these parameters according to distributions in Table 2. In addition, 
the combinatoriality coefficient � aims to adjust the magnitude difference between 
the unit and fixed cost, making the instances with different combinatoriality. The 
instance feasibility is verified by a minimum-cost flow algorithm by setting the fixed 
cost to zero.

4.2 � Hyperparameters and deleting rule in ADSSP

The hyperparameters Md and � are pre-given in ADSSP. The parameter selec-
tion is guided by comparing the relative error between the optimal value and the 
objective of ADSSP on a grid of parameter values. We choose Md from the set 
{i ∈ ℤ ∶ 1 ≤ i ≤ 30} and select � from the set {0.05 ∗ k ∶ k = 1, 2,… , 20} . The 
experiments are conducted on multiple groups of small-scale instances with strong 
combinatoriality to make the results more illustrative. Figure 2 shows the relative 
errors on gridded parameters. The darker area, i.e., the area with smaller relative 

(5)

min
x,y

CI(x) =
∑

e∈E

cexe + seye

s.t. Ax = b

0 ≤ xe ≤ ueye,∀e ∈ E

ye ∈ {0, 1},∀e ∈ E



1139

1 3

A sequential reduction algorithm for the large‑scale…

error, is mainly concentrated in {(Md, 𝛼) ∶ 0 < Md ⩽ 5;0 < 𝛼 ⩽ 0.5} , which is veri-
fied across these four scales. When Md is set to one, the relative error between the 
objective of ADSSP and the optimal value is more than 10%, which causes the red, 
steep slope in Fig.  2. However, as Md increases, the relative error also increases 

Table 1   The topological 
information of the graph for 
each instance

The values of Source, Intermediate, and Sink are the average number 
of corresponding nodes in each scale, where the supply of source is 
over zero, that of the intermediate node is zero, and that of sink is 
below zero

Node Edge Source Intermediate Sink

Small scales 20 100 1.3 16.9 1.8
60 400 5.2 49.5 5.3

120 1500 7.3 104.5 8.2
150 2500 8.3 132.5 9.1
200 4000 10.6 178.2 11.2
250 7500 9.8 230.1 10.0
300 9000 9.9 279.4 10.7
500 10000 10.4 479.1 10.5

1000 20000 10.6 978.1 11.4
Large scales 6000 250000 91.7 5816.7 91.6

7500 500000 101.4 7296.7 101.9
9000 750000 137.1 8726.1 136.8

10000 1000000 153.6 9693.6 152.8

Table 2   The distributions of 
parameters on the graph

a The supply of node i obeys distribution U(3, 30) when i is a source, 
and obeys distribution U(−30,−3) when i is a sink

   Item Name Illustration

   1 Supplya
b
i
∼ ±U(3, 30)

   2 Capacity u
e
∼ U(3, 30)

   3 Unit cost c
e
∼ U(0, 10) + 1

   4 Fixed cost s
e
∼ � ⋅ U(0, 10) + 1

   5 Combinatoriality 
coefficient

� ∈ {10−4, 10−3,… , 103, 104}

Fig. 2   Relative error between ADSSP and the Cplex MILP Solver under gridded parameters
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relatively. Therefore, a few steps of dynamic slope scaling in ADSSP can improve 
the correctness of edge deletion. Also, the smaller value of � can reduce the impact 
of incorrect judgments in edge deletion on the solution.

The edge deleting rules for ADSSP cannot be directly specified. We compare 
them through necessary experiments on small-scale instances. Regarding the solu-
tion obtained by Cplex as a benchmark, we calculate the relative error between it 
and the solutions of ADSSP with different deleting rules. Table 3 shows the average 
solving time and relative error of ADSSP with different deleting rules on multi-scale 
instances. The relative error is calculated as

where CA is the objective of FCNFP solved by ADSSP and CI is the objective of 
MILP solved by the Cplex MILP Solver. Different edge-deleting rules do not sig-
nificantly affect the efficiency of problem-solving. However, TYPE 2 and 4 help the 
algorithm find better solutions, which indicates that fixed costs have a major impact 
on the effectiveness of edge deletion.

In the following experiments, we set the number of iterations in DSSP as three 
and the deleting ratio as 0.5. The performance of ADSSP under four deleting rules 
shows that TYPE 2 and TYPE 4 are good choices for edge deletion. Considering 
that the TYPE 2 rule can not handle the case when the unit cost is much larger than 
the fixed cost, we apply the TYPE 4 rule on ADSSP to delete edges.

4.3 � Simulation on instances with different scale

This section discusses the simulation results on problems with different scales. 
In small-scale problems, we calculate the relative error between the solutions of 

(6)Relative Error (%) =
C
A
− C

I

C
I

× 100%

Table 3   Performance of ADSSP under four deleting rules for small-scale instances

Bolded the minimal average solving time and minimal average relative error in each line to emphasize 
the advantages of ADSSP

Scale Average solving time (ms) Average relative error (%)

TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 1 TYPE 2 TYPE 3 TYPE 4

(20, 100) 4.80 4.83 4.27 4.50 0.55 0.45 0.52 0.44
(60, 400) 22.77 23.10 24.17 24.3 2.17 1.71 2.17 1.81
(120, 1500) 95.83 99.03 101.3 101.2 2.38 1.83 2.21 1.50
(150, 2500) 155.2 157.5 181.0 175.6 2.55 1.70 2.48 1.91
(200, 4000) 276.3 265.7 296.2 292.8 2.23 1.47 1.88 1.53
(250, 7500) 491.5 489.3 505.0 510.5 1.94 1.58 1.80 1.47
(300, 9000) 600.9 605.1 625.7 604.7 2.01 1.22 1.84 1.19
(500, 10000) 773.5 754.0 802.8 779.7 2.90 1.94 2.84 2.05
(1000, 20000) 1519 1453 1619 1622 2.54 1.99 2.47 2.05
Mean 2.13 1.54 2.02 1.55
Std. 0.64 0.45 0.63 0.48
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ADSSP and Cplex solver and compare it with the previous LP-based iterative algo-
rithms DSSP, ADCUP, and DPUP. In large-scale problems, we compare the perfor-
mance of DSSP, ADSSP, and Cplex to explore the impact of problem combinatori-
ality on ADSSP.

4.3.1 � Small‑scale instances

Small-scale instances are divided into nine groups with the topological informa-
tion listed in Table 1, and each group contains 30 instances. Table 4 indicates that 
Cplex can find the optimal solution or a suboptimal solution with low optimal-
ity gaps2 for the small-scale instance. By regarding the solution of Cplex as the 
benchmark, we compare the relative errors of solutions solved by DSSP, ADCUP, 
DPUP, and ADSSP. Table  5 shows the results of the algorithms on small-scale 
problems, with the minimum value of indicators highlighted in bold. The first 
column states the problem scale of this group. The second to fifth columns list 
the average solving times for the four algorithms. The sixth to ninth columns list 
the average relative error between the benchmark and the solutions of these four 
algorithms.

The results indicate that ADSSP far exceeds other LP-based iterative algorithms 
in performance and stability. For small-scale problems, the average solving time of 
ADSSP can be less than 1.7 s, and the average relative error of the objective can be 
controlled within 2%. Although the solving time of ADSSP is slightly longer than 
DSSP in the instances where the number of edges is less than 1000, ADSSP finds a 
better solution through the edge deletion strategy. However, judging from optimality 
alone, the solution of ADSSP cannot reach the optimal solution. ADSSP can find a 

Table 4   Performance of Cplex 
on small-scale instances

*The column Solving Time shows the average solving time and the 
standard deviation. The column Success shows the counting number 
of instances that Cplex has found its optimum on 30 instances. The 
column Optimality Gap shows the average optimality gap and its 
standard deviation

Scale Solving time (s) Success Optimality gap (%)

(20, 100) 0.012 (0.01) 30/30 0.00 (0.00)
(60, 400) 0.331 (0.75) 30/30 0.00 (0.00)
(120, 1500) 426.362 (1073.15) 27/30 0.04 (0.00)
(150, 2500) 1079.326 (1484.90) 23/30 0.15 (0.00)
(200, 4000) 2302.578 (1707.13) 11/30 0.31 (0.00)
(250, 7500) 2441.885 (1638.82) 10/30 0.41 (0.00)
(300, 9000) 2517.281 (1551.13) 10/30 0.43 (0.00)
(500, 10000) 2626.966 (1430.04) 10/30 0.70 (0.01)
(1000, 20000) Limit 0/30 1.29 (0.01)

2  The introduction and calculation of Optimality Gap was shown on IBM website that https://​www.​ibm.​
com/​docs/​en/​icos/​12.9.​0?​topic=​mip-​progr​ess-​repor​ts-​inter​preti​ng-​node-​log.

https://www.ibm.com/docs/en/icos/12.9.0?topic=mip-progress-reports-interpreting-node-log
https://www.ibm.com/docs/en/icos/12.9.0?topic=mip-progress-reports-interpreting-node-log


1142	 L. Yang, Z. Yang 

1 3

solution within 2% relative error on average in less than 1.7 s, while the Cplex MILP 
Solver takes much longer, even reaching the time limit.

The complexity of FCNFP is related to the number of variables and constraints. 
Using the total number of nodes and edges as the problem scale, Fig. 3 shows the 
trend of solving time with the problem scale. The solving time of ADSSP is not 
only significantly smaller than that of the other three algorithms, but the slope of 

Table 5   Performance of DSSP, ADCUP, DPUP, and ADSSP on small-scale instances

Bolded the minimal average solving time and minimal average relative error in each line to emphasize 
the advantages of ADSSP
a The solving time is reported with four significant digits

Scale Average solving timea (seconds) Average relative error (%)

DSSP ADCUP DPUP ADSSP DSSP ADCUP DPUP ADSSP

(20, 100) 0.002 0.051 0.004 0.005 1.19 5.50 3.38 0.44
(60, 400) 0.016 0.294 0.028 0.024 2.54 10.22 5.68 1.81
(120, 1500) 0.159 2.118 0.190 0.101 4.03 12.52 5.89 1.50
(150, 2500) 0.333 4.691 0.422 0.176 3.50 13.89 6.65 1.91
(200, 4000) 0.643 11.13 1.048 0.293 3.47 14.16 7.22 1.53
(250, 7500) 1.623 27.97 3.092 0.511 3.95 15.17 7.98 1.47
(300, 9000) 2.478 30.91 3.821 0.605 3.30 14.41 7.45 1.19
(500, 10000) 2.241 67.02 6.956 0.780 4.73 19.07 9.03 2.05
(1000, 20000) 5.123 287.5 30.88 1.622 5.75 21.30 9.55 2.05
Mean 3.61 14.03 6.98 1.55
Std. 1.21 4.34 1.77 0.48

Fig. 3   Scatter plot of solving time and fitting line of problem scale. The solving time of each algorithm is 
from Table 5. The problem scale is equal to the total number of nodes and edges. To facilitate the display 
and comparison of algorithms, the solving time and problem scale are logarithmic
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the fitting line is also noticeably narrower than the others. ADSSP outperforms the 
currently available LP-based iterative algorithms in terms of both the solution qual-
ity and the solving efficiency. The better result with less solving time indicates that 
ADSSP is more advantageous in solving large-scale problems.

4.3.2 � Large‑scale instances

We construct four groups of instances on large scales, and the number of nodes and 
edges are (6000, 250000), (7500, 500000), (9000, 750000), and (10000, 1000000). 
Each group includes nine classes with different combinatoriality coefficients, and 
each class contains ten instances. We compare the performance of DSSP, ADSSP, 
and Cplex in these instances. Table 6 shows the optimality gap of Cplex with var-
ying scales and combinatoriality coefficients, which increases with respect to the 
combinatoriality coefficient. Table  7 shows the relative error calculated by Eq. 
(6). Regarding the solution of Cplex as the benchmark, the relative error of DSSP 
on average is greater than zero, increasing with � . On the other hand, the relative 
error of ADSSP on average is less than zero with a decreasing trend as � increases. 
Table 8 shows the solving time of DSSP, ADSSP, and Cplex on the instances. The 
solving time of FCNFP significantly increases with the increasing magnitude of � . In 
Table 8, ADSSP shows the slowest growth trend in solving time, with a maximum 
value of 91.6 s in large-scale instances, which is significantly smaller than Cplex and 
only one-tenth of DSSP.   

ADSSP outperforms the Cplex MILP Solver when the problem scale reaches 
at least 250,000, finding a better solution faster with a relative error that decreases 
by 2%, while DSSP performs vastly worse than Cplex. Also, the solving time of 
ADSSP in large-scale instances is further short than DSSP and Cplex, and it is less 
affected by the combinatoriality of the problem. The results demonstrate that the 
edge deletion strategy brings a breakthrough improvement in the effectiveness and 

Table 6   Optimality gap of Cplex on large-scale instances

a There is an instance in this group that Cplex has not solved out, which is not included in the calculation 
of the metrics

� Average Optimality Gap (%)

(6000, 250000) (7500, 500000) (9000, 750000) (10000, 1000000)

10−4 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

10−3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

10−2 0.06 (0.00) 0.07 (0.00) 0.05 (0.02) 0.04 (0.02)
0.1 0.51 (0.06) 0.66 (0.13) 0.55 (0.21) 0.57 (0.18)
1 4.33 (0.48) 4.85 (1.25) 3.87 (1.22) 3.20 (0.97)
10 12.21 (0.98) 12.02 (1.35) 11.11 (2.40) 9.05 (1.91)
102 19.93 (2.25) 17.20 (1.10) 16.58 (3.92) 14.50 (2.46)

103 23.54 (2.50) 24.12a (2.79) 21.52 (4.37) 17.79 (3.66)

104 24.08 (2.60) 25.03 (2.77) 20.05 (4.08) 19.95 (4.23)
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efficiency of problem-solving in the large-scale FCNFP. This strategy helps ADSSP 
quickly find better solutions than the commercial solver in a short time. Therefore, 
ADSSP is a practical and effective algorithm for solving large-scale FCNFP.

4.4 � Simulation on instances with different combinatoriality

The impact of combinatoriality on the solution of ADSSP is evident. Table 7 clearly 
shows a noticeable difference in relative errors between groups with different � . Fig-
ure 4 illustrates that ADSSP performs similarly to the Cplex MILP Solver for weakly 
combinatorial problems while finding better solutions than the Cplex MILP Solver 
for strongly combinatorial problems. The relative error of the objectives decreases 
as the combinatoriality enhances.

Table 8 does not reveal a clear relationship between the combinatoriality coef-
ficient and the solving time. To shed light on the impact of combinatoriality on the 
solving process of ADSSP, Table 9 provides the iterative number in Algorithm 2 for 
different values of � , with the best-case iterative number as a reference mentioned in 
Proposition 1. The findings indicate that the combinatoriality coefficient has a effect 
on the iterative number, as the difference between the average iterative number and 
the theoretical best case increases with � . Although this suggests that combinatorial-
ity will lengthen the solving time, the increase is slight. When the unit cost is much 
higher than the fixed cost, the iterative number for all instances equals the best-case 
scenario. Even when the fixed cost is significantly greater than the unit cost, the 
iterative process of ADSSP only requires an additional iteration for solving FCNFP. 
Overall, the experimental results demonstrate that ADSSP typically solves FCNFP 
in a best-case or near-best-case iterative process.

Table 7   Performance of DSSP and ADSSP on large-scale instances

� Relative Error to CPLEX on varying scales (%)

(6000, 250000) (7500, 500000) (9000, 750000) (10000, 1000000)

DSSP ADSSP DSSP ADSSP DSSP ADSSP DSSP ADSSP

10−4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10−3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10−2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.1 0.07 0.00 0.13 0.02 0.06 −0.03 0.10 0.01
1 3.18 −1.09 6.70 −0.47 4.29 −0.86 2.66 −0.86
10 10.89 −3.07 32.02 −1.38 18.07 −2.95 10.85 −3.14
102 32.09 −5.16 51.78 −2.87 42.74 −5.08 32.13 −4.62

103 45.45 −4.89 76.69 −4.24 62.88 −6.58 44.46 −5.99

104 46.17 −3.99 76.70 −5.57 56.77 −6.39 48.23 −7.27
Min 0.00 −11.11 −0.03 −11.18 0.00 −11.40 0.00 −10.49
Mean 15.32 −2.02 26.56 −1.58 20.53 −2.43 15.38 −2.43
Max 65.73 0.27 103.37 4.89 108.93 0.04 114.89 0.13
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5 � Conclusion

The FCNFP has a wide range of applications in real-world scenarios. Although 
FCNFP can be transformed into an integer programming problem and solved by 
commercial solvers, finding the exact solution in a finite time or a sufficiently 
good suboptimal solution in a short time is challenging, especially for problems 
with large scales or strong combinatoriality. This paper proposes an LP-based 
iterative algorithm called ADSSP to reduce the scale of the subproblem in iter-
ations by deleting edges to converge quickly to a suboptimal solution. ADSSP 
outperforms the commercial solver Cplex on large-scale problems and achieves 
a controllable relative error with the optimal solution on small-scale problems. 
Furthermore, this paper analyzes the convergence and time complexity of ADSSP 
from theoretical and experimental perspectives. Finally, the hyperparameter 
selection experiments guide the optimal selection interval for the parameters, 
allowing the algorithm to be better employed.
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