
Vol.:(0123456789)

Optimization Letters (2023) 17:1533–1549
https://doi.org/10.1007/s11590-023-02001-z

1 3

ORIGINAL PAPER

On linear algebraic algorithms for the subgraph matching
problem and its variants

Maxim D. Emelin1 · Ilya A. Khlystov2 · Dmitry S. Malyshev3 ·
Olga O. Razvenskaya4

Received: 11 January 2023 / Accepted: 27 March 2023 / Published online: 9 April 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
For a given simple data graph G and a simple query graph H, the subgraph match-
ing problem is to find all the subgraphs of G, each isomorphic to H. There are many
combinatorial algorithms for it and its counting version, which are predominantly
based on backtracking with several pruning techniques. Much less is known about
linear algebraic (LA, for short), i.e., adjacency matrix algebra, algorithms for this
problem. Revisiting old ideas of J. Nešetřil and S. Poljak, which reduce the gen-
eral case to the case of clique-queries, and updating them, we present the first LA
algorithm for the subgraph matching/counting problem. For the k-clique matching/
counting problem, we present static and dynamic LA algorithms, which may be of
independent interest. For the k-clique counting problem, we also provide results
of computational experiments of our solver with some large graphs and several k,
which speed up results of several recent solvers for it.

Keywords  Subgraph matching/counting problem · k-clique matching/counting
problem · Linear algebraic algorithm

1  Introduction

All graphs, considered in this paper, are looples, without multiple edges, non-ori-
ented or partially oriented graphs. Graphs of the first type are called simple, and
second-type graphs are called mixed.

Let G and H be simple graphs. For the pair (G, H), the subgraph matching prob-
lem, briefly called the SM problem, is to find all the subgraphs of G, each of which
is isomorphic to H. The subgraph counting problem for (G, H) is to determine the
quantity of these subgraphs. Sometimes, G is called a data graph and H is called a
query graph.

 *	 Dmitry S. Malyshev
	 dsmalyshev@rambler.ru

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-023-02001-z&domain=pdf

1534	 M. D. Emelin et al.

1 3

The SM problem and its counting variant are fundamental with numerous appli-
cations in network science, including social network analysis and bioinformatics. In
protein research, the physical contacts between proteins in the cell are represented
as a network, and this protein-protein interaction network (PPIN) helps to develop
new drugs. Large PPINs may contain millions of interactions, while they usually
contain repeated local structures. Finding and counting these subgraphs is essential
to compare different PPINs. In social network analysis, graph sizes could even reach
trillion of edges, where a subgraph could be a group of users, sharing specific inter-
ests. Studying these groups improves the design of social networks and searching
algorithms in them.

Triangles (or 3-cliques) and, more generally, k-cliques, i.e., sets of k pairwise
adjacent vertices, are important types of subgraphs, arising in applications and being
basic structures for matching/counting more complex fragments. For example, tri-
angles counting is used in computing the local clustering coefficient, which is an
important measure of the ability for nodes to form clusters [37].

All the algorithms for the SM problem can be classified by the execution model
and the type of data graphs reading. Sequential algorithms run on a single process-
ing machine only, but parallel algorithms can be executed on multiple simultane-
ously working processors. A full computational (or static) algorithm is an algorithm,
where the data graph is explicitly given at once. In incremental algorithms, the
data graph is accumulated by arriving its previously unknown simple parts, called
batches. In fully dynamic algorithms, the vertex set is fixed and edges can be both
added and deleted. In batch-dynamic algorithms, the set of vertices is not fixed, but
batch updates can be both for insertions and deletions of edges.

There are several full computational sequential and parallel algorithms for match-
ing/counting cliques [8, 12, 16, 19, 23, 24, 29–31, 33, 36]. For some other types of
queries, like small-size subgraphs, paths, cycles and etc., efficient full computational
sequential and parallel algorithms have also been developed, see [1, 3, 7, 9, 13, 22,
32, 35]. There are several efficient algorithms, see [4, 10, 11, 14, 15, 20, 27], for
dynamically given data graphs and some types of queries.

In many applications of the SM problem, the sizes of data graphs are huge.
Therefore, the use of parallel rather than sequential computations is the only way to
obtain a result in reasonable time. Using the linear algebraic (briefly, LA) approach,
i.e., the only matrix–vector instructions, is a natural choice to organize parallelism
efficiently. Indeed, LA algorithms can be easily implemented, parallelized and have
a small loss of performance under their scalability.

Only a few LA algorithms for the SM problem are known. For all the 4-vertex
queries but the 4-clique, full computational LA algorithms have been developed in
[18]. Exploiting the idea of color coding from [2], a full computational LA algo-
rithm was proposed in the paper [6], when H is a tree. Apparently, according to
ideas from [5], the approach from [6] can be extended to queries with tree-width at
most 2.

The old paper [30] by J. Nešetřil and S. Poljak contains a reduction of the SM
problem to its subproblem, where the only clique-queries are considered. This
reduction is completely combinatorial. It has two drawbacks. The first of them is the
absence of a bijection between solutions of the original and reduced SM problem.

1535

1 3

On linear algebraic algorithms for the subgraph matching problem…

The second one is memory overflow, because of the simultaneous use of the data
graph and its complement graph. In this paper, we present the first LA version of the
Nešetřil-Poljak’s reduction, correcting these drawbacks.

Additionally, the paper [30] also presents a full computational algorithm for
matching/counting k-cliques, which is almost completely combinatorial, except that
it uses the fast matrix multiplication to match/count triangles in some graphs. In
this article, we give a completely LA full computational version of their algorithm.
Moreover, for matching/counting k-cliques, we present another full computational
LA algorithm and an incremental LA algorithm, which have several handles for
tuning their performance. For the k-clique counting problem, we provide results of
computational experiments of our full computational solver for some large graphs
and several k, which speed up results of several recent solvers for it.

2 � Some definitions and notations

As usual, for sets A and B, by A ∩ B,A ∪ B,A − B,A × B , we denote their intersec-
tion, union, difference, Cartesian product, respectively. For any set A, the cardinality
of A is denoted by |A|. For any natural n, the notation [n] means the set {1, 2,… , n}.

In this paper, we consider real-valued matrices only. For matrices A and B of the
corresponding sizes, by

we denote their sum, the (usual) product, Kronecker product, Hadamard prod-
uct, respectively. If A and B are binary matrices of the corresponding sizes, then
A ∨ B,A|B,A ∙ B mean the sum, difference, and product over the logical semiring,
i.e., we have

Let A be a matrix, subsets I and J be some sets of its rows and columns. By AT , we
denote the transposed matrix of A . The notation A[I][J] means the submatrix of A
with rows from I and columns from J. If I coincides with the set of all the rows or J
coincides with the set of all the columns, then we write I =∗ or J =∗ , respectively.
By In, 0n , and 1n , we denote the identity, all-zeroes matrices, and all-ones vector of
the order n, respectively. By SUM(A) , we denote the sum of all the elements of A .
This sum for n × m matrices A can be computed as the product (1n)T ⋅ A ⋅ 1m . For n-
ary vector v , by nnz(v) , we denote the set {i ∶ v[i] ≠ 0}.

For a (simple or mixed) graph G, by V(G) and E(G), we denote its vertex set
{v1,… , vn} and edge set {e1,… , em} , respectively. By AG , we denote the adja-
cency matrix of G, i.e., the Boolean n × n matrix, such that, for any i, j ∈ [n] , its
ij-th element is equal to one iff (vi, vj) ∈ E(G) . Assuming that G is simple, by IG ,
we denote its incidence matrix, i.e., the n × m Boolean matrix, in which, for any
i ∈ [n], j ∈ [m] , the ij-th element is one iff vi is incident to ej.

A + B,A ⋅ B,A⊗ B,A◦B

(A ∨ B)ij = (A)ij ∨ (B)ij, (A|B)ij = (A)ij|(B)ij, (A ∙ B)ij =
⋁

k

((A)ik ∧ (B)kj).

1536	 M. D. Emelin et al.

1 3

For v, u ∈ V(G) , by dG(v, u) we denote the distance between v and u. If G is con-
nected, then diam(G) denotes the diameter of G, i.e. max

v,u∈V(G)
dG(v, u) . For a vertex v

of a oriented graph G, the left and right neighborhoods of v, denoted by Nl(v) and
Nr(v) , respectively, are defined as follows:

For a vertex v of a simple graph G, the open and closed neighborhoods of v, denoted
by N(v) and N[v], respectively, are defined as follows:

Suppose that G is simple. By G , we denote the complement graph of G. For any
V � ⊆ V(G) , by G⧵V ′ we denote the resultant graph after deletion of all the vertices
from V ′ with their incident edges.

By Aut(G) and Orbits(G), we denote the automorphism group of G and the set of all
its orbits, respectively. Recall that a permutation � on V(G) is an automorphism of G iff

The orbit, generated by a vertex v ∈ V(G) , is defined as the set

The set orbits gives a disjunctive partition of V(G). By Sym(n) and
Sym(n1) ×… × Sym(nl) , we denote the symmetric group over n elements and the
direct product of symmetric groups over n1,… , nl elements, respectively.

3 � A linear algebraic version of the Nešetřil‑Poljak’s reduction

For given a simple data graph G and a simple query graph H, it is proposed in [30]
to deal with a special graph F, such that all the entries of H into G correspond to
k-cliques of F, where k = |V(H)| and n = |V(G)| . In other words, it reduces the gen-
eral case to the case of clique-queries. More precisely, the graph F is defined as a
graph on the vertex set V(G) × V(H) , having the edge set

The set {(g1, h1),… , (gk, hk)} is a k-clique in F iff G has an entry of H on the vertex
set {g1,… , gk} with the set of edges, formed by the rule

Unfortunately, the algorithm from [30] could match entries of H into G with multi-
plicities, i.e., distinct k-cliques of F may correspond to the same containment, due to
automorphisms of H. Moreover, it involves simultaneous working with G and G , at
least one of them is not sparse. This section is aimed to present the first LA version

Nl(v) = {u ∈ V(G) ∶ (u, v) ∈ E(G)},Nr(v) = {u ∈ V(G) ∶ (v, u) ∈ E(G)}.

N(v) = {u ∈ V(G) ∶ {v, u} ∈ E(G)},N[v] = N(v) ∪ {v}.

∀{v, u} ∈ E(G) ⟷ {�(v),�(u)} ∈ E(G).

{u ∶ ∃� ∈ Aut(G),�(v) = u}.

{{(g1, h1), (g2, h2)} ∶ {h1, h2} ∈ E(H) ∨ ({g1, g2} ∈ E(G) ∧ {h1, h2} ∈ E(H))}.

{gi, gj} is an edge iff {hi, hj} ∈ E(H).

1537

1 3

On linear algebraic algorithms for the subgraph matching problem…

of the Nešetřil-Poljak’s reduction, which completely avoids the mentioned multiplic-
ities and avoids in part a possible memory overflow.

It is known that, for any graphs G1 and G2 , possibly mixed, AG1
⊗ AG2

 is the adja-
cency matrix of the graph

Hence, to obtain F, one may use the formula

Indeed, AG ⊗ AH ,AG ⊗ A
H
,A

G
⊗ A

H
 correspond to the conformity of edges of H

to edges of G, non-edges of H to edges of G, non-edges of H to non-edges of G,
respectively.

To avoid repetitions, according to automorphisms of H, i.e., to produce a bijection
between all the k-cliques of F and all the entries of H into G, we will use special orienta-
tions for E(G) and for some parts of E(H) and E(H) . Firstly, we arbitrarily acyclically ori-
ent all the edges of G and G , for example, by numbering vertices of G with numbers in [n]
and orienting each edge from the smallest number to the biggest number. Further, we iden-
tify vertices and their numbers. The resultant graphs are denoted by ��⃗G and ��⃗G , respectively.

Next, we will work with the automorphism groups of H and some its induced sub-
graphs. There are several combinatorial algorithms for computing the automorphism
group of a given graph, see, for example, the papers [26, 28, 34] and references therein.
When H is small, one can simply split V(H) into subsets V1,… ,Vl of vertices of the
same degrees d1,… , dl and put ni = |Vi| , for any i ∈ [l] . Then,

and we enumerate all the l-tuples � = (�1,… ,�l) , where �i is a permutation of Vi ,
and check whether � is an automorphism of H by verifying whether

To find Orbits(H), we enumerate all the vertices of H and find sets of vertices, to
which vertices of H are transferred by permutations from Aut(H). Finally, we apply
the following combinatorial algorithm:

(V(G1) × V(G2), {((v1, u1), (v2, u2)) ∶ (v1, v2) ∈ E(G1), (u1, u2) ∈ E(G2)}).

(1)AF = AG ⊗ AH + AG ⊗ A
H
+ A

G
⊗ A

H
.

Aut(H) ⊆ Sym(n1) ×… × Sym(nl),

∀{x, y} ∈ E(H) ⟷ {�(x),�(y)} ∈ E(H).

1538	 M. D. Emelin et al.

1 3

The proposed algorithm can be explained as follows. It supports the invariant
that Aut is the automorphism group of H ⧵ S and Orbits is the set of its orbits.
Hence, vertices from any orbit of Aut have equal rights between each other.
Therefore, in each entry of H into G, any orbit’s element can be identified with
the minimum vertex among G’s vertices, corresponding to elements of the orbit.
The orientation of edges from x arranges x to be a minimum vertex for elements
from the x’s orbit. Algorithm 1 is finished, when Aut is constituted by the trivial
permutation only.

The resultant mixed graphs after orientation above are denoted by ��⃗H and ��⃗H ,
respectively. Hence, the formula (1) can be rewritten as follows

The adjacency matrices A �⃗G
 and A �⃗G

 could be too dense to apply the multiplications
with them. To overcome this phenomena, one may use some filtering technique for
edges and non-edges of G and possible sequential splitting the resultant graphs into
batches for incremental keeping �⃗F and using an incremental algorithm for the
k-clique matching problem.

Suppose that G and H are both connected. Let us note that if v,u ∈ E(G)corre-
sponds to {x, y} ∈ E(H) of some copy of H in G, then dH(v, u) ≤ dG(x, y) . Hence, we
do not need those anti-edges {v, u} of G that dG(v, u) > diam(H) . This idea can be
implemented and improved as follows. The distances in G and H can be found, using
a LA form of Breadth First Search, see, for example, page 33 from [21]. For any
i ∈ [diam(H)] , the v-th column of Di

G
 , where v ∈ V(G) , keeps the mask of

{u ∈ V(G) ∶ dG(v, u) = i} , and the x-th column of Di

H
 , where x ∈ V(H) , keeps the

mask of {y ∈ V(H) ∶ dH(x, y) = i} . By SDi

G
 , we denote the matrix

i⋁
j=1

D
j

G
.

More precisely, we use the following algorithm:

For any x ∈ V(H) , by V(x), we denote the set

Therefore, for any x ∈ V(H) , the only vertices from V(x) can correspond to x in cop-
ies of H in G.

(2)A�⃗F
= A �⃗G

⊗ A �⃗H
+ A �⃗G

⊗ A �⃗H
+ A �⃗G

⊗ A �⃗H
.

{v ∈ V(G) ∶ ∀i ∈ [diam(H)] |{y ∶ dH(x, y) = i}| ≤ |{u ∶ dG(v, u) ≤ i}|}
= {v ∈ V(G) ∶ ∀i ∈ [diam(H)] SUM(Di

H
[∗][x]) ≤ SUM(SDi

G
[∗][v])}.

1539

1 3

On linear algebraic algorithms for the subgraph matching problem…

For any edge or anti-edge e of H, the matrix Ae denotes the adjacency matrix of
the graph on V(H) with the unique edge e. Then, the formula (2) can be rewritten as

where SDi

�⃗G
[v][u] = SD

i

G
[v][u] , if v < u , otherwise, SDi

�⃗G
[v][u] = 0.

The graph �⃗F is an acyclically completely oriented graph, in which all the ori-
ented k-cliques bijectively correspond to all the entries of H into G. To reduce the
amount of used memory, edges and non-edges of G can be split into parts to obtain,
according to (3), the graph �⃗F incrementally. Full computational and incremental LA
algorithms for k-clique matching and counting will be presented in the next sections.

4 � Full computational LA algorithms for the k‑clique matching
and counting problems

4.1 � The Nešetřil‑Poljak’s algorithm for k‑clique matching/counting and its LA
version

The paper [30] also presents a combinatorial full computational algorithm for
matching/counting k-cliques. Its idea is to use a recursion and matching/counting tri-
angles in auxiliary graphs. For the simplicity, let us assume that k = 3l . For a given
simple graph G, its auxiliary graph G′ is defined as

Clearly that, to match/count 3l-cliques in G, one only needs to match/count trian-
gles in G′ . This idea via the fast matrix multiplication was used for designing full
computational [12] and fully dynamic [10] algorithms. Unfortunately, these algo-
rithms do not explain how to construct and keep the graph G′ . In this subsection, we
overcome this difficulty and show how the algorithm from [30] can be completely
implemented as a LA algorithm. It uses the following classical LA algorithm for
matching/counting triangles:

(3)

A�⃗F
=

⋁

e=(x,y)∈E(�⃗H)

(A �⃗G
[Vx ∪ Vy][Vx ∪ Vy]⊗ Ae)

+
⋁

e=(x,y)∈E(�⃗H)

(SD
dH (x,y)

�⃗G
[Vx ∪ Vy][Vx ∪ Vy]⊗ Ae),

V(G�) = {X ⊆ V(G) ∶ X is a l-clique in G},

E(G�) = {{X, Y} ∶ X ∪ Y is a 2l-clique in G}.

1540	 M. D. Emelin et al.

1 3

Indeed, ones of (A �⃗G
)2 correspond to end-vertices of oriented 2-paths, i.e., paths

with 2 edges, in ��⃗G . Ones of (A �⃗G
)2◦A �⃗G

 mean that edges connect end-vertices of ori-
ented 2-paths, meaning that triangles are formed. Hence, SUM(A∗) is the number of
triangles. Algorithm 3 can also be used for matching triangles. To this end, for any
v, v�� ∈ V(G) , such that A∗[v][v��] ≠ 0 , we find

In the following algorithm, Incs is the incidence matrix, which rows correspond to
vertices of G and columns are masks of all the ordered s-cliques of G.

The matrices A �⃗G
⋅ Inc3p and A �⃗G

⋅ Inc3p+1 show the sizes of vertex right neigh-
borhoods in all the ordered 3p- and 3p + 1-cliques of G. Rows and columns of

Nr(v) ∩ Nl(v
��) = nnz(A �⃗G

[v][∗]◦(A �⃗G
[∗][v��])T).

1541

1 3

On linear algebraic algorithms for the subgraph matching problem…

(Incp)
T
⋅ AG ⋅ Incp are all the p-cliques of G, and all its elements are the quanti-

ties of edges between pairs of p-cliques. These properties certify the correctness
of Algorithm 4.

Even for counting k-cliques, Algorithm 4 may consume a large amount of
memory, as it uses the incidence matrix of ordered ⌊ k

3
⌋-cliques to vertices. It may

be impractical even for relatively small k. A more efficient full computational
LA algorithm will be described in the next subsection.

4.2 � Another LA full computational k‑clique matching/counting algorithm

Our algorithm can be briefly explained as follows: firstly, possibly, use a preproc-
essing step, secondly, somehow acyclically orient the remaining subgraph, finally,
use descending to 3- or 4-cliques by right neighborhoods with subsequent match-
ing/counting for k-cliques of the original graph. For deleting redundant vertices and
edges, i.e., as a preprocessing step, we propose the following LA procedures:

The vector v keeps degrees of all the vertices of G. Any its vertex of degree at
most k − 2 cannot belong to any k-clique of G. This certifies the correctness of
Algorithm 5.

For any x ∈ V(G) , the x-th row of A′ keeps |N(x) ∩ N(y)| , for any y ∈ N(x) .
Therefore, edges {x, y} of G with A�[x][y] ≤ k − 3 cannot belong to any its k-clique,
and they can be removed. After that vertices of G of degree at most k − 2 can also be
deleted, as they cannot belong to any k-clique. This explains Algorithm 6.

Our full computational LA algorithm for matching/counting k-cliques with
descending to 3-cliques is presented in the following pseudocode below:

1542	 M. D. Emelin et al.

1 3

In the last loop of Algorithm 7, instead of matching/counting triangles, one may
use the following LA full computational algorithms for matching/counting 4-cliques:

The correctness of Algorithm 8 is obvious. Let us certify the correctness of
Algorithm 9. For any v ∈ V(G) , SUM(A∗

v
) is the number of triangles with the

1543

1 3

On linear algebraic algorithms for the subgraph matching problem…

min - and max-vertices from Nr(v) . Hence, to compute the number of 4-cliques in
G with the min-vertex v, it is sufficient to substract

from SUM(A∗
v
) . Therefore, the number of 4-cliques equals

To match 4-cliques, we find

for any v, v�, v��� ∈ V(G) , such that A�
v
[v�][v���] ≠ 0.

5 � An incremental LA algorithm for the k‑clique matching/counting
problem

We assume that edge-disjoint batches G1,… ,GT of G follow one by one, such

that V(G) =
T⋃
i=1

V(Gi) and E(G) =
T⨆
i=1

E(Gi) . For any i ∈ [T] , accumulated

G(i−1) =
i−1⋃
j=1

Gj , where G0 = (�, �) , and given Gi , the incremental k-clique match-

ing/counting problem asks to match/count all the k-cliques Q of G(i) with
Q ∩ E(Gi) ≠ �.

Full computational and incremental algorithms for the k-clique matching/count-
ing problem can be useful for each other. For example, after applying the removing
procedure by Algorithm 5 or 6 to G, the resultant graph can be split into batches and
an incremental algorithm can be used. In incremental algorithms, for working with
G1 , when it is large enough, one may use a full computational algorithm.

The main idea of our algorithm is to split E(Gi) into classes, such that any two
edges from the same class cannot belong to a common k-clique of G(i) , to consider
the classes one by one, and to match/count (k − 2)-cliques in parallel in the sub-
graphs, induced by common neighbors of x and y in G(i) , for any {x, y} ∈ E(Gi).

The next procedure, for a given simple graph G� = (V �,E�),V � = {1, 2,… , n�} ,

gives an edge-disjoint partition E� =
s�⨆
i=1

Cl�[i] into classes with a heuristic minimiza-

tion of s′ . It uses the set of arrays {Forb�[v�] ∶ v� ∈ V �} , where, for any v� ∈ V � , we
have

∑

{v�,v���∶ A
∗
v
[v�][v���]≠0}

|Nr(v
�) ∩ Nl(v

���) − Nr(v)|

∑

v∈V(G)

(SUM(A∗
v
) − SUM(A∗∗

v
)).

Nr(v) ∩ Nr(v
�) ∩ Nl(v

���) = nnz(A
�

v
[v�][∗]◦(A

�

v
[∗][v���])T),

Forb�[v�] = {i� ∶ ∃{a�, b�} ∈ Cl�[i�],N[v�] ∩ {a�, b�} ≠ �}.

1544	 M. D. Emelin et al.

1 3

At each step of Algorithm 10, the minimum number class is searched, such
that e′ can be put in it without forming triangles by edges from the same class,
which is guaranteed by updating Forb�[w�] with w� ∈ N[v�] ∩ N[u�] . Using the
intersection of N[v�] and N[u�] instead of their union decreases the quantity of
used edge classes. This certifies the correctness of Algorithm 10.

Our incremental k-clique matching/counting LA algorithm is presented in the
following pseudocode:

The induced subgraphs, appearing in Algorithm 11, can be obtained by mask-
ing adjacency matrices of their supergraphs. If i = 1 , then the only matching/
counting phase of Algorithm 7 can be used without splitting the edge set into
classes. Vertex and edge deletions by Algorithms 5 and 6 can also be used for G′

i

after its definition and/or in the first for-cycle.

1545

1 3

On linear algebraic algorithms for the subgraph matching problem…

6 � Computational experiments

In this section, we provide results of computational experiments for four known
datasets, the graphs com − dblp, com − orkut, com − friendster, com − lj , see [25],
whose quantities of vertices and edges are shown in Table 1 below:

We considered the only counting variant of the k-clique matching problem and
full computational algorithms for it, based on Algorithm 7, with three handles for
tuning. The first of them is a choice between the absence of any graph reduction
and the use of Algorithm 5 or 6. The second one is a choice between downing to
3-cliques and using Algorithm 3 and downing to 4-cliques and using Algorithm 8 or
9. The third one is a choice between the following three orientations:

–	 from smaller end-vertices to bigger end-vertices, called the id orientation,
–	 from smaller-degree end-vertices to bigger-degree end-vertices, if these degrees

are distinct, otherwise, the id orientation between these vertices is used, called
the degree orientation,

–	 the �-Goodrich-Pszona orientation, for � ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10}.

The �-Goodrich-Pszona orientation is a generalization of the degree orientation, see
[17] or the pseudocode below:

The �-Goodrich-Pszona orientation guarantees that the right neighborhood of any
vertex is relatively small, see, for example, [33], for more details.

For any of these 72 possibilities, generated by concrete choices in the handles,
and considered pairs (dataset, k), we chose the best computation time. Our hard-
ware was one machine CPU: Kunpeng 920 4826 2.6GHz*2 (128 physical cores,
one thread per core), 950 GiB of main memory, the used API is GraphBLAS.

We compared our solution with the methods, called Arb-count [33], BinaryJoin
[29], kClist [8], Pivoter [19], WCO [23]. For now, Arb-count seems to be a state-
of-the-art algorithm for k-clique counting. Unfortunately, we did not find open code
for BinaryJoin and were not able to execute Pivoter and WCO on our cluster in the
parallel regime of computations. The method Arb-count has not been launched on
our machine.

So, we could provide experiments on our machine only with kClist and choosing
the best option from the edge and vertex parallelisms. For the remaining approaches,
we took runtimes from Table 2 of [33], which have been obtained on a machine with
30 two-way hyper-threading cores with 3.8GHz Intel Xeon Scalable (Cascade Lake)

1546	 M. D. Emelin et al.

1 3

processors and 240 GiB of main memory. To make the conditions of experiments
more comparable, we divided these times by 128∗2.6

30∗3.8
≈ 2.919 . The results are shown

in Table 2 below:

Table 1   Quantities of vertices
and edges

Graph q. of vertices q. of edges

com-dblp 317,080 1,049,866
com-orkut 3,072,441 117,185,083
com-friendster 65,608,366 1,806,067,135
com-lj 3,997,962 34,681,189

Table 2   Best runtimes in seconds

Graph k Our solver Arb-count BinaryJoin kClist Pivoter WCO

4 0.05∗ 0.034 0.041 1 0.987 0.065
com-dblp 5 0.05∗ 0.044 0.144 1 0.987 0.127

6 0.05∗ 0.103 0.713 1 0.987 1.316
7 0.06∗∗(5) 0.70 13.46 3 0.987 22.63
8 0.05∗∗(5) 8.24 214.96 20 0.987 385.98
9 0.06∗∗(5) 96.40 2494.96 230 0.987 3336.07
10 0.05∗∗(5) 1021.49 >1.712 h 2416 0.987 >1.712 h
11 0.04∗∗(5) >1.712 h >1.712 h >5 h 0.987 >1.712 h
4 4.92∗ 1.062 4.36 27 100.15 3.669

com-orkut 5 6.71∗ 1.692 9.97 29 131.91 17.30
6 14.77∗ 4.306 31.88 30 158.29 91.63
7 43.77∗∗(2) 14.42 141.66 47 177.21 479.23
8 146.10∗∗(0.5) 51.69 663.95 120 191.76 2064.74
9 474.59∗∗(0.2) 200.20 3334.31 422 205.17 >1.712 h
10 1431.75∗∗(0.1) 793.38 >1.712 h 1648 221.71 >1.712 h
11 10574.10∗∗(0.1) 3029.64 >1.712 h 6515 221.71 >1.712 h
4 95.97∗ 37.50 56.15 655 >1.712 h 69.14

com-friendster 5 92.51∗ 38.28 72.81 649 >1.712 h 130.04
6 105.86∗ 39.58 76.03 665 >1.712 h 343.10
7 139.19∗ 47.95 216.65 651 >1.712 h 1448.85
8 259.40∗ 102.99 1552.79 1041 >1.712 h >1.712 h
9 536.70∗∗(0.5) 615.32 >1.712 h 2489 >1.712 h >1.712 h
10 1365.39∗∗(0.5) 5767.87 >1.712 h >5 h >1.712 h >1.712 h
11 5502.29∗∗(0.5) >1.712 h >1.712 h >5 h >1.712 h >1.712 h
4 1.02∗ 0.606 1.404 9 91.83 2.268

com-lj 5 4.94∗∗(1) 2.576 14.49 15 505.65 27.67
6 87.71∗∗(0.1) 88.54 622.43 257 2677.67 1181.47
7 1825.18∗∗(0.1) 3677.02 >1.712 h 10166 >1.712 h >1.712 h
8 >5h∗∗(0.1) >1.712 h >1.712 h >5 h >1.712 h >1.712 h

1547

1 3

On linear algebraic algorithms for the subgraph matching problem…

For kClist, we provided the computation times in integer number of seconds. The
first- and second-best times are emphasized with the bold and italic environments,
respectively. In the cases, where it is not possible to select the best and second-best
times, we do not use any emphasizing. The footnote ∗ means that we use the id ori-
entation, Algorithm 5, descending to 4-cliques by Algorithms 7 and 8. The footnote
∗∗(�) refers to the use of the �-Goodrich-Pszona orientation, Algorithm 5, descending
to 4-cliques by Algorithms 7 and 8.

For many pairs (dataset, k), Arb-count showed the best results. For com − dblp
and 6 ≤ k ≤ 11 , our approach gave 2.06-−24.6-speedups over the second-best
solution. For com − friendster and k ∈ {10, 11} , our approach gave 1.15- and
4.22-speedups over the second-best solution. For com − lj and k ∈ {6, 7} , our
approach gave 1.01- and 2.01-speedups over the second-best solution.

To clarify the situation for com − dblp and large values of k, we conducted an
additional experiment. The experiment showed the following results, where we eve-
rywhere used the conditions of ∗∗(5) , see Table 3:

Our solver showed good results for 12 ≤ k ≤ 20.

7 � Conclusions and future work

In this paper, we considered the subgraph matching problem, which is, for given
simple graphs G and H, to find all the entries of H in G. Linear algebraic (LA, for
short) algorithms are well suited for parallelisation of computational process. Prior
to this paper, LA algorithms for the subgraph matching problem were known only
for a few types of H. The first LA algorithm for this problem and general H was
presented in this paper. It uses a LA reduction to the case, when H is a clique. Spe-
cifically for k-clique matching/counting, we presented a LA algorithm with several
optimization techniques. Conducted computational experiments for its counting var-
iant, several large graphs, and values of k showed the viability of our approaches.
Developing new LA algorithms for the subgraph matching problem and improving
the existing ones is a challenging research problem for possible future research.

Acknowledgements  The work of Malyshev D.S. was conducted within the framework of the Basic
Research Program at the National Research University Higher School of Economics (HSE).

References

	 1.	 Ahmed, N., et al.: Graphlet decomposition: framework, algorithms, and applications. Knowl. Inf.
Syst. 50(3), 689–722 (2017)

	 2.	 Alon, N., et al.: Biomolecular network motif counting and discovery by color coding. Bioinformat-
ics 24(13), 241–249 (2008)

Table 3   Runtimes for
(com − dblp, k) and 12 ≤ k ≤ 20
in seconds

k 12 13 14 15 16 17 18 19 20

Time 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

1548	 M. D. Emelin et al.

1 3

	 3.	 Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17, 209–
223 (1997)

	 4.	 Bonne, M., Censor-Hillel, K.: Distributed detection of cliques in dynamic networks. In: Baier, C.,
Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) Proceedings of International Colloquium on
Automata, Languages, and Programming, pp 132:1–132:15. Dagstuhl Publishing (2019)

	 5.	 Chakaravarthy, V., et al.: Subgraph counting: Color coding beyond trees. In: O’Conner, L. (ed.)
International Symposium on Parallel and Distributed Processing Symposium Proceedings, pp 2–11.
Piscataway, IEEE (2016)

	 6.	 Chen, L., et al.: A GraphBLAS approach for subgraph counting. ArXiv, https://​doi.​org/​10.​48550/​
arXiv.​1903.​04395.

	 7.	 Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–
223 (1985)

	 8.	 Danisch, M., Balalau, O., Sozio, M.: Listing k-cliques in sparse real-world graphs. In: Champin,
P.-A. et al. (eds.) Proceedings of International Conference on World Wide Web, pp 589–598. Inter-
national WWW Conference Committee (2018)

	 9.	 Dave, V., Ahmed, N., Hasan, M.: PE-CLoG: Counting edge-centric local graphlets. In: Nie, J-Y
et al. (eds.) Proceedings of International Conference on Big Data, pp 586–595. IEEE, Piscataway
(2017)

	10.	 Dhulipala, L., Liu, Q., Shun, J., Yu, S.: Parallel batch-dynamic k-clique counting. In: Shapira, M.
(ed.) Proceedings of Symposium on Algorithmic Principles of Computer Science, pp. 129–143.
SIAM, Philadelphia (2021)

	11.	 Dvorak, Z., Tuma, V.: A dynamic data structure for counting subgraphs in sparse graphs. In: Dehne,
F., Solis-Oba, R., Sack, J.-R. (eds.) Proceedings of Workshop on Algorithms and Data Structures,
pp. 304–315. Springer-Verlag, Berlin (2013)

	12.	 Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and dominating set. The-
oret. Comput. Sci. 326(1–3), 57–67 (2004)

	13.	 Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Inf. Process. Lett. 51(4), 207–211
(1994)

	14.	 Eppstein, D., Goodrich, M., Strash, D., Trott, L.: Extended dynamic subgraph statistics using
h-index parameterized data structures. Theoret. Comput. Sci. 447, 44–52 (2012)

	15.	 Eppstein, D., Spiro, E.: The h-index of a graph and its application to dynamic subgraph statistics.
In: Dehne, F., Gavrilova, M., Sack, J., Tóth, C. (eds.) Proceedings of Workshop on Algorithms and
Data Structures, pp 278–289. Springer-Verlag, Berlin (2009)

	16.	 Finocchi, F., Finocchi, M., Fusco, E.: Clique counting in MapReduce: algorithms and experiments.
J. Experimen. Algorithmics 20, 1.7:1-1.7:20 (2015)

	17.	 Goodrich, M., Pszona, P.: External-memory network analysis algorithms for naturally sparse graphs.
In: Demetrescu, C., Halldórsson, M (eds.) Proceedings of European Symposium on Algorithms, pp
664–676. 2011. Springer-Verlag, Berlin (2011)

	18.	 Greyser, V., Soszynski, A., Kao, E.: Leveraging linear algebra to count and enumerate simple sub-
graphs. In: Proceedings of High Performance Extreme Computing Conference, pp. 1-8. IEEE, Pis-
cataway (2020)

	19.	 Jain, S., Seshadhri., C.: The power of pivoting for exact clique counting. In: Caveree, J., Hu, B.,
Lalmas, M., Wang, W. (eds.) Proceedings of the 13th International Conference on Web Search and
Data Mining, pp. 268–277. Association for Computing Machinery, New York (2020)

	20.	 Kara, A., et al.: Counting triangles under updates in worst-case optimal time. In: Barcelo, P.,
Calautti, M. (eds.) Proceedings of International Conference on Database Theory, pp 4:1–4:18. Dag-
stuhl Publishing (2019)

	21.	 Kepner, J., Gilbert, J.: Graph algorithms in the language of linear algebra. SIAM, Philadelphia
(2011)

	22.	 Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs efficiently.
Inform. Process. Lett. 74(3–4), 115–121 (2000)

	23.	 Lai, L., et al.: Distributed subgraph matching on timely dataflow. Proc. VLDB Endow. 12(10),
1099–1112 (2019)

	24.	 Latapy, M.: Main-memory triangle computations for very large (sparse (power-law)) graphs. Theo-
ret. Comput. Sci. 407(1–3), 458–473 (2008)

	25.	 Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection.http://​snap.​
stanf​ord.​edu/​data (2022). Accessed 30 December 2022

https://doi.org/10.48550/arXiv.1903.04395.
https://doi.org/10.48550/arXiv.1903.04395.
http://snap.stanford.edu/data
http://snap.stanford.edu/data

1549

1 3

On linear algebraic algorithms for the subgraph matching problem…

	26.	 López-Presa, J., Chiroque, L., Anta, A.: Novel techniques to speed up the computation of the auto-
morphism group of a graph. J. Appl. Math. 2014(934637), 15 (2014)

	27.	 Makkar, D., Bader, D., Green, O.: Exact and parallel triangle counting in dynamic graphs. In: Smari,
W. (ed.) Proceedings of International Conference on High Performance Computing and Simulation,
pp 2–12. IEEE, Piscataway (2017)

	28.	 McCay, B., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014)
	29.	 Mhedhbi, A., Salihoglu, S.: Optimizing subgraph queries by combining binary and worst-case opti-

mal joins. Proc. VLDB Endow. 12(11), 1692–1704 (2019)
	30.	 Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment. Math. Univ. Carol.

26(2), 415–419 (1985)
	31.	 Papadimitriou, C., Yannakakis, M.: The clique problem for planar graphs. Inf. Process. Lett. 13,

131–133 (1981)
	32.	 Pinar, A., Seshadhri,C., Vishal, V.: ESCAPE: Efficiently counting all 5-vertex subgraphs. In: Bar-

rett, R., Cummings, R. (eds.) Proceedings of International Conference on World Wide Web, pp.
1431–1440. International WWW Conference Committee (2017)

	33.	 Shi, J., Dhulipala, L., Shun, J.: Parallel clique counting and peeling algorithms. In: Bender, M., Gil-
bert, J., Hendrickson, B., Sullivan, B. (eds.) Proceedings of the 2021 SIAM Conference on Applied
and Computational Discrete Algorithms, pp. SIAM, Philadelphia (2021)

	34.	 Stoichev, S.: New exact and heuristic algorithms for graph automorphism group and graph isomor-
phism. ACM J. Experimen. Algorithmics 24(1.15), 1–27 (2019)

	35.	 Sun, Z., et al.: Efficient subgraph matching on billion node graphs. Proc. VLDB Endow. 5(9), 788–
799 (2012)

	36.	 Vassilevska, V.: Efficient algorithms for clique problems. Inf. Process. Lett. 109(4), 254–257 (2009)
	37.	 Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Maxim D. Emelin1 · Ilya A. Khlystov2 · Dmitry S. Malyshev3 ·
Olga O. Razvenskaya4

	 Maxim D. Emelin
	 makcum888e@mail.ru

	 Ilya A. Khlystov
	 ilya.khlyustov@huawei.com

	 Olga O. Razvenskaya
	 olga.razvenskaya@huawei.com

1	 Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Av., Nizhny Novgorod,
Russia 603950

2	 Nizhny Novgorod Huawei Research Center, 117 Maksima Gorkogo Str., Nizhny Novgorod,
Russia 603006

3	 Laboratory of Algorithms and Technologies for Networks Analysis, National Research
University Higher School of Economics, 136 Rodionova Str., Nizhny Novgorod, Russia 603093

4	 Nizhny Novgorod Huawei Research Center, 117 Maksima Gorkogo Str., Nizhny Novgorod,
Russia 603006

	On linear algebraic algorithms for the subgraph matching problem and its variants
	Abstract
	1 Introduction
	2 Some definitions and notations
	3 A linear algebraic version of the Nešetřil-Poljak’s reduction
	4 Full computational LA algorithms for the k-clique matching and counting problems
	4.1 The Nešetřil-Poljak’s algorithm for k-clique matchingcounting and its LA version
	4.2 Another LA full computational k-clique matchingcounting algorithm

	5 An incremental LA algorithm for the k-clique matchingcounting problem
	6 Computational experiments
	7 Conclusions and future work
	Acknowledgements
	References

