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Abstract
For a given simple data graph G and a simple query graph H, the subgraph match-
ing problem is to find all the subgraphs of G, each isomorphic to H. There are many 
combinatorial algorithms for it and its counting version, which are predominantly 
based on backtracking with several pruning techniques. Much less is known about 
linear algebraic (LA, for short), i.e., adjacency matrix algebra, algorithms for this 
problem. Revisiting old ideas of J.  Nešetřil and S. Poljak, which reduce the gen-
eral case to the case of clique-queries, and updating them, we present the first LA 
algorithm for the subgraph matching/counting problem. For the k-clique matching/
counting problem, we present static and dynamic LA algorithms, which may be of 
independent interest. For the k-clique counting problem, we also provide results 
of computational experiments of our solver with some large graphs and several k, 
which speed up results of several recent solvers for it.

Keywords  Subgraph matching/counting problem · k-clique matching/counting 
problem · Linear algebraic algorithm

1  Introduction

All graphs, considered in this paper, are looples, without multiple edges, non-ori-
ented or partially oriented graphs. Graphs of the first type are called simple, and 
second-type graphs are called mixed.

Let G and H be simple graphs. For the pair (G, H), the subgraph matching prob-
lem, briefly called the SM problem, is to find all the subgraphs of G, each of which 
is isomorphic to H. The subgraph counting problem for (G, H) is to determine the 
quantity of these subgraphs. Sometimes, G is called a data graph and H is called a 
query graph.
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The SM problem and its counting variant are fundamental with numerous appli-
cations in network science, including social network analysis and bioinformatics. In 
protein research, the physical contacts between proteins in the cell are represented 
as a network, and this protein-protein interaction network (PPIN) helps to develop 
new drugs. Large PPINs may contain millions of interactions, while they usually 
contain repeated local structures. Finding and counting these subgraphs is essential 
to compare different PPINs. In social network analysis, graph sizes could even reach 
trillion of edges, where a subgraph could be a group of users, sharing specific inter-
ests. Studying these groups improves the design of social networks and searching 
algorithms in them.

Triangles (or 3-cliques) and, more generally, k-cliques, i.e., sets of k pairwise 
adjacent vertices, are important types of subgraphs, arising in applications and being 
basic structures for matching/counting more complex fragments. For example, tri-
angles counting is used in computing the local clustering coefficient, which is an 
important measure of the ability for nodes to form clusters [37].

All the algorithms for the SM problem can be classified by the execution model 
and the type of data graphs reading. Sequential algorithms run on a single process-
ing machine only, but parallel algorithms can be executed on multiple simultane-
ously working processors. A full computational (or static) algorithm is an algorithm, 
where the data graph is explicitly given at once. In incremental algorithms, the 
data graph is accumulated by arriving its previously unknown simple parts, called 
batches. In fully dynamic algorithms, the vertex set is fixed and edges can be both 
added and deleted. In batch-dynamic algorithms, the set of vertices is not fixed, but 
batch updates can be both for insertions and deletions of edges.

There are several full computational sequential and parallel algorithms for match-
ing/counting cliques [8, 12, 16, 19, 23, 24, 29–31, 33, 36]. For some other types of 
queries, like small-size subgraphs, paths, cycles and etc., efficient full computational 
sequential and parallel algorithms have also been developed, see [1, 3, 7, 9, 13, 22, 
32, 35]. There are several efficient algorithms, see [4, 10, 11, 14, 15, 20, 27], for 
dynamically given data graphs and some types of queries.

In many applications of the SM problem, the sizes of data graphs are huge. 
Therefore, the use of parallel rather than sequential computations is the only way to 
obtain a result in reasonable time. Using the linear algebraic (briefly, LA) approach, 
i.e., the only matrix–vector instructions, is a natural choice to organize parallelism 
efficiently. Indeed, LA algorithms can be easily implemented, parallelized and have 
a small loss of performance under their scalability.

Only a few LA algorithms for the SM problem are known. For all the 4-vertex 
queries but the 4-clique, full computational LA algorithms have been developed in 
[18]. Exploiting the idea of color coding from [2], a full computational LA algo-
rithm was proposed in the paper [6], when H is a tree. Apparently, according to 
ideas from [5], the approach from [6] can be extended to queries with tree-width at 
most 2.

The old paper [30] by J. Nešetřil and S. Poljak contains a reduction of the SM 
problem to its subproblem, where the only clique-queries are considered. This 
reduction is completely combinatorial. It has two drawbacks. The first of them is the 
absence of a bijection between solutions of the original and reduced SM problem. 
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The second one is memory overflow, because of the simultaneous use of the data 
graph and its complement graph. In this paper, we present the first LA version of the 
Nešetřil-Poljak’s reduction, correcting these drawbacks.

Additionally, the paper [30] also presents a full computational algorithm for 
matching/counting k-cliques, which is almost completely combinatorial, except that 
it uses the fast matrix multiplication to match/count triangles in some graphs. In 
this article, we give a completely LA full computational version of their algorithm. 
Moreover, for matching/counting k-cliques, we present another full computational 
LA algorithm and an incremental LA algorithm, which have several handles for 
tuning their performance. For the k-clique counting problem, we provide results of 
computational experiments of our full computational solver for some large graphs 
and several k, which speed up results of several recent solvers for it.

2 � Some definitions and notations

As usual, for sets A and B, by A ∩ B,A ∪ B,A − B,A × B , we denote their intersec-
tion, union, difference, Cartesian product, respectively. For any set A, the cardinality 
of A is denoted by |A|. For any natural n, the notation [n] means the set {1, 2,… , n}.

In this paper, we consider real-valued matrices only. For matrices A and B of the 
corresponding sizes, by

we denote their sum, the (usual) product, Kronecker product, Hadamard prod-
uct, respectively. If A and B are binary matrices of the corresponding sizes, then 
A ∨ B,A|B,A ∙ B mean the sum, difference, and product over the logical semiring, 
i.e., we have

Let A be a matrix, subsets I and J be some sets of its rows and columns. By AT , we 
denote the transposed matrix of A . The notation A[I][J] means the submatrix of A 
with rows from I and columns from J. If I coincides with the set of all the rows or J 
coincides with the set of all the columns, then we write I =∗ or J =∗ , respectively. 
By In, 0n , and 1n , we denote the identity, all-zeroes matrices, and all-ones vector of 
the order n, respectively. By SUM(A) , we denote the sum of all the elements of A . 
This sum for n × m matrices A can be computed as the product (1n)T ⋅ A ⋅ 1m . For n-
ary vector v , by nnz(v) , we denote the set {i ∶ v[i] ≠ 0}.

For a (simple or mixed) graph G, by V(G) and E(G), we denote its vertex set 
{v1,… , vn} and edge set {e1,… , em} , respectively. By AG , we denote the adja-
cency matrix of G, i.e., the Boolean n × n matrix, such that, for any i, j ∈ [n] , its 
ij-th element is equal to one iff (vi, vj) ∈ E(G) . Assuming that G is simple, by IG , 
we denote its incidence matrix, i.e., the n × m Boolean matrix, in which, for any 
i ∈ [n], j ∈ [m] , the ij-th element is one iff vi is incident to ej.

A + B,A ⋅ B,A⊗ B,A◦B

(A ∨ B)ij = (A)ij ∨ (B)ij, (A|B)ij = (A)ij|(B)ij, (A ∙ B)ij =
⋁

k

((A)ik ∧ (B)kj).
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For v, u ∈ V(G) , by dG(v, u) we denote the distance between v and u. If G is con-
nected, then diam(G) denotes the diameter of G, i.e. max

v,u∈V(G)
dG(v, u) . For a vertex v 

of a oriented graph G, the left and right neighborhoods of v, denoted by Nl(v) and 
Nr(v) , respectively, are defined as follows:

For a vertex v of a simple graph G, the open and closed neighborhoods of v, denoted 
by N(v) and N[v], respectively, are defined as follows:

Suppose that G is simple. By G , we denote the complement graph of G. For any 
V � ⊆ V(G) , by G⧵V ′ we denote the resultant graph after deletion of all the vertices 
from V ′ with their incident edges.

By Aut(G) and Orbits(G), we denote the automorphism group of G and the set of all 
its orbits, respectively. Recall that a permutation � on V(G) is an automorphism of G iff

The orbit, generated by a vertex v ∈ V(G) , is defined as the set

The set orbits gives a disjunctive partition of V(G). By Sym(n) and 
Sym(n1) ×… × Sym(nl) , we denote the symmetric group over n elements and the 
direct product of symmetric groups over n1,… , nl elements, respectively.

3 � A linear algebraic version of the Nešetřil‑Poljak’s reduction

For given a simple data graph G and a simple query graph H, it is proposed in [30] 
to deal with a special graph F, such that all the entries of H into G correspond to 
k-cliques of F, where k = |V(H)| and n = |V(G)| . In other words, it reduces the gen-
eral case to the case of clique-queries. More precisely, the graph F is defined as a 
graph on the vertex set V(G) × V(H) , having the edge set

The set {(g1, h1),… , (gk, hk)} is a k-clique in F iff G has an entry of H on the vertex 
set {g1,… , gk} with the set of edges, formed by the rule

Unfortunately, the algorithm from [30] could match entries of H into G with multi-
plicities, i.e., distinct k-cliques of F may correspond to the same containment, due to 
automorphisms of H. Moreover, it involves simultaneous working with G and G , at 
least one of them is not sparse. This section is aimed to present the first LA version 

Nl(v) = {u ∈ V(G) ∶ (u, v) ∈ E(G)},Nr(v) = {u ∈ V(G) ∶ (v, u) ∈ E(G)}.

N(v) = {u ∈ V(G) ∶ {v, u} ∈ E(G)},N[v] = N(v) ∪ {v}.

∀{v, u} ∈ E(G) ⟷ {�(v),�(u)} ∈ E(G).

{u ∶ ∃� ∈ Aut(G),�(v) = u}.

{{(g1, h1), (g2, h2)} ∶ {h1, h2} ∈ E(H) ∨ ({g1, g2} ∈ E(G) ∧ {h1, h2} ∈ E(H))}.

{gi, gj} is an edge iff {hi, hj} ∈ E(H).
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of the Nešetřil-Poljak’s reduction, which completely avoids the mentioned multiplic-
ities and avoids in part a possible memory overflow.

It is known that, for any graphs G1 and G2 , possibly mixed, AG1
⊗ AG2

 is the adja-
cency matrix of the graph

Hence, to obtain F, one may use the formula

Indeed, AG ⊗ AH ,AG ⊗ A
H
,A

G
⊗ A

H
 correspond to the conformity of edges of H 

to edges of G, non-edges of H to edges of G, non-edges of H to non-edges of G, 
respectively.

To avoid repetitions, according to automorphisms of H, i.e., to produce a bijection 
between all the k-cliques of F and all the entries of H into G, we will use special orienta-
tions for E(G) and for some parts of E(H) and E(H) . Firstly, we arbitrarily acyclically ori-
ent all the edges of G and G , for example, by numbering vertices of G with numbers in [n] 
and orienting each edge from the smallest number to the biggest number. Further, we iden-
tify vertices and their numbers. The resultant graphs are denoted by ��⃗G and ��⃗G , respectively.

Next, we will work with the automorphism groups of H and some its induced sub-
graphs. There are several combinatorial algorithms for computing the automorphism 
group of a given graph, see, for example, the papers [26, 28, 34] and references therein. 
When H is small, one can simply split V(H) into subsets V1,… ,Vl of vertices of the 
same degrees d1,… , dl and put ni = |Vi| , for any i ∈ [l] . Then,

and we enumerate all the l-tuples � = (�1,… ,�l) , where �i is a permutation of Vi , 
and check whether � is an automorphism of H by verifying whether

To find Orbits(H), we enumerate all the vertices of H and find sets of vertices, to 
which vertices of H are transferred by permutations from Aut(H). Finally, we apply 
the following combinatorial algorithm:

(V(G1) × V(G2), {((v1, u1), (v2, u2)) ∶ (v1, v2) ∈ E(G1), (u1, u2) ∈ E(G2)}).

(1)AF = AG ⊗ AH + AG ⊗ A
H
+ A

G
⊗ A

H
.

Aut(H) ⊆ Sym(n1) ×… × Sym(nl),

∀{x, y} ∈ E(H) ⟷ {�(x),�(y)} ∈ E(H).
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The proposed algorithm can be explained as follows. It supports the invariant 
that Aut is the automorphism group of H ⧵ S and Orbits is the set of its orbits. 
Hence, vertices from any orbit of Aut have equal rights between each other. 
Therefore, in each entry of H into G, any orbit’s element can be identified with 
the minimum vertex among G’s vertices, corresponding to elements of the orbit. 
The orientation of edges from x arranges x to be a minimum vertex for elements 
from the x’s orbit. Algorithm 1 is finished, when Aut is constituted by the trivial 
permutation only.

The resultant mixed graphs after orientation above are denoted by ��⃗H and ��⃗H , 
respectively. Hence, the formula (1) can be rewritten as follows

The adjacency matrices A �⃗G
 and A �⃗G

 could be too dense to apply the multiplications 
with them. To overcome this phenomena, one may use some filtering technique for 
edges and non-edges of G and possible sequential splitting the resultant graphs into 
batches for incremental keeping �⃗F and using an incremental algorithm for the 
k-clique matching problem.

Suppose that G and H are both connected. Let us note that if v,u ∈ E(G)corre-
sponds to {x, y} ∈ E(H) of some copy of H in G, then dH(v, u) ≤ dG(x, y) . Hence, we 
do not need those anti-edges {v, u} of G that dG(v, u) > diam(H) . This idea can be 
implemented and improved as follows. The distances in G and H can be found, using 
a LA form of Breadth First Search, see, for example, page 33 from [21]. For any 
i ∈ [diam(H)] , the v-th column of Di

G
 , where v ∈ V(G) , keeps the mask of 

{u ∈ V(G) ∶ dG(v, u) = i} , and the x-th column of Di

H
 , where x ∈ V(H) , keeps the 

mask of {y ∈ V(H) ∶ dH(x, y) = i} . By SDi

G
 , we denote the matrix 

i⋁
j=1

D
j

G
.

More precisely, we use the following algorithm:

For any x ∈ V(H) , by V(x), we denote the set

Therefore, for any x ∈ V(H) , the only vertices from V(x) can correspond to x in cop-
ies of H in G.

(2)A�⃗F
= A �⃗G

⊗ A �⃗H
+ A �⃗G

⊗ A �⃗H
+ A �⃗G

⊗ A �⃗H
.

{v ∈ V(G) ∶ ∀i ∈ [diam(H)] |{y ∶ dH(x, y) = i}| ≤ |{u ∶ dG(v, u) ≤ i}|}
= {v ∈ V(G) ∶ ∀i ∈ [diam(H)] SUM(Di

H
[∗][x]) ≤ SUM(SDi

G
[∗][v])}.
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For any edge or anti-edge e of H, the matrix Ae denotes the adjacency matrix of 
the graph on V(H) with the unique edge e. Then, the formula (2) can be rewritten as

where SDi

�⃗G
[v][u] = SD

i

G
[v][u] , if v < u , otherwise, SDi

�⃗G
[v][u] = 0.

The graph �⃗F is an acyclically completely oriented graph, in which all the ori-
ented k-cliques bijectively correspond to all the entries of H into G. To reduce the 
amount of used memory, edges and non-edges of G can be split into parts to obtain, 
according to (3), the graph �⃗F incrementally. Full computational and incremental LA 
algorithms for k-clique matching and counting will be presented in the next sections.

4 � Full computational LA algorithms for the k‑clique matching 
and counting problems

4.1 � The Nešetřil‑Poljak’s algorithm for k‑clique matching/counting and its LA 
version

The paper [30] also presents a combinatorial full computational algorithm for 
matching/counting k-cliques. Its idea is to use a recursion and matching/counting tri-
angles in auxiliary graphs. For the simplicity, let us assume that k = 3l . For a given 
simple graph G, its auxiliary graph G′ is defined as

Clearly that, to match/count 3l-cliques in G, one only needs to match/count trian-
gles in G′ . This idea via the fast matrix multiplication was used for designing full 
computational [12] and fully dynamic [10] algorithms. Unfortunately, these algo-
rithms do not explain how to construct and keep the graph G′ . In this subsection, we 
overcome this difficulty and show how the algorithm from [30] can be completely 
implemented as a LA algorithm. It uses the following classical LA algorithm for 
matching/counting triangles:

(3)

A�⃗F
=

⋁

e=(x,y)∈E( �⃗H)

(A �⃗G
[Vx ∪ Vy][Vx ∪ Vy]⊗ Ae)

+
⋁

e=(x,y)∈E( �⃗H)

(SD
dH (x,y)

�⃗G
[Vx ∪ Vy][Vx ∪ Vy]⊗ Ae),

V(G�) = {X ⊆ V(G) ∶ X is a l-clique in G},

E(G�) = {{X, Y} ∶ X ∪ Y is a 2l-clique in G}.
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Indeed, ones of (A �⃗G
)2 correspond to end-vertices of oriented 2-paths, i.e., paths 

with 2 edges, in ��⃗G . Ones of (A �⃗G
)2◦A �⃗G

 mean that edges connect end-vertices of ori-
ented 2-paths, meaning that triangles are formed. Hence, SUM(A∗) is the number of 
triangles. Algorithm 3 can also be used for matching triangles. To this end, for any 
v, v�� ∈ V(G) , such that A∗[v][v��] ≠ 0 , we find

In the following algorithm, Incs is the incidence matrix, which rows correspond to 
vertices of G and columns are masks of all the ordered s-cliques of G.

The matrices A �⃗G
⋅ Inc3p and A �⃗G

⋅ Inc3p+1 show the sizes of vertex right neigh-
borhoods in all the ordered 3p- and 3p + 1-cliques of G. Rows and columns of 

Nr(v) ∩ Nl(v
��) = nnz(A �⃗G

[v][∗]◦(A �⃗G
[∗][v��])T ).



1541

1 3

On linear algebraic algorithms for the subgraph matching problem…

(Incp)
T
⋅ AG ⋅ Incp are all the p-cliques of G, and all its elements are the quanti-

ties of edges between pairs of p-cliques. These properties certify the correctness 
of Algorithm 4.

Even for counting k-cliques, Algorithm  4 may consume a large amount of 
memory, as it uses the incidence matrix of ordered ⌊ k

3
⌋-cliques to vertices. It may 

be impractical even for relatively small k. A more efficient full computational 
LA algorithm will be described in the next subsection.

4.2 � Another LA full computational k‑clique matching/counting algorithm

Our algorithm can be briefly explained as follows: firstly, possibly, use a preproc-
essing step, secondly, somehow acyclically orient the remaining subgraph, finally, 
use descending to 3- or 4-cliques by right neighborhoods with subsequent match-
ing/counting for k-cliques of the original graph. For deleting redundant vertices and 
edges, i.e., as a preprocessing step, we propose the following LA procedures:

The vector v keeps degrees of all the vertices of G. Any its vertex of degree at 
most k − 2 cannot belong to any k-clique of G. This certifies the correctness of 
Algorithm 5.

For any x ∈ V(G) , the x-th row of A′ keeps |N(x) ∩ N(y)| , for any y ∈ N(x) . 
Therefore, edges {x, y} of G with A�[x][y] ≤ k − 3 cannot belong to any its k-clique, 
and they can be removed. After that vertices of G of degree at most k − 2 can also be 
deleted, as they cannot belong to any k-clique. This explains Algorithm 6.

Our full computational LA algorithm for matching/counting k-cliques with 
descending to 3-cliques is presented in the following pseudocode below:
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In the last loop of Algorithm 7, instead of matching/counting triangles, one may 
use the following LA full computational algorithms for matching/counting 4-cliques:

The correctness of Algorithm  8 is obvious. Let us certify the correctness of 
Algorithm  9. For any v ∈ V(G) , SUM(A∗

v
) is the number of triangles with the 
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min - and max-vertices from Nr(v) . Hence, to compute the number of 4-cliques in 
G with the min-vertex v, it is sufficient to substract

from SUM(A∗
v
) . Therefore, the number of 4-cliques equals

To match 4-cliques, we find

for any v, v�, v��� ∈ V(G) , such that A�
v
[v�][v���] ≠ 0.

5 � An incremental LA algorithm for the k‑clique matching/counting 
problem

We assume that edge-disjoint batches G1,… ,GT of G follow one by one, such 

that V(G) =
T⋃
i=1

V(Gi) and E(G) =
T⨆
i=1

E(Gi) . For any i ∈ [T] , accumulated 

G(i−1) =
i−1⋃
j=1

Gj , where G0 = (�, �) , and given Gi , the incremental k-clique match-

ing/counting problem asks to match/count all the k-cliques Q of G(i) with 
Q ∩ E(Gi) ≠ �.

Full computational and incremental algorithms for the k-clique matching/count-
ing problem can be useful for each other. For example, after applying the removing 
procedure by Algorithm 5 or 6 to G, the resultant graph can be split into batches and 
an incremental algorithm can be used. In incremental algorithms, for working with 
G1 , when it is large enough, one may use a full computational algorithm.

The main idea of our algorithm is to split E(Gi) into classes, such that any two 
edges from the same class cannot belong to a common k-clique of G(i) , to consider 
the classes one by one, and to match/count (k − 2)-cliques in parallel in the sub-
graphs, induced by common neighbors of x and y in G(i) , for any {x, y} ∈ E(Gi).

The next procedure, for a given simple graph G� = (V �,E�),V � = {1, 2,… , n�} , 

gives an edge-disjoint partition E� =
s�⨆
i=1

Cl�[i] into classes with a heuristic minimiza-

tion of s′ . It uses the set of arrays {Forb�[v�] ∶ v� ∈ V �} , where, for any v� ∈ V � , we 
have

∑

{v�,v���∶ A
∗
v
[v�][v���]≠0}

|Nr(v
�) ∩ Nl(v

���) − Nr(v)|

∑

v∈V(G)

(SUM(A∗
v
) − SUM(A∗∗

v
)).

Nr(v) ∩ Nr(v
�) ∩ Nl(v

���) = nnz(A
�

v
[v�][∗]◦(A

�

v
[∗][v���])T ),

Forb�[v�] = {i� ∶ ∃{a�, b�} ∈ Cl�[i�],N[v�] ∩ {a�, b�} ≠ �}.
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At each step of Algorithm  10, the minimum number class is searched, such 
that e′ can be put in it without forming triangles by edges from the same class, 
which is guaranteed by updating Forb�[w�] with w� ∈ N[v�] ∩ N[u�] . Using the 
intersection of N[v�] and N[u�] instead of their union decreases the quantity of 
used edge classes. This certifies the correctness of Algorithm 10.

Our incremental k-clique matching/counting LA algorithm is presented in the 
following pseudocode:

The induced subgraphs, appearing in Algorithm 11, can be obtained by mask-
ing adjacency matrices of their supergraphs. If i = 1 , then the only matching/
counting phase of Algorithm  7 can be used without splitting the edge set into 
classes. Vertex and edge deletions by Algorithms 5 and 6 can also be used for G′

i
 

after its definition and/or in the first for-cycle.
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6 � Computational experiments

In this section, we provide results of computational experiments for four known 
datasets, the graphs com − dblp, com − orkut, com − friendster, com − lj , see [25], 
whose quantities of vertices and edges are shown in Table 1 below:

We considered the only counting variant of the k-clique matching problem and 
full computational algorithms for it, based on Algorithm 7, with three handles for 
tuning. The first of them is a choice between the absence of any graph reduction 
and the use of Algorithm 5 or 6. The second one is a choice between downing to 
3-cliques and using Algorithm 3 and downing to 4-cliques and using Algorithm 8 or 
9. The third one is a choice between the following three orientations:

–	 from smaller end-vertices to bigger end-vertices, called the id orientation,
–	 from smaller-degree end-vertices to bigger-degree end-vertices, if these degrees 

are distinct, otherwise, the id orientation between these vertices is used, called 
the degree orientation,

–	 the �-Goodrich-Pszona orientation, for � ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10}.

The �-Goodrich-Pszona orientation is a generalization of the degree orientation, see 
[17] or the pseudocode below:

The �-Goodrich-Pszona orientation guarantees that the right neighborhood of any 
vertex is relatively small, see, for example, [33], for more details.

For any of these 72 possibilities, generated by concrete choices in the handles, 
and considered pairs (dataset, k), we chose the best computation time. Our hard-
ware was one machine CPU: Kunpeng 920 4826 2.6GHz*2 (128 physical cores, 
one thread per core), 950 GiB of main memory, the used API is GraphBLAS.

We compared our solution with the methods, called Arb-count [33], BinaryJoin 
[29], kClist [8], Pivoter [19], WCO [23]. For now, Arb-count seems to be a state-
of-the-art algorithm for k-clique counting. Unfortunately, we did not find open code 
for BinaryJoin and were not able to execute Pivoter and WCO on our cluster in the 
parallel regime of computations. The method Arb-count has not been launched on 
our machine.

So, we could provide experiments on our machine only with kClist and choosing 
the best option from the edge and vertex parallelisms. For the remaining approaches, 
we took runtimes from Table 2 of [33], which have been obtained on a machine with 
30 two-way hyper-threading cores with 3.8GHz Intel Xeon Scalable (Cascade Lake) 
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processors and 240 GiB of main memory. To make the conditions of experiments 
more comparable, we divided these times by 128∗2.6

30∗3.8
≈ 2.919 . The results are shown 

in Table 2 below:

Table 1   Quantities of vertices 
and edges

Graph q. of vertices q. of edges

com-dblp 317,080 1,049,866
com-orkut 3,072,441 117,185,083
com-friendster 65,608,366 1,806,067,135
com-lj 3,997,962 34,681,189

Table 2   Best runtimes in seconds

Graph k Our solver Arb-count BinaryJoin kClist Pivoter WCO

4 0.05∗ 0.034 0.041 1 0.987 0.065
com-dblp 5 0.05∗ 0.044 0.144 1 0.987 0.127

6 0.05∗ 0.103 0.713 1 0.987 1.316
7 0.06∗∗(5) 0.70 13.46 3 0.987 22.63
8 0.05∗∗(5) 8.24 214.96 20 0.987 385.98
9 0.06∗∗(5) 96.40 2494.96 230 0.987 3336.07
10 0.05∗∗(5) 1021.49 >1.712 h 2416 0.987 >1.712 h
11 0.04∗∗(5) >1.712 h >1.712 h >5 h 0.987 >1.712 h
4 4.92∗ 1.062 4.36 27 100.15 3.669

com-orkut 5 6.71∗ 1.692 9.97 29 131.91 17.30
6 14.77∗ 4.306 31.88 30 158.29 91.63
7 43.77∗∗(2) 14.42 141.66 47 177.21 479.23
8 146.10∗∗(0.5) 51.69 663.95 120 191.76 2064.74
9 474.59∗∗(0.2) 200.20 3334.31 422 205.17 >1.712 h
10 1431.75∗∗(0.1) 793.38 >1.712 h 1648 221.71 >1.712 h
11 10574.10∗∗(0.1) 3029.64 >1.712 h 6515 221.71 >1.712 h
4 95.97∗ 37.50 56.15 655 >1.712 h 69.14

com-friendster 5 92.51∗ 38.28 72.81 649 >1.712 h 130.04
6 105.86∗ 39.58 76.03 665 >1.712 h 343.10
7 139.19∗ 47.95 216.65 651 >1.712 h 1448.85
8 259.40∗ 102.99 1552.79 1041 >1.712 h >1.712 h
9 536.70∗∗(0.5) 615.32 >1.712 h 2489 >1.712 h >1.712 h
10 1365.39∗∗(0.5) 5767.87 >1.712 h >5 h >1.712 h >1.712 h
11 5502.29∗∗(0.5) >1.712 h >1.712 h >5 h >1.712 h >1.712 h
4 1.02∗ 0.606 1.404 9 91.83 2.268

com-lj 5 4.94∗∗(1) 2.576 14.49 15 505.65 27.67
6 87.71∗∗(0.1) 88.54 622.43 257 2677.67 1181.47
7 1825.18∗∗(0.1) 3677.02 >1.712 h 10166 >1.712 h >1.712 h
8 >5h∗∗(0.1) >1.712 h >1.712 h >5 h >1.712 h >1.712 h
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For kClist, we provided the computation times in integer number of seconds. The 
first- and second-best times are emphasized with the bold and italic environments, 
respectively. In the cases, where it is not possible to select the best and second-best 
times, we do not use any emphasizing. The footnote ∗ means that we use the id ori-
entation, Algorithm 5, descending to 4-cliques by Algorithms 7 and 8. The footnote 
∗∗(�) refers to the use of the �-Goodrich-Pszona orientation, Algorithm 5, descending 
to 4-cliques by Algorithms 7 and 8.

For many pairs (dataset, k), Arb-count showed the best results. For com − dblp 
and 6 ≤ k ≤ 11 , our approach gave 2.06-−24.6-speedups over the second-best 
solution. For com − friendster and k ∈ {10, 11} , our approach gave 1.15- and 
4.22-speedups over the second-best solution. For com − lj and k ∈ {6, 7} , our 
approach gave 1.01- and 2.01-speedups over the second-best solution.

To clarify the situation for com − dblp and large values of k, we conducted an 
additional experiment. The experiment showed the following results, where we eve-
rywhere used the conditions of ∗∗(5) , see Table 3:

Our solver showed good results for 12 ≤ k ≤ 20.

7 � Conclusions and future work

In this paper, we considered the subgraph matching problem, which is, for given 
simple graphs G and H, to find all the entries of H in G. Linear algebraic (LA, for 
short) algorithms are well suited for parallelisation of computational process. Prior 
to this paper, LA algorithms for the subgraph matching problem were known only 
for a few types of H. The first LA algorithm for this problem and general H was 
presented in this paper. It uses a LA reduction to the case, when H is a clique. Spe-
cifically for k-clique matching/counting, we presented a LA algorithm with several 
optimization techniques. Conducted computational experiments for its counting var-
iant, several large graphs, and values of k showed the viability of our approaches. 
Developing new LA algorithms for the subgraph matching problem and improving 
the existing ones is a challenging research problem for possible future research.
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