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Abstract
Given an undirected graph G = (V ,E;w, p) with a depot r ∈ V  and an integer 
k ∈ ℤ

+ , each edge e ∈ E has a weight w(e) ∈ ℝ
+ and a penalty p(e) ∈ ℝ

+

0
 , where 

the weights satisfy the triangle inequality, we consider two types of restricted k-Chi-
nese postman problems with penalties. (1) The restricted min–max k-Chinese post-
man problem with penalties (MM-RPCPP) is asked to find a set of k tours starting 
from r and collectively covering all vertices, such that the maximum tour weight 
plus the total penalty paid for the uncovered edges is minimized. (2) The restricted 
min-sum k-Chinese postman problem with penalties (MS-RPCPP) is asked to find a 
set of k tours satisfying the constraint mentioned above and that each edge appears 
in at most one tour and each tour contains at least one edge, such that the sum of 
weights of all tours plus the total penalty paid for the uncovered edges is minimized. 
In the paper, we design a combinatorial ( 7

2
−

2

k
)-approximation algorithm to solve 

the MM-RPCPP. Furthermore, we present a combinatorial 2-approximation algo-
rithm to solve the MS-RPCPP.

Keywords  Approximation algorithm · Penalties · Restricted · Chinese postman · 
Traveling salesman

1  Introduction

The routing problems are a much-studied family of combinatorial optimization 
problems, and have a wide range of applications that include network surveillance, 
household refuse collection, snow removal, street sweeping, school bus routing.
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Considering an application on road network rescue, Zhu and Pan [16] pro-
posed the restricted Chinese postman problem with total penalty (RPCPP), 
which is defined on an undirected graph G = (V ,E;w, p) with a weight function 
w ∶ E → ℝ

+ satisfying the triangle inequality, and a penalty function p ∶ E → ℝ
+

0
 . 

This problem is to find a tour C traversing each vertex v ∈ V  at least once, such 
that the value w(C) + p(E ⧵ C) is minimized, where w(C) =

∑
e∈C w(e) , and 

p(E⧵C) =
∑

e∈E⧵C p(e) . In 2021, a 1.5-approximation algorithm was designed by 
Zhu and Pan [16] to solve the RPCPP. Other related routing problems and their 
applications can be found in [1–3, 5, 10].

In the case that a given weight function satisfies the triangle inequality, there 
are two types of special cases of the RPCPP, which are described as follows: The 
Chinese postman problem (CPP) [11] is to find a tour on a given undirected graph 
traversing each edge at least once, such that the weight of this tour is minimized. 
Clearly, the CPP with the triangle inequality holds is a special case of the RPCPP, 
where p(e) ≥ 2w(E) for each edge e ∈ E . Edmonds and Johnson [6] designed a pol-
ynomial time exact algorithm to solve the CPP.

In comparison, the metric traveling salesman problem (metric TSP) [15, p.30] is 
to find a cycle on a given complete graph traversing each vertex exactly once, such 
that the weight of this cycle is minimized. The metric TSP is another special case of 
the RPCPP, where G is a complete graph and p(⋅) ≡ 0 . Christofides [15] presented 
a 1.5-approximation algorithm to solve the metric TSP. In 2021, Karlin et al. [12] 
reconsidered the metric TSP and designed a (1.5 − �)-approximation algorithm for 
some 𝜀 > 10−36.

In real life, it is common for multiple vehicles to work in parallel. Frederickson 
et al. [7] addressed the CPP and the metric TSP with multiple vehicles and min–max 
objective, namely, the min–max k -Chinese postman problem (MM-CPP) and the 
min–max k -traveling salesman problem (MM-TSP).

The MM-CPP and the MM-TSP are defined as follows: Given an undirected 
graph G = (V ,E;w) with a depot r ∈ V  , an integer k ∈ ℤ

+ , and a weight function 
w ∶ E → ℝ

+ that satisfies the triangle inequality, the MM-CPP is to find k tours 
starting at r, and collectively traversing each edge e ∈ E at least once, such that 
the maximum of the weights of tours is minimized. Employing a splitting method, 
Frederickson et al. [7] designed a ( 2 − 1

k
)-approximation algorithm to solve the MM-

CPP. When replacing a given undirected graph with a complete graph, the MM-
TSP is to find k cycles starting at r, and collectively covering all vertices in V, such 
that the maximum of the weights of cycles is minimized. Reemploying a splitting 
method, Frederickson et al. [7] presented a ( 5

2
−

1

k
)-approximation algorithm to solve 

the MM-TSP.
Moreover, the CPP and the metric TSP with multiple vehicles and min-sum 

objective were studied by Frieze [14] and Pearn [8]. There, the two problems are 
referred to as the min-sum k -Chinese postman problem (MS-CPP) and the min-
sum k -traveling salesman problem (MS-TSP), which are defined as follows: In a 
given undirected graph G = (V ,E;w) with a depot r ∈ V  and an integer k ∈ ℤ

+ , by 
adding two constraints that each edge in G must be serviced by exactly one post-
man and all the k postmen must be involved in the delivery service, the MS-CPP 
is to find k tours starting at r, and collectively traversing each edge e ∈ E at least 
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once, such that the sum of weights of tours is minimized. Using a lower bound 
algorithm in [4] for the capacitated arc routing problem, Pearn [14] showed that 
the MS-CPP can be solved optimally. By replacing a given undirected graph with 
a complete graph, the MS-TSP is to find k cycles starting at r and collectively 
covering all vertices in V, and satisfying that each cycle contains at least 3 edges, 
such that the sum of weights of cycles is minimized. Modifying Christofides’ 
algorithm [15, p.32] for solving the metric TSP, Frieze [8] designed a 1.5-approx-
imation algorithm to solve the MS-TSP.

Motivated by the extensive application in practices of the problems mentioned 
above, we consider the restricted min–max k -Chinese postman problem with 
penalties (MM-RPCPP) and its a variant, which are defined as follows: Given an 
undirected graph G = (V ,E;w, p) with a depot r ∈ V  , an integer k ∈ ℤ

+ , a weight 
function w ∶ E → ℝ

+ that satisfies the triangle inequality, and a penalty func-
tion p ∶ E → ℝ

+

0
 , (1) the MM-RPCPP is asked to find a set C = {C1,… ,Ck} of 

k tours starting from r and collectively covering all vertices, such that the value 
f (C) = wmax(C) + p(E ⧵ C) is minimized, where wmax(C) = max{

∑
e∈C w(e) ∣ C ∈ C} 

and p(E⧵C) =
∑

e∈E⧵C p(e) , and (2) The restricted min-sum k -Chinese post-
man problem with penalties (MS-RPCPP) is asked to find a set C = {C1,… ,Ck} 
of k tours satisfying the constraint mentioned above and that each edge appears 
in at most one tour and each tour contains at least one edge, such that the 
value  h(C) = w(C) + p(E ⧵ C) is minimized, where w(C) =

∑
C∈C

∑
e∈C w(e) , 

and p(E ⧵ C) is defined in (1). Without loss of generality, we assume k ≤ |E| in the 
paper.

The MM-RPCPP and the MS-RPCPP are multiple-vehicle extensions of 
the RPCPP respectively. For the MM-RPCPP, the MM-CPP is the special case 
p(e) > 2 ⋅ w(E) for each edge e ∈ E , and the MM-TSP is another special case that 
G is a complete graph and p(⋅) ≡ 0 . For the MS-RPCPP, the CPP with the trian-
gle inequality holds is the special case that k = 1 and p(e) > 2 ⋅ w(E) for each edge 
e ∈ E , and the metric TSP is another special case that k = 1, G is a complete graph 
and p(⋅) ≡ 0 . In addition, the MS-RPCPP is closely related to the MS-CPP and the 
MS-TSP, while it is not a generalization of them.

The MM-RPCPP and the MS-RPCPP may have applications in the real world. 
For example, an extension of the application in [16] is described as follows: Given 
a road network, k vehicles and some rescue workers, we need to arrange workers to 
transfer people on some roads to the road ends in advance, and then plan vehicle 
routings to rescue people who lie on the residual network. It is of interest to know 
how to plan vehicle routings to minimize the time spent by workers and vehicles, 
where the time spent on each road by workers corresponds to a penalty and the time 
spent on each road by any vehicle corresponds to a weight. In order to minimize the 
rescue time, we can arrange vehicles in parallel to rescue people, this question can 
be reduced to the MM-RPCPP. In addition, we further consider another variant of 
the RPCPP, that is the MS-RPCPP.

To the best of our knowledge, these two problems that we propose have not 
been considered in the literature. The contribution of this paper is to present two 
approximation algorithms with constant factors to solve the MM-RPCPP and the 
MS-RPCPP, respectively.
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This paper is organized as follows: In Sect. 2, we present some preliminaries to 
facilitate the descriptions of algorithms. In Sect. 3, we design a ( 7

2
−

2

k
)-approxima-

tion algorithm to solve the MM-RPCPP. In Sect. 4, we present a 2-approximation 
algorithm to solve the MS-RPCPP. In Sect. 5, we provide our conclusion and further 
work.

2 � Preliminaries

Given a graph G = (V ,E) , a walk P connecting a vertex vi1 and a vertex vik+1 is an alter-
nating sequence P = vi1ei1vi2ei2vi3 ⋯ vik eik vik+1 such that, k ≥ 1 and eij = vijvij+1 ∈ E for 
each integer j ∈ {1,… , k} . If vi1 = vik+1 , the walk P is called a tour. In addition, a walk 
P is said to be a path if the vertices in P are all distinct. Similarly, a tour P is called a 
cycle if the vertices in P are all distinct.

On a weighted graph G = (V ,E;w) , the distance dG(u, v) of two vertices u and v is 
the weight of a shortest path connecting u and v. The eccentricity �G(v) of a vertex v 
is maxu∈V dG(u, v).

We say that an undirected graph G = (V ,E) is connected if there is a path con-
necting u and v for any u, v ∈ V  ; Otherwise, G is disconnected. An undirected graph 
without a cycle (as a subgraph) is called a forest. We call a connected forest a tree.

A subgraph of a graph G = (V ,E) is a graph G� = (V �,E�) with V ′ ⊆ V  
and  E′ ⊆ E . If E� = {uv ∈ E ∣ u, v ∈ V �} , then G� = G[V �] is the subgraph of G 
induced by V ′ . Similarly, if V � = {u, v ∈ V ∣ uv ∈ E�} , then G� = G[E�] is the sub-
graph of G induced by E′ . We call a subgraph G′ of G spanning if V � = V  . A sub-
graph G′ is called a spanning tree if G′ is a tree and spanning.

Given a graph G = (V ,E) , an Euler tour in G is a tour that traverses each edge 
e ∈ E exactly once. In addition, a graph G is Eulerian if this graph G admits an 
Euler tour.

For any weighted graph G = (V ,E;w) , we say that the weight func-
tion  w(⋅) satisfies the triangle inequality when w(xz) ≤ dG(x, y) + dG(y, z) for 
any xz ∈ E, x, y, z ∈ V  . Let n = |V| and m = |E| denote the numbers of vertices and 
edges in a given graph G = (V ,E) , respectively. For any tour C of G, we denote EC 
the subset of edges in E that is traversed by C.

In our algorithms to solve the MM-RPCPP and the MS-RPCPP, we need the fol-
lowing lemmas.

Lemma 1  [16] Given an undirected connected graph G = (V ,E;w, p) as an instance 
of the RPCPP, there exists a 3

2
-approximation algorithm (referred as RPCPP algo-

rithm) for solving the RPCPP in time O(n3).

Lemma 2  [9] Given an undirected connected graph G = (V ,E;w) with a depot 
r ∈ V  , a positive integer k and a subset F ⊆ E , there exists an algorithm (referred 
as MST-DC algorithm) which can determine a minimum weight subset F′ ⊆ E such 
that G[F ∪ F�] is connected and has at least k edges incident to the depot r, or output 
that there is no such solution, in running time O(n2).



311

1 3

Approximation algorithms for the restricted k‑Chinese postman…

3 � The restricted min–max k‑Chinese postman problem 
with penalties

In this section, we consider the restricted min–max k -Chinese postman problem 
with penalties (MM-RPCPP). Note that the MM-RPCPP is ��-hard since the MM-
CPP and the MM-TSP are known to be ��-hard [7]. When k = 1 , the MM-RPCPP 
becomes the RPCPP, we can use the RPCPP algorithm to solve the MM-RPCPP to 
obtain a 3

2
-approximation solution. Thus, we assume k ≥ 2 in the section.

The strategy to solve the MM-RPCPP is described as follows: 

(1)	 Determine a tour in G, satisfying that some objective value as small as possible.
(2)	 Partition the above tour into k walks, and then extend walks to k tours satisfying 

that the maximum tour weight as small as possible.

Using the strategy mentioned above, we design an approximation algorithm (Algo-
rithm 1) in the following.

On an auxiliary graph G� = (V ,E;w�, p) of a given graph G = (V ,E;w, p) , it is 
clear that the function w′ satisfies the triangle inequality, because of the weight func-
tion w satisfying the triangle inequality. Using the RPCPP algorithm and Lemma 1, 
we can find a feasible solution for an instance (G�;w�, p) of the RPCPP. The specific 
result is described as follows:
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Lemma 3  Given an auxiliary graph G� = (V ,E;w�, p) , the RPCPP algorithm is a 3
2

-approximation algorithm in time O(n3) to solve the RPCPP problem.

According to the algorithm AMM , we first get the following lemma.

Lemma 4  wmax(C) ≤
w(C)

k
+ 2(2 −

2

k
)�G(r).

Proof  We first consider any tour Cj , j ∈ {2,… , k − 1} . Because the weight function 
w ∶ E → ℝ

+ satisfies the triangle inequality, we obtain w(vip�(j)vip�(j)+1) 
≤ dG(r, vip�(j)

) + dG(r, vip�(j)+1
) . By the definition of �G(r) in Step 2 of the algorithm AMM , 

we can get dG(r, vip� (j) ) + dG(r, vip� (j)+1) ≤ 2�G(r) , implying that

Thus, we obtain

Similarly, the above inequality still holds by replacing j with j − 1.
It is easy to see that, the case resulting in the maximum weight of any tour Cj is that 

the tour starts depot r and follows the shortest path to reach vip�(j−1) , and then follows 
tour C to vip� (j)+1 , and finally follows the shortest path back to r. And in this situation, we 
have sj−1 + dG(r, vip�(j−1) ) ≤ 2�G(r) , and w(vip�(j)vip�(j)+1) − sj + dG(vip�(j)+1 , r) ≤ 2�G(r) . 
Hence, we obtain

For other cases of tour Cj , i.e., j ∈ {1, k} , the above inequality (1) is easily proved. 
Therefore, for any j ∈ {1,… , k} , we have w(Cj) ≤ 2�G(r) +

1

k
(w(C) − 4�G(r)) + 2�G(r) , 

implying wmax(C) ≤
w(C)

k
+ 2(2 −

2

k
)�G(r) . 	�  ◻

According to Algorithm 1, Lemma’s 3 and 4, we obtain a result for the MM-
RPCPP as follows:

Theorem 1  The algorithm AMM is a ( 7
2
−

2

k
)-approximation algorithm to solve the 

MM-RPCPP and it runs in time O(n3).

Proof  It is clear that the algorithm can correctly indicate whether there is a feasible 
solution to the MM-RPCPP. We need only consider the case that there are feasible 
solutions for the MM-RPCPP in the following.

For any instance G = (V ,E;w, p) of the MM-RPCPP and its auxiliary graph 
G� = (V ,E;w�, p) , let C∗ denote an optimal solution for the instance G = (V ,E;w, p) 
of the MM-RPCPP, EC

∗ denote the subset of edges collectively traversed by all tours 

dG(r, vip�(j) ) + w(vip� (j)vip�(j)+1) + dG(r, vip�(j)+1) ≤ 4�G(r).

min{sj + dG(r, vip�(j) ),w(vip�(j)vip�(j)+1) − sj + dG(vip�(j)+1 , r)} ≤ 2�G(r).

(1)w(Cj) ≤ 2�G(r) +
1

k
(w(C) − 4�G(r)) + 2�G(r).



313

1 3

Approximation algorithms for the restricted k‑Chinese postman…

in C∗ . And let C∗ and f �(C∗) = w�(C∗) + p(E ⧵ C∗) denote an optimal solution and 
optimal value for the instance (G�;w�, p) of the RPCPP, respectively.

By the algorithm AMM , it is clear that EC ⊆ EC , so we obtain

Using Lemma 4, we have

From Lemma 3, we know that the RPCPP algorithm can generate a fea-
sible solution C for the instance (G�;w�, p) of the RPCPP, satisfying 
w�(C) + p(E⧵C) ≤

3

2
(w�(C∗) + p(E⧵C∗)).

Because all tours in C∗ have a common depot r, it is easy to merge them into a 
tour, i.e., a feasible solution for the instance (G�;w�, p) of the RPCPP. Hence, we 
obtain

Therefore, we obtain

Due to all tours in C∗ collectively traversing each vertex v ∈ V  at least once, we have 
�G(r) ≤

1

2
wmax(C

∗) . Therefore, we obtain

p(E ⧵ C) ≤ p(E ⧵ C).

wmax(C) ≤
w(C)

k
+ 2

(
2 −

2

k

)
�G(r).

w�(C∗) + p(E ⧵ C∗) ≤ w�(C∗) + p(E ⧵ C∗)

≤ k ⋅ w�

max
(C∗) + p(E ⧵ C∗)

= k ⋅
wmax(C

∗)

k
+ p(E ⧵ C∗)

= wmax(C
∗) + p(E ⧵ C∗).

w�(C) + p(E ⧵ C) ≤
3

2
(w�(C∗) + p(E ⧵ C∗))

≤
3

2
wmax(C

∗) +
3

2
p(E ⧵ C∗).

f (C) = wmax(C) + p(E ⧵ C)

≤
w(C)

k
+ 2

(
2 −

2

k

)
�G(r) + p(E ⧵ C)

= w�(C) + p(E ⧵ C) + 2

(
2 −

2

k

)
�G(r)

≤
3

2
wmax(C

∗) +
3

2
p(E ⧵ C∗) +

(
2 −

2

k

)
wmax(C

∗)

≤

(
7

2
−

2

k

)
wmax(C

∗) +
3

2
p(E ⧵ C∗)

≤

(
7

2
−

2

k

)
f (C∗).



314	 P. Pan, H. Zhu 

1 3

This shows that the algorithm AMM is a ( 7
2
−

2

k
)-approximation algorithm to solve 

the MM-RPCPP.
The complexity of the algorithm AMM can be determined as follows: (1) Using 

the RPCPP algorithm [16], the running time of Step 1 is O(n3) that determines a 
tour C. (2) Using Dijkstra’s algorithm [13] to compute the eccentricity of depot r, 
the running time of Step 2 is O(n3) . (3) Steps 4-5 need at most time O(n3) to convert 
the tour C to a feasible solution C . Hence, the running time of the algorithm AMM is 
O(n3) . 	�  ◻

4 � The restricted min‑sum k‑Chinese postman problem with penalties

In this section, we consider the restricted min-sum k -Chinese postman problem with 
penalties (MS-RPCPP). Note that the MS-RPCPP is ��-hard since it is a generaliza-
tion of metric TSP, where the metric TSP is known to be ��-hard [15, p.30].

From the description of the MS-RPCPP, we obtain a result in the following.

Lemma 5  Any optimal solution C∗ to the MS-RPCPP, satisfies that all tours in C∗ 
collectively traverse each edge at most twice.

Proof  Given any instance G = (V ,E;w, p) to the MS-RPCPP, we know that each 
edge e ∈ E appears in at most one tour C ∈ C

∗ , where C∗ is any optimal solution of 
the MS-RPCPP. Now, we only need to consider any tour C ∈ C

∗.
Suppose the tour C traversing some edge e at least three times, we can construct 

a new Eulerian subgraph by simply deleting the two copy edges of the edge e on the 
Eulerian subgraph corresponding to C. It is clear that any Euler tour Ce on the new 
Eulerian subgraph also traverses all edges in EC . As a result, we can replace C with 
Ce in C∗ , which can reduce the weight of C∗ , to get a better solution. This contradicts 
the optimality of C∗ . 	�  ◻

By Lemma 5, the strategy to solve the MS-RPCPP is described as follows: 

(1)	 Find a connected spanning subgraph which has at least k edges incident to the 
depot, satisfying that the weight (with respect to function max{0,w(⋅) − p(⋅)} ) 
of the subgraph is minimized.

(2)	 Partition the above subgraph into k subgraphs, and then construct a tour for each 
subgraph.

According to the above strategy, we design an algorithm (Algorithm 2) in the following.
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By Algorithm 2, we obtain the following result for the MS-RPCPP.

Theorem  2  The algorithm AMS is a 2-approximation algorithm to solve the MS-
RPCPP and it runs in time O(n2).

Proof  It is clear to see that the algorithm can correctly indicate whether there is a 
feasible solution to the MS-RPCPP. We need only consider case that there are feasi-
ble solutions for the MS-RPCPP in the following.

For any instance G = (V ,E;w, p) of the MS-RPCPP, let C∗ denote an optimal solu-
tion of instance G to the MS-RPCPP, EC

∗ ⊆ E denote the subset of edges traversed 
by tours in C∗.

For an optimal solution C∗ to G as an instance of the MS-RPCPP, by using 
Lemma 5, we obtain a fact that all tours in C∗ collectively traverse each edge in E 
at most twice, meaning that the number of edges in EC

∗ incident to r is at least k, 
and (V ,E1 ∪ (EC

∗⧵E1)) is a spanning connected subgraph of G. For the subset E1 , 
Step  2 produces a subset ES ⊆ E2 of minimum weight with respect to w′′ so that 
G1,S = (V ,E1 ∪ ES) is connected, and has at least k edges incident to the depot r. 
This implies that

w��(ES) ≤ w��(EC
∗ ⧵ E1).
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For the set C of tours produced at Step  5, since E1,ES ⊆ EC and E1 ∩ ES = � , we 
have p(E⧵EC) ≤ p(E) − p(E1) − p(ES) = p(E2) − p(ES) , which means

It follows that

where the penultimate inequality follows from w(E1⧵EC
∗ ) < p(E1⧵EC

∗ ) because 
w(e) < p(e) for all e ∈ E1 (Fig. 1).

Thus, we obtain

This shows that the algorithm AMS is a 2-approximation algorithm to solve the 
MS-RPCPP.

The complexity of the algorithm AMS can be determined as follows: (1) Using 
the MST-DC algorithm [9], the running time of Steps 1-2 is O(n2) that computes 
E1 and ES . (2) Using the BFS method [13, p.28-29] to partition the graph G1,S into 
k subgraphs H1,… ,Hk , the running time of Step 3 is O(n2) . (3) Applying an algo-
rithm in [6] to determine an Euler tour, the running time of Step 4 is O(m) due to ⋃k

i=1
E(Hi) = E1 ∪ ES . Hence, the running time of the algorithm AMS is O(n2) . 	�  ◻

p(ES) + p(E ⧵ EC) ≤ p(E2).

w(E1) + w(ES) + p(E ⧵ C) = w(E1) + w��(ES) + p(ES) + p(E ⧵ EC)

≤ w(E1) + w��(EC
∗ ⧵ E1) + p(E2)

= w(E1) + w(EC
∗ ⧵ E1) − p(EC

∗ ⧵ E1) + p(E2)

= w(EC
∗ ) + w(E1 ⧵ EC

∗ ) + p(E2 ⧵ EC
∗ )

< w(EC
∗ ) + p(E ⧵ EC

∗ ) ≤ h(C∗).

h(C) = w(C) + p(E ⧵ C)

= 2(w(E1) + w(ES)) + p(E ⧵ C)

≤ 2h(C∗).

Fig. 1   The interpretation of 
w(E1) + w(EC∗ ⧵E1) = w(EC∗ ) + w(E1⧵EC∗ ) 
and −p(EC

∗⧵E1) + p(E2) = p(E2⧵EC
∗ )
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5 � Conclusion and further work

In this paper, we consider the restricted min–max k -Chinese postman problem with 
penalties (MM-RPCPP) and the restricted min–sum k -Chinese postman problem 
with penalties (MS-RPCPP), respectively. We obtain the following two main results: 

(1)	 We design a 
(

7

2
−

2

k

)
-approximation algorithm in time O(n3) to solve the MM-

RPCPP.
(2)	 We present a 2-approximation algorithm in time O(n2) to solve the MS-RPCPP.

In further work, we shall study other restricted routing problems with penalties. In par-
ticular, we intend to study the following problem (that we call the budgeted restricted 
Chinese postman problem with penalties).

Given an undirected graph G = (V ,E;w, p) with a depot r ∈ V and a budget B ∈ ℝ
+ , 

each edge has a weight, a traverse time and a penalty, it is asked to find a set of tours 
starting from r and collectively covering all vertices, such that the maximum traverse 
time of tours is at most B. The objective is to minimize the sum of weights of all tours 
plus the total penalty paid for uncovered edges.
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