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Abstract
This paper presents an algorithm based on the variable neighborhood search (VNS) 
metaheuristic, called smart general VNS (SGVNS), to solve the multi-depot open 
vehicle routing problem with time windows (MDOVRPTW). For the problem, two 
single-objective approaches are proposed for cost assessment: one for reducing 
the total distance covered and the other for reducing the total number of vehicles 
used and, after, the total distance covered. SGVNS involves the perturbation and 
local search phases. In the perturbation phase, gradual changes are carried out in 
the neighborhoods to expand the diversification of solutions and escape from local 
optima. The random combination of specific neighborhood structures is used in the 
local search to refine the solution generated in the previous phase. As no instances 
are known in the literature for MDOVRPTW, the computational tests are executed 
in two groups of classic MDVRPTW instances, involving up to 960 customers, 12 
depots, and 120 vehicles. The present study made it possible to investigate cost 
improvements through the use of the MDOVRPTW model when compared to the 
MDVRPTW. There was a reduction in the distance covered in all instances evalu-
ated. The total distance covered decreased by 12.07% in one of the reference groups 
and 10.43% in the other. For the first group, the fleet reduction occurred in 75% of 
the instances. In the second group, there was a reduction in all instances. It corre-
sponds to − 10.42% and − 24.13% of the total vehicles used in each group, respec-
tively. The SGVNS algorithm proved effective for the two problems for which it was 
applied, either in reducing the total traveled distance or in reducing the fleet.
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1  Introduction

This article addresses the multi-depot open vehicle routing problem with time 
windows (MDOVRPTW). In this problem, a homogeneous fleet of vehicles must 
depart from a set of depots and serve a set of consumers within a time window 
for each one. Unlike traditional vehicle routing problems, the used vehicles are 
not required to return to the original depots after delivering goods to customers. 
MDOVRPTW consists of finding the shortest routes and, hence, the objective is 
to minimize the total distance covered by the vehicles [1, 2]. On the other hand, 
the current article also addresses a variant of MDOVRPTW, which we named 
MDOVRPTW*. This variant seeks first to minimize the number of used vehi-
cles and, after, to minimize the total covered distance. Hence, MDOVRPTW* is 
a problem solved hierarchically, and this methodology considers the addition of 
a new vehicle as the primary cost to be minimized and, consequently, the total 
covered distance by these vehicles as the secondary cost. Therefore, it emulates 
the traditional methodology adopted for solving the vehicle routing problem 
with time windows (VRPTW). To our knowledge, this variant has not yet been 
addressed in the literature.

According to Brandão [3], Repoussis et al. [4] and Shen et al. [2], open vehi-
cle routing problems are frequently encountered in the real-world. These prob-
lems appear when the companies do not have their own fleet of vehicles for the 
distribution of goods or, in some cases, the existing fleet is not enough to serve 
the customers and, therefore, some external vehicles must also be hired. These 
same characteristics are found in school bus routing problems and train or air-
plane route planning, as long as the routes start and end at different points. These 
are some examples that make it more suitable for describing various real-world 
problems. The number of depots involved is another important characteristic in 
this type of problem since it is common for companies to have several distribu-
tion centers. On the other hand, the time window maintains the adherence of this 
type of problem to the customers’ needs by defining their best service schedules. 
MDOVRPTW*, by its turn, is in line with the environmental concerns of lesser 
use of vehicles, especially in the case of contracted fleets and autonomous vehi-
cles, where secondary costs arising from driver hiring and vehicle maintenance 
are not considered. However, to our knowledge, it has not yet been addressed in 
the literature. These characteristics make MDOVRPTW and MDOVRPTW* suit-
able for treating several real problems.

As pointed out by Cordeau et  al.  [5] and Brandão  [3], MDOVRPTW and 
MDOVRPTW* are extensions of MDOVRP and OVRPTW, which are NP-Hard 
problems, and, therefore, they are also NP-hard ones. This claim justifies the 
application of metaheuristics for solving them. In the current article, we apply 
the smart general variable neighborhood search (SGVNS) developed by Rego and 
Souza  [6] to treat these two problems. SGVNS is a general variable neighbor-
hood search-based algorithm in which the basic variable neighborhood descent 
(BVND) [7] is the local search method. However, while Rego and Souza  [6] 
used BVND as a local search method, we applied the randomized basic variable 
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neighborhood descent (RBVND or RVND in the nomenclature of Subramanian 
et al.  [8]). Unlike BVND, this procedure does not require a neighborhood order 
calibration. Furthermore, the best order of neighborhoods can be instance-
dependent, requiring calibrating these orders for each instance [8, 9]. This local 
search strategy has been used successfully for solving various routing problems, 
as in [10–12]. Finally, Bezerra et al. [13] addressed the multi-depot vehicle rout-
ing problem with time windows (MDVRPTW), aiming to minimize the vehicle 
fleet. This problem is the closed-route version of MDOVRPTW. The authors pro-
posed a smart general variable neighborhood search with adaptive local search 
(SGVNSALS) to solve this problem. The results showed that this algorithm pro-
vided a vehicle fleet average reduction of up to 23.32% of the evaluated instances.

The main contributions of this article are: 

(1)	 The proposition of MDOVRPTW* as a new variant of the class of multi-depot 
open vehicle routing problems;

(2)	 The adaptation of the smart general variable neighborhood search (SGVNS) for 
treating both MDOVRPTW and MDOVRPTW*;

(3)	 The development of an efficient local search method for SGVNS;
(4)	 An extensive analysis of the results achieved by the proposed algorithm, compar-

ing them with the results with and without fleet reduction.

The remainder of this article is organized as follows. Section  2 introduces 
MDOVRPTW and MDOVRPTW*. Section 3 presents a literature review on vehicle 
routing problems related to the ones addressed in this work. Section 4 presents the 
mathematical formulations for the addressed problems. Section 5 describes the pro-
posed SGVNS-based algorithm for treating these two problems. Section 6 reports 
the computational results obtained with the SGVNS algorithm, and the statistical 
analysis of its performance are shown in Sect. 7. Section 8 concludes the article with 
a general analysis of the addressed problem.

2 � Multi‑depot open vehicle routing problem with time windows

The multi-depot open vehicle routing problem with time windows (MDOVRPTW) 
consists of determining a set of routes that minimize the total distance traveled, 
serving all customers, respecting the vehicle capacity, the maximum duration on the 
routes, and the time windows in which the customers must be served. The character-
istics of this problem are: 

(1)	 The number of depots is greater than one;
(2)	 Each vehicle starts its route in a depot;
(3)	 The capacity of each vehicle is known;
(4)	 The vehicle fleet is homogeneous;
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(5)	 Each customer is served by only one vehicle;
(6)	 The total demand for each route cannot exceed the capacity of the vehicle that 

is on the route;
(7)	 The customer time window must be met;
(8)	 Each route has a maximum duration to be covered;
(9)	 The vehicles do not return to the depot.

In this article, we also address a variant of this problem, named MDOVRPTW*. 
The solution strategy for this problem consists of building the solution hierarchically 
in such a way that, first, we seek to minimize the number of vehicles used and, in the 
sequel, to minimize the total distance traveled. This characteristic is added by the 
following formulation: 

	(10)	 The total number of vehicles used must be minimized, and, after, the total 
distance traveled must be minimized.

These characteristics allow describing the problems under study. Table  1 sum-
marizes the notations used in this description. These problems, in which N custom-
ers are served by M depots, are defined from a complete graph G = (V,A) , with V 

Table 1   Notations used in the description of MDOVRPTW and MDOVRPTW*

Acronym Description

� Weight for the number of vehicles
� Weight for the distance traveled
C Set of customers, C = {1, 2,… ,N}

D Set of depots, D = {N + 1,N + 2,… ,N +M}

V Set of vertices representing depots and consumers, V = D ∪ C

A Set of arcs representing the distances (or times) between a 
depot and a consumer or between two consumers

K Set of vehicles
Kd Set of vehicles of a depot d
d Depot ∈ D

qi Demand of customer i
hi Service time of customer i
ei Start of the service window for customer i
li End of the service window for customer i
MT Maximum time spent en-route
VC Vehicle capacity
TSki Arrival time for vehicle k in customer i
Tk Spent time by the vehicle k on a route
WUk Total waiting time to unload the vehicle k
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being a set of (N +M) vertices and A a set of arcs. Therefore, the set V results from 
the union of two subsets, namely, the set of customers to be served, represented 
by C = {1, 2,… ,N} , and the set of depots D = {N + 1,N + 2,… ,N +M} , so that 
V = D ∪ C and D ∩ C = ⊘ . For the set K of vehicles, there is a subset Kd ⊂ K for 
each depot d ∈ D , where ∣ K ∣=∣ KN+1 ∣ + ∣ KN+2 ∣ +⋯+ ∣ KN+M ∣ . The vehicle 
fleet is homogeneous so that all vehicles k ∈ K have the same capacity VC, maxi-
mum duration time of the route MT, and utilization cost � . For each consumer i ∈ C , 
there is a positive demand qi , which must be met in a time window [ei, li] . There is 
a service time hi that starts at the arrival time for vehicle k in customer i, TSki , such 
that ei ≤ TSki ≤ li . For any depot d ∈ D , both demand qd and service time hd have 
zero value, that is, qd = hd = 0 . Each arc (i, j) ∈ A is associated with a non-negative 
cost cij , which can represent both the distance between the respective nodes, or the 
travel time, or other measurement value.

Figures 1a and 1b illustrate solutions for the MDOVRPTW and MDOVRPTW*, 
respectively. In these examples, the fleet of eight vehicles is divided equally among 
the depots. The approached instance has two depots, which serve eighteen cus-
tomers. There is a homogeneous fleet of eight vehicles, each one with a capacity 
of VC = 8 . The en-route time of each vehicle cannot exceed MT = 20 . Each arc 
has a cost cij , given by the travel time between the node i and the node j. A tuple 
(qi, hi, [ei, li]) is associated with the node i, being, respectively, qi the demand, hi the 
service time, and [ei, li] the time window for this node i.

Table 2 presents the data for the examples shown in Fig. 1. For each vehicle k, 
the column “Routes” shows the routes created; the column cij represents the cost 
between the vertices i and j; hi represents the service time spent on the customer i; 
WUk , the waiting time to unload the vehicle k; Tk represents the total time spent by 
the vehicle k on the route; Qk represents the total cargo carried on the route k.

Note that the solution for MDOVRPTW shown in Fig. 1a has 7 routes, while the 
solution for MDOVRPTW*, shown in Fig. 1b, has 6 routes.

Fig. 1   Example of solutions to MDVRPTW and MDVRPTW*
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3 � Literature review

The open vehicle routing problem (OVRP) was first addressed by Schrage  [14]. 
Since then, much research has emerged into a variety of OVRPs. Table 3 reports 
some studies in open VRP. This table lists the problem, the author(s), and the algo-
rithms or methods proposed in each study.

Brandão [15] developed a tabu search algorithm (TSA) to solve the OVRP. Hos-
seinabadi et  al. [16] proposed the gravitational emulation local search algorithm 
(GELS) to solve the OVRP. In both studies [15, 16], the objective was to reduce the 
traveling time, distance, and the number of vehicles used.

The OVRP with Time Windows (OVRPTW) was addressed by Repoussis 
et  al.  [4]. The authors developed a heuristic to solve the OVRPTW by utilizing a 
greedy look-ahead solution framework for customer selection and route insertion. 
In Redi et al.  [17], an improved variable neighborhood search (VNS) algorithm is 
proposed to solve the problem. The VNS features a route construction mechanism 
to ensure that customers with earlier time windows are served first. The proposed 
VNS was tested on 12 R1 and 8 RC1 datasets of classical VRPTW instances [22]. 
In recent work, Chen et al. [18] solved a real-life container transportation problem. 
They developed a variable neighborhood search algorithm with Reinforcement 
Learning (VNS-RLS). The algorithm was applied in 15 instances from the real-life 
Ningbo Port dataset.

The MDOVRP was introduced by Tarantilis et  al.  [23]. Soto et  al.  [19] pro-
posed the multiple neighborhood search algorithm hybridized with a Tabu 
Search (MNS-TS) for solving this problem. The authors introduced some ejection 
chain techniques to reduce the size of the neighborhoods proposed. In Lahyani 
et  al.  [20], a hybrid algorithm based on a hybrid adaptive large neighborhood 
search (HALNS) heuristic was developed. The method combines the power of 

Table 3   Problems, authors and solution methods for open vehicle routing problems

Problem Authors Algorithm/method

OVRP [15] Tabu search algorithm (TSA)
[16] Gravitational emulation local search algorithm (GELS)

OVRPTW [4] Greedy look-ahead
[17] VNS
[18] VNS with reinforcement learning (VNS-RLS)

MDOVRP [19] Multiple neighborhood search hybridized with a tabu search (MNS-TS)
[20] Hybrid adaptive large neighbourhood search algorithm (HALNS)
[3] Memory-based iterated local search algorithm (MBILSA)
[1] Mathematical programming

MDOVRPTW 
(variants)

[21] Hybrid genetic algorithm with adaptive local search
[2] Gravitational emulation local search algorithm (GELS)
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an ALNS algorithm to perform a diverse and thorough search of the solution 
space with local search improvement procedures to intensify the search for good 
and promising solutions. Brandão [3] presented the memory-based iterated local 
search algorithm (MBILSA). The moves performed during the local search are 
recalled, and this historical search information is then used to dene the moves 
executed inside the perturbation procedures. Lalla-Ruiz and Mes [1] proposed a 
two-index-based mathematical formulation for the MDOVRP. They also assessed 
the contribution of alternative constraints for handling flow conservation and 
sub-tours.

A variant of the MDOVRPTW under shared depot resources was addressed 
by Li et al. [21] as the combination of MDVRPTW and OVRP. In this problem, 
the vehicles may end at the depot nearest to the last customer. The problem was 
solved with a hybrid genetic algorithm with an adaptive local search. In Shen 
et al. [2], the authors solved the MDOVRPTW, which considers low-carbon trad-
ing policies. The low-carbon MDOVRPTW model was constructed with mini-
mum total costs, which include the driver’s salary, penalty costs, fuel costs, and 
carbon emissions trading costs. The solution was obtained through the particle 
swarm optimization (PSO) and tabu search (TS) algorithms.

In terms of techniques for the solution of routing-oriented problems, there are 
many in the literature; however, there is a large number of recent studies applying 
variable neighborhood search-based methods, as in studies of Smiti et  al.  [24], 
Bezerra et  al.  [25], Derbel et  al.  [26], Sanchez-Oro et  al.  [27], Ren et  al.  [28], 
Karakostas et al. [29], Barrero et al. [30], and Karakostas and Sifaleras [31]. The 
good performance of these methods in solving routing problems justifies our pro-
posal to deal with the problems under study.

It is important to highlight that to the best of our knowledge, no research 
addresses the open VRP with multi-depots and time windows, with the primary 
objective to reduce the number of vehicles, as the proposed MDOVRPTW*.

4 � Mathematical formulations

The mathematical formulations for MDOVRPTW and MDOVRPTW* are based 
on those presented in Li et al. [21], Brandão [3], and Repoussis et al. [4]. Table 1 
shows the used notations in these formulations. Initially, the following decision 
variables are defined:

(1)xkij =

{
1, if vehicle k visits consumer j after consumer i

0, otherwise

(2)yk =

{
1, if vehicle k is used;

0, otherwise.
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Considering that c
id
= 0, ∀ i ∈ C, d ∈ D, i.e., the return distance of a vehicle to 

the depot is null, the formulation for MDOVRPTW is given by:

 subject to:

(3)zjk =

{
1, if customer j is the last customer to be visited by vehicle k;

0, otherwise.

(4)(MDOVRPTW)min
∑

k∈K

∑

i∈V

∑

j∈V

cijxkij (4)

(5)
∑

k∈K

∑

j∈V

xkji = 1, ∀i ∈ C,

(6)
∑

j∈V

xkji =
∑

j∈V

xkij + zik, ∀i ∈ C,∀k ∈ K

(7)
∑

j∈C

xkdj =
∑

j∈C

zjk, ∀k ∈ K,∀d ∈ D

(8)
∑

d∈D

∑

j∈C

xkdj ≤ 1, ∀k ∈ K,

(9)
∑

d∈D

∑

i∈C

xkid = 0, ∀k ∈ K,

(10)
∑

i∈L

∑

j∈L

xkij ≤∣ L ∣ −1, ∀L ⊆ C, k ∈ K,

(11)
∑

i∈D

∑

j∈D

xkij = 0, ∀k ∈ K,

(12)xkij(TSki + hi + cij − TSkj) ≤ 0, ∀k ∈ K,∀i, j ∈ V,

(13)ei ≤ TSki ≤ li, ∀i ∈ C,∀k ∈ K,

(14)
∑

i∈V

∑

j∈C

qjxkij ≤ VC, ∀k ∈ K,

(15)
∑

i∈V

∑

j∈V

(cij + hj)xkij ≤ MT , ∀k ∈ K,
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In turn, the mathematical formulation of MDOVRPTW* is given by:

 subject to:

Constraints (5) ensure that each customer i is visited by exactly one vehicle k. Con-
straints (6) guarantee that if a vehicle k arrives at customer i, this vehicle must leave 
this customer or, then, this customer will be the last one on the route.  Constraints (7) 
assure that if a vehicle starts the route at a given depot, exactly one customer will be 
the last customer on the route.  Constraints (8) guarantee that a vehicle will leave 
a depot, while constraints (9) assure that it will not return to it or another depot. 
These constraints define the routing condition as open. Constraints (10) assure that 
the graph is connected, as well as the sub-tours elimination. Constraints (11) estab-
lish that the vehicle cannot travel directly from depot i to depot j. Constraints (12) 
present the order of visits to the nodes, once if the vehicle k travels directly from 
the node i to the node j, then the moment of arrival TSkj at the node j must be equal 
to (TSki + hi + cij) . Constraints (13) guarantee the occurrence of the service on cus-
tomer i within the time window [ei, li] . Constraints (14) ensure that the load will not 
exceed the capacity of the vehicle k. Constraints (15) define that the total duration of 
the route is at most equal to MT. Constraints (19) show which vehicles will be used, 
and, finally, Constraints (16) and (20) define the binary domain of the decision vari-
ables x, z,  and y.

Expression  (4) is the objective function of MDOVRPTW. This function repre-
sents the total covered distance, once cij is the distance between the customers i and 
j, and must be minimized. It is the focus of this problem. On the other hand, Expres-
sion  (17) shows the objective function of MDOVRPTW*, also to be minimized. 
This objective function is given by the weighted sum between the cost associated 
with the distance between customers and the total number of used vehicles. The 
weighting factors � and � show the relative importance of each of the two objectives 
to achieve the desired solution. The values that these weighting factors take for each 
problem are described in Sect. 5.2.

(16)xkij, zik ∈ {0, 1}, ∀ i, j ∈ V,∀k ∈ K.

(17)(MDOVRPTW∗
) min �

∑

k∈K

∑

i∈V

∑

j∈V

cijxkij + �
∑

k∈K

yk,

(18)Constraints (4)–(14)

(19)yk ≥

∑
i∈V

∑
j∈V xkij

∣ N ∣2
, ∀k ∈ K,

(20)yk ∈ {0, 1}, ∀k ∈ K.
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5 � Smart general variable search algorithm

The general variable neighborhood search (GVNS) [7, 32] is a metaheuristic that 
performs perturbation and local search procedures based on systematic neighbor-
hood changes until reaching a predefined stopping criterion. Perturbations are ran-
dom moves gradually applied in a solution s to guide the search toward other basins 
of attraction. Each perturbed solution s′ is refined through the Basic Variable Neigh-
borhood Descent (BVND) [7] local search method, guiding the search to a local 
minimum. The method returns the best solution found after the repeated application 
of these two procedures.

In this paper, we propose an algorithm named SGVNS, an acronym for Smart 
GVNS. The SGVNS algorithm uses the smart version of the GVNS method 
developed in [6]. Reinsma et al. [33] introduced the adjective “smart” to refer to 
how to increase the level of perturbation in an iterated local search (ILS) algo-
rithm. Traditionally, there is an increase in the perturbation level in a classic ILS 
algorithm whenever there is no improvement in the current solution. However, 
this way of changing the perturbation level can lead to a loss in the quality of the 
final solution due to the hasty way of leaving the current search region. As per-
turbation occurs randomly, other choices of perturbed solutions within the same 
current search region can lead to better solutions through local search. Based 
on this observation, the decision to increase the perturbation level in the smart 
strategy occurs only after a certain number of local search applications without 
improvement in the quality of the current solution. Thus, this strategy allows a 
better investigation to be carried out in a specific region of the solution space, 
enabling a more precise intensification during the algorithm’s execution. On the 
other hand, while Rego and Souza [6] apply the BVND as local search method, 
we use the randomized basic variable neighborhood descent (RBVND) method 
[8, 34].

To describe the proposed algorithm, we use throughout this section the nota-
tions described in Table 4 in addition to the notation introduced in Table 1.

This section is organized as follows. In Sect. 5.1, we show how to represent 
a solution. Section 5.2 describes the function used for evaluating the solution of 
MDVRPTW and MDOVRPTW*. Section  5.3 presents the procedure for gen-
erating an initial solution to the problem. Section 5.4 shows the neighborhood 
structures used to explore the problem’s solution space. Section 5.5 details the 
perturbation procedure, and Sect. 5.6 describes the local search method. Finally, 
Sect. 5.7 presents the proposed SGVNS algorithm.

5.1 � Solution representation

We represent a solution of the two problems through a set of lists 
R =

{
rN+1
1

, rN+1
2

,… , rN+1
m

, rN+2
1

, rN+2
2

,… , rN+2
n

, r
N+∣D∣

1
, r

N+∣D∣

2
,… , r

N+∣D∣

t

}
 . In this set, 

rN+1, rN+2, and rN+∣D∣ refer to the set of routes of each depot (from N + 1 to N+ ∣ D ∣ ). In 
turn, m, n, t ≥ 1 refer to the number of routes in each depot. For the example of Fig. 1a, 
r19
1

= {19, 1, 2} , r19
2

= {19, 5, 6, 7} , r19
3

= {19, 3, 9, 11} represent the routes of 
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depot  19, and r20
1

= {20, 4, 8, 10} , r20
2

= {20, 14, 17, 15} , r20
3

= {20, 12, 18} , 
r20
4

= {20, 16, 13} the routes for depot 20.

5.2 � Evaluation functions

As mentioned before, MDOVRPTW and MDOVRPTW* have different goals. 
In the case of MDOVRPTW, the objective is to reduce the total traveled dis-
tance using the total number of vehicles available. On the other hand, for 
MDOVRPTW*, the primary objective is to reduce the vehicle fleet, i.e., the 
number of used vehicles, and the secondary one is to reduce the total traveled 
distance. The evaluation functions of each problem are presented and discussed 
below. These evaluation functions add, to the objective functions of the math-
ematical formulations described in Sect. 4, a parcel of infeasibility to deal with 
the generation of infeasible solutions by the proposed algorithm during the explo-
ration of the solution space of the problems.

Table 4   Notations used in the description of the SGVNS algorithm

Acronym Description

L Total distance traveled
F(s) Cost of solution s
cdi Travel cost between a customer i and a depot d
rd List with routes of the depot d
rd1d2 Ratio of customer proximity to the two closest depots
s Solution of the MDOVRPTW*
v Index representing one of the neighborhood structures
q̄ Average of demands
s̄ Average of customers’ service times
�(k) Cost for violating the constraints of the vehicle k
� Total amount of infeasibility of the solution due to non-compliance 

with vehicle constraints
�Q Penalty factor for overload vehicle
�T Penalty factor for overduration
�TW Penalty factor for delay
� Correction factor for single thread rating between used processors
A

′ Set of pairs (i, d) of customers i assigned to the closest depot d
B
′ Set of pairs (i, d) of customers i assigned to the second closest depot d

HD Set of pairs (i, d) of customers i assigned to the depot d
HR Set of pairs (i, rd1d2)
PO Set of perturbation operators
LSO Set of local search operators
R Set of lists that represent the routes of the depots
U Set of vehicles used



2045

1 3

A general VNS for the multi‑depot open vehicle routing problem…

5.2.1 � Evaluation function to fleet reduction

As in Ombuki et al. [35], which addresses VRPTW, we evaluate a solution s for 
MDOVRPTW* by a evaluation function F(s) that represents a weighted sum of 
three objective functions to be minimized:

The first objective function (L) seeks to reduce the total traveled distance by all 
used vehicles; the second objective function ( ∣ U ∣≤∣ K ∣ ) tries to reduce the number 
of used vehicles. The last objective function ( � ) seeks to minimize the violations 
that may occur due to applying the moves to explore the problem’s solution space. 
These violations can occur due to the vehicle overload, customer service delays, and 
extrapolation of the route’s maximum duration.

The three objective functions of Eq. (21) are weighted by the values � , � , and 
� , respectively, that reflect the relative importance of each objective function for 
reaching the solution of MDVRPTW*. As proposed in Ombuki et al. [35], we set 
� = 0.001 . The parameter � is calculated by:

According to Eq. (22), the parameter � represents the average distance between each 
pair of customers. Finally, the weighting factor � is given by:

where �(k) represents the penalization by violating the constraints imposed on the 
route of each vehicle k, being calculated as:

In these expression, the parameter �Q penalizes the vehicle overload, the parameter 
�T penalizes the time exceeded in the route duration of vehicle k, and the parameter 
�TW penalizes delays in the delivery of products by vehicle k. The delay TWk is the 
sum of the times that exceed the final time window of each customer belonging to 
the vehicle route k. In turn, the weighting values �Q , �T and �TW are calculated 
from the parameter � , the average demands q̄ , and the average service times h̄ for 
consumers, as defined below:

(21)F(s) = �L + � ∣ U ∣ +�

(22)� =
1

N

∑

i∈C

∑

j∈C

cij

(23)� =

∑

k∈U

�(k)

(24)�(k) = �Q max
{
0,Qk − VC

}
+ �T max

{
0, Tk −MT

}
+ �TWTWk

(25)𝜔Q
=
𝛼

q̄

(26)𝜔T
=𝜔TW

=
𝛼

h̄
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The use of penalties for treating constraint violations is a strategy commonly used 
in the optimization literature due to the high degree of difficulty in exploring the 
solution space of problems like VRP and variants using only feasible solutions. The 
algorithms proposed by Polacek et al.  [36] and Vidal et al.  [37], for example, use 
this strategy.

5.2.2 � Evaluation function to distance reduction

This section presents the evaluation function adopted for solving MDOVRPTW in 
order to reduce the total traveled distance by the used vehicles. This evaluation func-
tion for a solution s is given by:

As this evaluation function seeks to minimize the total traveled distance, the weight-
ing factor � is set to � = 1 . The second parcel of this evaluation function aims to 
stimulate the use of the whole vehicle fleet and, hence, the parameter � is calculated 
according to Eq. (22). The third parcel � of F(s) remains as described in Eq. (23), 
since the proposed algorithm also generates infeasible solutions.

5.3 � Construction of the initial solution

The procedure for building the initial solution was inspired by the algorithm pro-
posed by [38]. This algorithm first groups the customers for each depot and then 
generates the routes. This technique is performed here by Algorithms 1 and 2, 
respectively.

5.3.1 � Procedure for generating clusters

This section describes Algorithm 1, which performs the clustering procedure. While 
customers are not associated with any route, the method finds a depot that can 
accept them. This is shown in Algorithm 1 in lines 3–47. In lines 8–18, we deter-
mine the two depots closest to each customer i ∈ C

� . These depots were identified as 
d1 and d2 (lines 11 and 13). The distances between customer i and depots d1 and d2 
were named cd1,i and cd2,i , respectively. In line 15, the proximity ratio between each 
customer i and its depots d1 and d2 are calculated. The set of pairs {i, cd1,i∕cd2,i} , 
described in line  16, constitute the set HR . This set is sorted in ascending order 
from these ratios in line 19. Then, the customers are assigned to one of these depots. 
This procedure starts at line 22 and finishes in line 36. The distribution between 
depots occurs in a balanced way (lines  28–34). Therefore, in the order given by 
HR , each pair formed by the customer i ∈ C

� , and its respective depot d1 (or d2), 
is assigned to the sets HD and C′′ . In the new composition of set C′ , all assigned 

(27)F�
(s) = �L + �

||||K| − |U|||| + �
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customers are removed (line 37). In turn, the depots that have reached their capacity 
limit are also removed (lines 39–46). The algorithm returns the set HD with pairs of 
customers and depots.
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5.3.2 � Algorithm for generating routes

Algorithm  2 shows the procedure to construct the routes. The routes are con-
structed respecting the vehicles’ capacity, the maximum route time, and the cus-
tomers’ time windows. These routes are constructed in a partially greedy way. 
The customer i and the depot d, with {i, d} ∈ HD , are chosen from a previously 
fixed value � ∈ [0, 1] . If a real random value is less than or equal to � (line 4), 
then a customer j ∈ HD is chosen (line 5). Otherwise, the jth element is the first 
of the set HD (line 3). From empirical tests, the value of � was fixed in 0.6. In 
lines  7–8, the customer and depot are defined. The routes are represented in a 
subset rd ⊂ R that receives the customer i, as shown in line 10. In line 11, the pair 
{i, d} is dropped from HD . All customers must be served. This imposition can 
occur that the number of vehicles used can be greater than ∣ K ∣ . The algorithm is 
finalized in line 13, returning the set R of routes.

5.4 � Neighborhoods

To explore the MDOVRPTW and MDOVRPTW* solution spaces, we use neighbor-
hood operators that apply moves in the same depot on different routes (inter-routes), 
in the same route (intra-route), or between routes from different depots (inter-
depots). These neighborhood operators are described in the following.

5.4.1 � Perturbation operators

Three perturbation mechanisms PO = {PO1,PO2,PO3} were implemented: 

(1)	 PO1 (Eliminates route) it consists of eliminating a route rd ∈ R from a depot 
d and transferring its customers to other routes from the same depot or to other 
depot d′ . All choices are made at random. All insertions of customers into routes 
need to be feasible.
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(2)	 PO2 (ShiftDepot) a route of the set rd1 of routes from the depot d1 is transferred 
to another depot d2 , where d2 ≠ d1 . The depot d1 must have the greatest number 
of routes (at least two routes) and d2 the smallest one. If all depots have the same 
number of routes, d1 and d2 are randomly chosen.

(3)	 PO3 (SwapDepot) it consists of swapping a route of the set rd1 of routes from the 
depot d1 with a route of the set rd2 of routes of the depot d2.

5.4.2 � Local search operators

We used Swap, Reinsertion, and Permutation operators, widely applied in the litera-
ture on VRP and variants [8, 25, 37, 39–44]. They are described below.

Intra-route operators:

(1)	 LSO1 (Swap) it consists of swapping two customers in the same route.
(2)	 LSO2 (Reinsertion) a customer is removed and reinserted in another position in 

the same route.
(3)	 LSO3 (Or-opt2) two consecutive customers are removed and reinserted in 

another position in the same route.
(4)	 LSO4 (2-Opt) two non-adjacent edges are deleted and two others are added to 

generate a new route.
(5)	 LSO5 (3-Opt) three edges are excluded and all possibilities of exchange between 

them are tested to generate new routes.

Inter-routes operators:

(1)	 LSO6 (Swap(1,1)) it consists of swapping a customer vj from one route rk with 
a customer vt from another route rl belonging to the same depot.

(2)	 LSO7 (Shift(1,0)) it consists of transferring a customer vj from a route rk to 
another route rl belonging to the same depot.

Inter-depots operators:

(1)	 LSO8 (Swap(1,1)-InterDepot) it consists of swapping a customer vj from one 
route rk with a customer vt from another route rl belonging to another depot.

(2)	 LSO9 (Shift(1,0)-InterDepot) it consists of transferring a customer vj from a 
route rk to another route rl belonging to another depot.

The set of all local search operators is LSO = {LSO1,… ,LSO9}.

5.5 � Perturbation procedure

Algorithm 3 presents the perturbation procedure. In this algorithm, PO is the set of 
perturbation operators described in Sect. 5.5, POv is the vth operator that generates 
the perturbation solution, and p is the number of times that this operator is applied 
to the solution s. In line 6, the procedure returns the perturbed solution sp.
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5.6 � Local search

We used the randomized basic variable neighborhood descent (RBVND) algo-
rithm [34] as the local search method. RBVND is a variation of the basic variable 
neighborhood descent (BVND) method [32]. Instead of using a predefined order of 
neighborhoods to explore the solution space, it uses a random order at each call of 
the local search method. More specifically, whenever it is not possible to improve 
the current solution in a specific neighborhood, RBVND randomly selects another 
neighborhood to continue the search in the problem’s solution space. At the end of 
the method, it returns a local optimum concerning all explored neighborhoods.

Algorithm  4 presents the pseudocode of RBVND. In this algorithm, the set 
LSO

′ defines the neighborhood structures that will be used, which are randomly 
ordered from the set LSO (line 1). At each iteration (lines 3–11), the neighborhood 
LSO

�

v
∈ LSO

� is applied to the s solution, generating the neighbor s′ . In case of 
improvement of the current solution (line 5), it is updated, and the index v returns to 
the first neighborhood of LSO′ ; otherwise, the search moves to the next neighbor-
hood. The algorithm ends when it reaches the last neighborhood structure, and there 
is no improvement in the current solution. The refined solution is returned in line 12.

5.7 � Proposed algorithm

Algorithm  5 shows the pseudo-code of the SGVNS algorithm proposed to solve 
MDOVRPTW and MDOVRPTW*. Lines 1 and 2 show that an initial solution is 
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built using the procedures described in Algorithms 1 and 2, respectively. After the 
solution is created, the initial perturbation level, the index for the first neighborhood, 
the iteration counter without improvement, and the iteration counter for applying 
the local search procedure are set in 3, 4, 5, and 6, respectively. The main loop for 
SGVNS is between lines 7 and 27. The algorithm ends when the number of iter-
ations without improvement reaches its maximum value or the run time meets its 
maximum duration. At each iteration, the solution s is perturbed according to Algo-
rithm 3, generating a perturbed solution s′ through perturbation operations described 
in Sect. 5.5. In line 9, the local search procedure is applied in s′ according to Algo-
rithm 9 described in Sect. 5.6, returning an improved solution s′′ . If this solution s′′ 
is better than s, then we update the solution s, return to the first neighborhood and 
to the first perturbation level, and reset the iteration counter without improvement in 
lines 11–14, respectively. Otherwise, the perturbation level and the iteration counter 
are increased (lines 16–17). If the perturbation level meets its maximum level, i.e., 
maxLevel, the neighborhood is changed for the next. When it occurs, the perturba-
tion level is changed to its minimum value, i.e., p = 1 . If the last perturbation neigh-
borhood is reached, it is necessary to return to the first perturbation neighborhood 
(line  24) and consequently to the first perturbation level (line  25). In line  28, the 
SGVNS algorithm returns the best solution s found during the search.

Table 5   Characteristics of 
the instances used for tuning 
SGVNS with IRACE

Instance pr03 pr04 pr06 pr12 pr19 pr16

∣ C ∣ 144 192 288 96 216 288
∣ Kd ∣ 4 5 7 2 3 6
∣ D ∣ 4 4 4 4 6 4
� 2304 3840 8064 768 3888 6912
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6 � Computational results

The SGVNS algorithm was coded in C++ and executed on an Intel Xeon E5620 
2.40 GHz × 16 machine with 112 GB of RAM under the Linux operating system 64 
bits.

We do not find test instances for MDOVRPTW and MDOVRPTW* in the litera-
ture. Hence, we decide to use the MDVRPTW instances from Cordeau et al.  [45] 
and Vidal et al.  [37] as test instances for these open routing problems. We named 
Group I the set described in Cordeau et al. [45], and Group II the instances proposed 

Table 6   Tested parameter values and results returned by IRACE

Description Parameter Range Returned value

Maximum number of iterations with-
out improvement

iterMax {50, 100, 200, 300} {200, 100}

Maximum level of perturbation maxLevel {3, 4, 5, 6, 7} 5
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in Vidal et al. [37]. The first set is available at Networking and Emerging Optimiza-
tion—NEO,1 and the second one at Interuniversity Research Centre on Enterprise 
Networks, Logistics and Transportation—CIRRELT.2 The distance in Group I and 
Group II is the Euclidean distance, and it is supposed that the vehicle’s travel time 
between two nodes is equal to the Euclidean distance. The vehicle fleet is homoge-
neous in both groups.

The characteristics of instances of Group I and Group II are described in Tables 7 
and 8, respectively. The first five columns of each table describe the characteristics 
of the instances, i.e., the number of customers, depots, vehicles per depot, and the 
total of available vehicles, respectively. Group I has 20 instances, such that the first 
ten instances have tight time windows, while the last ten ones have wide time win-
dows. Group II contains 28 instances with a large number of customers and depots.

6.1 � Parameter tuning

We used the iterated racing for automatic algorithm configuration (IRACE) [46] 
for tuning the SGVNS algorithm parameters. To calibrate the parameters iter-
Max and maxLevel, we selected 30% of the Group I instances. Table 5 shows the 
six chosen instances, and it is important to highlight that they contain different 
characteristics representative of the set of instances. We ordered them by the val-
ues of � =∣ C ∣ ⋅ ∣ Kd ∣ ⋅ ∣ D ∣ and grouped them by tight and wide time windows, 
respectively.

Table 6 reports the range of the tested values and the returned values by IRACE. 
The parameter iterMax was set to 100; above this value, the algorithm required more 
computational time without significantly improving the results.

6.2 � Group I results

Table  7 reports the best results found by SGVNS in instances of Group I for 
MDOVRPTW and MDOVRPTW* and a comparison of its results with those shown 
in [37] for MDVRPTW. In this table, the first five columns show the MDVRPTW 
characteristics. The column “MDVRPTW” shows the best result for each instance 
from the literature. Column “SGVNS” shows the results found for the MDOVRPTW 
and MDOVRPTW*. For each instance, the distance, number of vehicles used, and 
spent time are shown in columns “Distance”, “ K ”, and “Time”, respectively. The 
differences concerning the distances and vehicles for both problems are shown in 
column “Difference between MDOVRPTW* and MDOVRPTW”. The line “Sum” 
of this table shows the total number of available vehicles and the total distance for 
the MDVRPTW; the total distance, the number of vehicles used, and spent times 
in all instances for the MDOVRPTW and MDOVRPTW*; the difference between 
the total distance and the total number of vehicles used for the MDOVRPTW* 

1  http://​neo.​lcc.​uma.​es/​vrp/​vrp-​insta​nces/.
2  https://​w1.​cirre​lt.​ca/​~vidalt/​en/​VRP-​resou​rces.​html.

http://neo.lcc.uma.es/vrp/vrp-instances/
https://w1.cirrelt.ca/%7evidalt/en/VRP-resources.html
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and MDOVRPTW. For Group I, the SGVNS algorithm was executed 30 runs per 
instance, and the value of the MaxTime parameter was set to 60 min.

The results show a reduction of approximately 12.07% in the total distance for 
MDOVPTW for all evaluated instances when compared with MDVRPTW. In all 
instances, there was a reduction in the distance traveled. The MDOVRPTW* results 
showed that the number of vehicles used was reduced by 10.42% on average com-
pared to the total number of available vehicles. Among the 336 vehicles available in 
Group I, only 301 were used by the SGVNS solution. Even though it is not the aim 
associated with MDOVRPTW*, the total distance of Group I decreased by 3.65% on 
average compared with the MDVRPTW solution.

6.3 � Group II results

Table 8 shows the best results generated by the SGVNSALS algorithm for Group II. 
The structure of this table is similar to that adopted for Table 7. As in Sect. 6.2, the 
results obtained by SGVNS for MDOVRPTW and MDOVRPTW* are compared 
to those of MDVRPTW shown in Vidal et al. [37]. For Group II, the algorithm was 
executed 20 runs per instance, and the value of the MaxTime parameter was set to 
180 min.

For all instances of Group II, there was also a reduction in the distance and 
number of used vehicles. For MDOVRPTW, there was a reduction of 10.43% in 
the total traveled distance compared with the results from MDVRPTW shown in 
Vidal et  al.  [37]. Concerning MDOVRPTW*, there was a reduction of 24.13% in 
the number of used vehicles and 6.14% in the total traveled distance compared with 
the MDVRPTW results. Additionally, the results from MDOVRPTW* regard-
ing MDOVRPTW achieved a reduction of 23.59% in the number of used vehicles, 
alongside an increase of 4.79% in the total distance traveled. These results, reached 
in a challenging set of instances, justify the definition and study of this variant.

7 � Analysis of the proposed algorithm

In this section, the results of the SGVNS algorithm are statistically investigated. In 
Fig. 2a and 2b, the ordinate axis represents the gaps of the value of the median solu-
tions concerning distances and number of vehicles, respectively. The gaps were cal-
culated through:

gap_vehicle =
number of vehicles

median of vehicles
(28)

gap_distance =
distance

median of distances
(29)
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The results achieved by SGVNS concerning fleet reduction do not show signifi-
cant variations in its behavior. Figure 2a shows that the distribution occurs around 
the median. There is no variation for 50% of results between the first and third quar-
tile. The total amplitude was 0.34% . These results show the stability of the SGVNS 
algorithm concerning fleet reduction.

Figure 2b shows the results for distance deviation. It is possible to verify the sta-
bility in the behavior of the proposed algorithm concerning the distances it found. 
For MDOVRPTW, there is a variation of 4.27% in 50% of the results around the 
median values, and for MDOVRPTW*, this variation is 4.95% . The distances found 
by the SGVNS algorithm for MDOVRPTW* have a more significant number of out-
liers, which indicates the greater variation between these distances. Such variations 
are not atypical since distance reduction is not prioritized. When analyzing the dis-
tances through the errors related to the median values, it is concluded that there are 
no statistically significant differences between the two problems evaluated.

8 � General discussions and conclusions

This article introduced a variant for the MDOVRPTW, called MDOVRPTW*. In the 
MDOVRPTW, the goal is to reduce the distance traveled, while in MDOVRPTW*, 
the priority is to reduce the fleet size. An algorithm based on the VNS heuristic, 
called SGVNS, was developed for treating them. The SGVNS algorithm uses nine 
neighborhood structures based on insertion, swap, and shift moves as local search 
operators to refine the incumbent solution and three neighborhood structures as per-
turbation operators to escape from each local optimum found. As there are no spe-
cific instances for the addressed problems, the current article adopted the instances 
from Cordeau et al. [45] (Group I) and those defined in Vidal et al. [37] (Group II), 
originally proposed for the MDVRPTW.

The results achieved by SGVNS for the two addressed problems were compared 
with the best-found results for the MDVRPTW. In Group I, there was a 12.07% 

(a) Boxplot for the gap of the number of
vehicles.

(b) Boxplot for the gap of the distance.

Fig. 2   Boxplots of the SGVNS algorithm results
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reduction in the total distance traveled for the MDOVRPTW and a 10.42% reduction 
in fleet size for the MDOVRPTW*. In Group II, the algorithm achieved a 10.43% 
reduction in total distance traveled for the MDOVRPTW and a 24.13% reduction in 
fleet size for the MDOVRPTW*. Considering all instances (Groups I and II), there 
was a reduction in the total distance traveled for all of them and, besides, a fleet 
reduction in 92.65% of them. These results validate the proposition of MDOVRPTW 
as an important variant of vehicle routing problems and the proposed algorithm as a 
technique to solve these addressed problems.

In future work, we will address the challenge of including adaptive procedures in 
local search structures. Recently, several studies have shown high-quality results in 
the form of adaptation procedures in choosing neighborhoods like Derbel et al. [26], 
Karakostas et al. [29, 31], Ren et al. [28], Sanchez-Oro et al. [27], Smiti et al. [24] 
and in procedures involving machine learning techniques, like Sevaux et  al.  [47], 
Talbi [48], Karimi-Mamaghan et al. [49], and Silva et al. [50].
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