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Abstract
The quadratic termination property is important to the efficiency of gradient meth-
ods. We consider equipping a family of gradient methods, where the stepsize is 
given by the ratio of two norms, with two dimensional quadratic termination. Such 
a desired property is achieved by cooperating with a new stepsize which is derived 
by maximizing the stepsize of the considered family in the next iteration. It is proved 
that each method in the family will asymptotically alternate in a two dimensional 
subspace spanned by the eigenvectors corresponding to the largest and smallest 
eigenvalues. Based on this asymptotic behavior, we show that the new stepsize con-
verges to the reciprocal of the largest eigenvalue of the Hessian. Furthermore, by 
adaptively taking the long Barzilai–Borwein stepsize and reusing the new stepsize 
with retard, we propose an efficient gradient method for unconstrained quadratic 
optimization. We prove that the new method is R-linearly convergent with a rate of 
1 − 1∕� , where � is the condition number of Hessian. Numerical experiments show 
the efficiency of our proposed method.

Keywords Gradient methods · Quadratic termination · Asymptotic convergence · 
R-linear convergence

1 Introduction

The gradient method is well-known for minimizing a smooth function 
f (x) ∶ ℝ

n
→ ℝ , which updates the iterates by

(1)xk+1 = xk − �kgk,
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where gk = ∇f
(
xk
)
 and the stepsize 𝛼k > 0 depends on the method under considera-

tion. The classic steepest descent (SD) [1] and minimal gradient (MG) [2] methods 
determine �k by minimizing f

(
xk − �gk

)
 and ‖‖‖g

(
xk − �gk

)‖‖‖2 , respectively. Theoreti-
cally, the SD and MG methods will asymptotically perform zigzags between two 
directions, which often yield poor performance in many probelms [3–7].

In 1988, Barzilai and Borwein [8] proposed the following two novel stepsizes 
from the view of quasi-Newton methods,

and

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1 . Apparently, �BB1
k

≥ �BB2
k

 follows from 
the Cauchy–Schwartz inequality if sT

k−1
yk−1 > 0 . When f(x) is a quadratic function

where A ∈ ℝ
n×n is a real symmetric positive definite matrix and b ∈ ℝ

n , �BB1
k

 and 
�BB2
k

 can be regarded as the SD and MG stepsizes with retard, respectively, i.e.

Barzilai and Borwein [8] proved that the BB method is R-superlinearly convergent 
for the two dimensional strictly convex quadratic function. It has been shown that 
the BB method is globally convergent [9] with R-linear rate [10] for any dimensional 
cases. Although the BB method is nonmonotone, extensive numerical experimental 
results indicate that it performs much better than the SD method [11–13]. See [14, 
15, 16, 17, 18, 19, 20 and 21] for more BB-like methods.

In [22], Yuan derived a new stepsize, which together with the SD method pro-
duces the minimizer of a two dimensional strictly convex quadratic function in 
three iterations. In what follows, if a method can give the exact minimizer of a 
two dimensional convex quadratic function within finite iterations, we call it has 
the property of two dimensional quadratic termination. Based on the following 
variant of the Yuan stepsize,

Dai and Yuan [23] suggested the so-called Dai–Yuan (DY) gradient method with

(2)�BB1
k

= argmin
�∈ℝ

‖‖‖�
−1sk−1 − yk−1

‖‖‖2 =
sT
k−1

sk−1

sT
k−1

yk−1

(3)�BB2
k

= argmin
�∈ℝ

‖‖sk−1 − �yk−1
‖‖2 =

sT
k−1

yk−1

yT
k−1

yk−1
,

(4)f (x) =
1

2
xTAx − bTx,

�BB1
k

=
gT
k−1

gk−1

gT
k−1

Agk−1
= �SD

k−1
and �BB2

k
=

gT
k−1

Agk−1

gT
k−1

A2gk−1
= �MG

k−1
.

(5)
�DY
k

=
2��

1

�SD
k−1

−
1

�SD
k

�2

+
4‖gk‖2

2

(�SDk−1)
2‖gk−1‖2

2

+
1

�SD
k−1

+
1

�SD
k

,
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Clearly, �DY
k

≤ min{�SD
k
, �SD

k−1
} , which implies that the DY method is monotone. 

Interestingly, the DY method can even outperform the nonmonotone BB method. 
Recently, Huang et  al. [5] derived a new stepsize, say �H

k
 , such that the gradient 

method

together with �H
k

 achieves the two dimensional quadratic termination, where � is a 
real analytic function on [�1, �n] and can be expressed by Laurent series

such that 0 <
∑∞

k=−∞
dkz

k < +∞ for all z ∈
[
�1, �n

]
 . Here, �1 and �n are the small-

est and largest eigenvalues of A, respectively. Furthermore, �H
k

 reduces to �DY
k

 
when �(A) = I . The property of two dimensional quadratic termination has shown 
great potential in improving performances of gradient methods, see [24, 5, 25] for 
example.

To our knowledge, there is still lack of theoretical analysis for the two dimen-
sional quadratic termination of the Dai–Yang method [26] whose stepsize is given 
by

A remarkable property of the Dai–Yang method is that �P
k
 converges to the optimal 

stepsize 2

�1+�n
 (in the sense that it minimizes the modulus ‖I − �A‖2 , see [26, 27]). 

Moreover, the Dai–Yang method is able to find the eigenvectors corresponding to �1 
and �n.

In this paper, for a uniform analysis, we consider equipping the family

with the two dimensional quadratic termination property, which will be achieved by 
cooperating with

(6)𝛼k =

{
𝛼SD
k
, if mod (k, 4) < 2;

𝛼DY
k

, otherwise.

�k =
gT
k
�(A)gk

gT
k
�(A)Agk

(7)�(z) =

∞∑
k=−∞

dkz
k, dk ∈ ℝ,

(8)�P
k
=

‖‖gk‖‖2
‖‖Agk‖‖2

.

(9)�k =
‖‖�(A)gk

‖‖2
‖‖�(A)Agk

‖‖2

(10)�̃�k = argmax
𝛼k∈ℝ

𝛼k+1 = argmax
𝛼k∈ℝ

‖‖‖𝜓(A)
(
I − 𝛼kA

)
gk
‖‖‖2

‖‖‖𝜓(A)A
(
I − 𝛼kA

)
gk
‖‖‖2

.
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The above strategy of maximizing the stepsize value in the next iteration has been 
employed in [28] for the SD method. However, the analysis in [28] can not be 
directly applied to the family (9). Clearly, �P

k
 corresponds to the case �(A) = I in 

(9). We prove that each method in the family (9) will asymptotically alternate in 
a two dimensional subspace associated with the two eigenvectors corresponding to 
�1 and �n . In addition, for any given � , the stepsize (9) tends to the above optimal 
stepsize as k → ∞ , and the eigenvectors corresponding to �1 and �n can be obtained. 
Then, we show that limk→∞ �̃�k = 1∕𝜆n for n dimensional strictly convex quadratics. 
By adaptively taking �BB1

k
 and reusing �̃�k−1 for some iterations, we propose a new 

method for quadratic minimization problems. It is proved that the proposed method 
is R-linearly convergent with the rate of 1 − 1∕� , where � = �n∕�1 is the condition 
number of A. Our numerical comparisons with the BB1 [8], DY [23], SL (Alg.1 in 
[25]), ABBmin2 [28], SDC [29], and MGC [7] methods for solving unconstrained 
random and non-random quadratic optimization demonstrate that the proposed 
method is very efficient. Further, numerical experiments on quadratic problems 
whose Hessians are chosen from the SuiteSparse Matrix Collection [30] suggest that 
the proposed method is very competitive with the above methods.

The paper is organized as follows. In Sect. 2, we derive the new stepsize �̃�k and 
analyze its properties. The asymptotic behavior of the family (9) is also analyzed. 
Our new algorithm for quadratic minimization problems as well as its R-linear 
convergence are presented in Sect. 3. Section 4 presents some numerical compar-
isons of the proposed method and other successful gradient methods on solving 
quadratic problems. Finally, in Sect. 5 we give some concluding remarks.

2  A new stepsize and its properties

In this section, we derive the formula of �̃�k and analyze its properties.
To obtain �̃�k , we consider

The maximum value of F(�k) is achieved when F�(�k) = 0 , which holds for any �k 
satisfying

where �1 = c1c4 − c2c3 , �2 = c0c4 − c2
2
 and �3 = c0c3 − c1c2 with

The following lemma guarantees that (12) has two roots.

(11)F(�k) ∶= �2
k+1

=

‖‖‖�(A)
(
I − �kA

)
gk
‖‖‖
2

2

‖‖‖�(A)A
(
I − �kA

)
gk
‖‖‖
2

2

.

(12)�1�
2
k
− �2�k + �3 = 0,

(13)cj = gT
k
Aj�2(A)gk, j = 0, 1, 2, 3, 4.
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Lemma 1 Assume gk ≠ 0 and gk is not parallel to Agk . Then, 𝜙1,𝜙2,𝜙3 > 0 and 
𝜙2
2
− 4𝜙1𝜙3 > 0.

Proof It follows from the Cauchy-Schwartz inequality and (13) that

for j ≥ 0 . That is, cj∕cj+1 > cj+1∕cj+2 , which implies 𝜙1,𝜙2,𝜙3 > 0.

By direct calculation, we obtain c1�2 = c0�1 + c2�3 , which implies that

Combining with c0c2 > c2
1
 , we have 𝜙2

2
− 4𝜙1𝜙3 > 0 . This completes the proof.  ◻

Using the square root law, we get the two roots of (12) as

and

It is easy to see that �̃�k = argmax𝛼k∈ℝ 𝛼k+1 and �̂�k = argmin𝛼k∈ℝ 𝛼k+1.
Next theorem presents the two dimensional quadratic termination of the gradi-

ent method using �k in (9) and �̃�k.

Theorem 1 (Two dimensional quadratic termination) Consider the gradient method 
(1) for minimizing the two dimensional quadratic function (4). If the stepsize �k is 
given by (9) for all k ≠ k0 and 𝛼k0 = �̃�k0 at the k0-th iteration where k0 ≥ 1 , it holds 
that gk0+i = 0 for some 1 ≤ i ≤ 3.

Proof Without loss of generality, we assume that A = diag{1, �} with 𝜆 > 0 . Let g(1)
k

 
and g(2)

k
 be the first and second components of gk , respectively. Notice that

After direct calculation and simplification, we get

‖‖‖𝜓(A)A
j

2 gk
‖‖‖
2

2

‖‖‖𝜓(A)A
j+2

2 gk
‖‖‖
2

2
>

((
𝜓(A)A

j

2 gk

)T(
𝜓(A)A

j+2

2 gk

))2

=
(
gT
k
𝜓2(A)Aj+1gk

)2

c2
1
�2
2
=
(
c0�1 + c2�3

)2
≥ 4c0c2�1�3.

(14)�̃�k =
𝜙2 −

√
𝜙2
2
− 4𝜙1𝜙3

2𝜙1

=
2

𝜙2

𝜙3

+

√(
𝜙2

𝜙3

)2

− 4
𝜙1

𝜙3

(15)�̂�k =
𝜙2 +

√
𝜙2
2
− 4𝜙1𝜙3

2𝜙1

=
2

𝜙2

𝜙3

−

√(
𝜙2

𝜙3

)2

− 4
𝜙1

𝜙3

.

cj = gT
k
�2(A)Ajgk =

(
g
(1)

k

)2

�2(1) + �j
(
g
(2)

k

)2

�2(�).
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Therefore, we obtain

Thus, from (14) we know that �̃�k = 1∕𝜆 for all k ≥ 1 . The conclusion follows imme-
diately from 𝛼k0 = �̃�k0 and gk+1 =

(
I − �kA

)
gk . We complete the proof.  ◻

In what follows, we shall prove that �̃�k converges to 1∕�n under each method 
in the family (9). To this aim, we have to analyze the asymptotic behavior of the 
family (9) first.

For convenience, we assume without loss of generality that the matrix A is 
diagonal with distinct eigenvalues, i.e.

Let 
{
�1, �2,… , �n

}
 be the set of orthogonal eigenvectors associated with the eigen-

values 
{
�1, �2,… , �n

}
 . Denoting by �(i)

k
, i = 1,… , n , the components of gk along �i , 

i.e.

It follows from (1) and (17) that

where

The following lemma is useful in our analysis.

Lemma 2 [26] Let p be a vector in ℝn such that (i)  p(1) > 0 and p(n) > 0 (ii) 
p(1) + p(n) = 1 . Further assume that 0 < 𝜆1 < ⋯ < 𝜆n . Consider a transformation T 
such that

�1 =
(
g
(1)

k

)2(
g
(2)

k

)2

�2(1)�2(�)(� − 1)2(� + 1)�,

�2 =
(
g
(1)

k

)2(
g
(2)

k

)2

�2(1)�2(�)(� − 1)2(� + 1)2,

�3 =
(
g
(1)

k

)2(
g
(2)

k

)2

�2(1)�2(�)(� − 1)2(� + 1).

�1

�3

= � and
�2

�3

= � + 1.

(16)A = diag{𝜆1, 𝜆2,… , 𝜆n}, 0 < 𝜆1 < 𝜆2 < … < 𝜆n.

(17)gk =

n∑
i=1

�
(i)

k
�i.

(18)gk+1 =
(
I − �kA

)
gk =

k∏
j=0

(
I − �jA

)
g0 =

n∑
i=1

�
(i)

k+1
�i,

(19)�
(i)

k+1
=
(
1 − �k�i

)
�
(i)

k
= �

(i)

0

k∏
j=0

(
1 − �j�i

)
.
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Then

where

Based on Lemma 2, we are able to show that each method in the family (9) 
will zigzag in a two dimensional subspace which generalizes the results in [26], 
where the case �(A) = I (i.e. the Dai–Yang method) is considered.

Theorem 2 Assume that the starting point x0 is such that

Let {xk} be the sequence generated by applying a method in the family (9). Then

and

where h1 and h2 are defined in (20). Further, the vectors

tend to be the eigenvectors corresponding to �1 and �n of A, respectively.

Proof By (17), we get

(Tp)(i) =

�
�i − �(p)

�2
p(i)

∑
i

�
�i − �(p)

�2
p(i)

, where �(p) =

��
i

�2
i
p(i).

lim
k→∞

Tkp =

⎧
⎪⎨⎪⎩

h1, if i = 1,

0, if i = 2,… , n − 1,

h2, if i = n,

(20)h1 =
�1 + 3�n

4
(
�1 + �n

) and h2 =
3�1 + �n

4
(
�1 + �n

) .

gT
0
�1 ≠ 0 and gT

0
�n ≠ 0.

(21)lim
k→∞

�(�i)�
(i)

2k�∑n

j=1

�
�(�i)�

(i)

2k

�2

=

⎧⎪⎨⎪⎩

sign
�
�(�1)�

(1)

2k

�√
h1, if i = 1,

0, if i = 2,… , n − 1,

sign
�
�(�n)�

(n)

2k

�√
h2, if i = n,

(22)

lim
k→∞

�(�i)�
(i)

2k+1�∑n

j=1

�
�(�i)�

(i)

2k+1

�2

=

⎧⎪⎨⎪⎩

sign
�
�(�1)�

(1)

2k+1

�√
h1, if i = 1,

0, if i = 2,… , n − 1,

−sign
�
�(�n)�

(n)

2k+1

�√
h2, if i = n,

�(A)gk

‖�(A)gk‖2 +
�(A)gk+1

���(A)gk+1
��2

and
�(A)gk

‖�(A)gk‖2 −
�(A)gk+1

���(A)gk+1
��2
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where �(i)
k

= �(�i)�
(i)

k
 , which together with (19) yields

Defining the vector pk =
(
p
(i)

k

)
 with

and

We have from (24), (25) and (26) that

Clearly, according to the definition of pk , we get that p(i)
k
≥ 0 for all i and

Let p = p1 ∈ ℝ
n , based on the above analysis and Lemma 2, we know that 

limk→∞ pk =
(
h1, 0,… , 0, h2

)T , where h1 and h2 are given in (20). It follows from 
(24) and 𝜆−1

n
< 𝛼k < 𝜆−1

1
 that

and

Thus, by Lemma 2, (27) and (28), we know that (21) and (22) hold.
Furthermore, combining (23), (27) and (28), we find that

and

(23)�(A)gk =

n∑
i=1

�
(i)

k
�i,

(24)�
(i)

k+1
=
(
1 − �k�i

)
�i
k
.

(25)p
(i)

k
=

(
�
(i)

k

)2

‖‖�k‖‖22

(26)�k = �−1
k

=
‖‖�(A)Agk

‖‖2
‖‖�(A)gk

‖‖2
=

√∑
i

�2
i
p
(i)

k
.

p
(i)

k+1
=

�
�i − �k

�2
p
(i)

k∑
i

�
�i − �k

�2
p
(i)

k

.

∑
i

p
(i)

k
= 1, for all k.

(27)sign
(
�(�1)�

(1)

k+1

)
= sign

(
�(�1)�

(1)

k

)

(28)sign
(
�(�n)�

(n)

k+1

)
= −sign

(
�(�n)�

(n)

k

)
.

lim
k→∞

�(A)gk

‖�(A)gk‖2 +
�(A)gk+1

���(A)gk+1
��2

= 2sign
�
�(�1)�

(1)

2k

�√
h1�1
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This completes our proof.  ◻

From Theorem 2, we have the following asymptotic result of the stepsize (9).

Corollary 1 Under the conditions of Theorem 2, for �k in (9) it holds that

Next theorem shows that �̃�k converges to 1∕�n under each method in the family 
(9).

Theorem 3 Under the conditions of Theorem 2, let {gk} be the sequence generated 
by applying a method in the family (9) to minimize the n-dimensional quadratic 
function (4). Then limk→∞ �̃�k = 1∕𝜆n.

Proof From (18) and (13), we obtain

When k is odd, by the definition of �1 , (22) and (29), we get

Similarly, we have

and

lim
k→∞

�(A)gk

‖�(A)gk‖2 −
�(A)gk+1

���(A)gk+1
��2

= ±2
√
h2�n.

lim
k→∞

�k =
2

�1 + �n
.

(29)cj = gT
k
Aj�2(A)gk =

n∑
i=1

�
j

i

(
�(�i)�

(i)

k

)2

.

(30)

lim
k→∞

�1

c2
0

= lim
k→∞

�
c1

c0

c4

c0
−

c2

c0

c3

c0

�

= lim
k→∞

⎡⎢⎢⎢⎣

n�
i=1

�i

�
�(�i)�

(i)

k

�2

∑n

s=1

�
�(�s)�

(s)

k

�2
⋅

n�
i=1

�4
i

�
�(�i)�

(i)

k

�2

∑n

s=1

�
�(�s)�

(s)

k

�2

⎤⎥⎥⎥⎦

− lim
k→∞

⎡⎢⎢⎢⎣

n�
i=1

�2
i

�
�(�i)�

(i)

k

�2

∑n

s=1

�
�(�s)�

(s)

k

�2
⋅

n�
i=1

�3
i

�
�(�i)�

(i)

k

�2

∑n

s=1

�
�(�s)�

(s)

k

�2

⎤⎥⎥⎥⎦
=
�
h1�1 + h2�n

��
h1�

4
1
+ h2�

4
n

�
−
�
h1�

2
1
+ h2�

2
n

��
h1�

3
1
+ h2�

3
n

�

= h1h2�1�n
�
�n − �1

�2�
�1 + �n

�
.

(31)lim
k→∞

�2

c2
0

= h1h2
(
�n − �1

)2(
�1 + �n

)2
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Combining (30), (31) and (32), we obtain

It follows from (33) and (14) that limk→∞ �̃�k = 1∕𝜆n . When k is even, we get the 
desired result in the same manner as above. This completes our proof.   ◻

From (33), we see that �1∕�3 and �2∕�3 are independent of �(A) . The following 
example shows that �̃�k converges to 1∕�n under both the MG and Dai–Yang meth-
ods. In particular, we applied the MG and Dai–Yang methods to the quadratic func-
tion (4) with

where a1 = 1, an = n and ai was randomly generated in (1, n), i = 2,… , n − 1 . The 
starting point was set to the vector of all ones. From Fig. 1, we see that �̃�k approxi-
mates 1∕�n with satisfactory accuracy after a small number of iterations under both 
the MG and Dai–Yang methods.

3  A new gradient method

In this section, we propose a new algorithm for unconstrained quadratic optimiza-
tion and present its R-linear convergence result.

Extensive studies point out that adaptively choosing a short stepsize or �BB1
k

 at 
each iteration is numerically better than the original BB method, see for example 
[31, 32, 33, 28, 34, 35]. Now we show that the new stepsize �̃�k is a short one.

(32)lim
k→∞

�3

c2
0

= h1h2
(
�n − �1

)2(
�1 + �n

)
.

(33)lim
k→∞

�1

�3

= �1�n and lim
k→∞

�2

�3

= �1 + �n.

(34)A = diag
{
a1, a2,… , an

}
and b = 0,

Fig. 1  Problem (34) with 
n = 1000 : convergence history 
of the sequence {|�̃�

k
− 1∕𝜆

n
|} 

for the first 100 iterations of the 
MG and Dai–Yang methods
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Theorem 4 Under the conditions of Lemma 1, it holds that �̃�k < c2∕c3.

Proof According to (13) and (14), we get

If c2𝜙2 − 2c3𝜙3 > 0 , we have c2∕c3 − �̃�k > 0 ; otherwise, it follows from (35) that

where the last equality is due to c3�2 = c2�1 + c4�3 and 
Δ = c2

√
𝜙2
2
− 4𝜙1𝜙3 −

(
c2𝜙2 − 2c3𝜙3

)
> 0 . From 𝜙1,𝜙3 > 0 and c2c4 − c2

3
> 0 , 

we know that �̃�k < c2∕c3 holds. This completes our proof.  ◻

Based on the above analysis, we can develop gradient method using �̃�k and �BB1
k

 in 
an adaptive way. Notice that reusing the retard short stepsize for some iterations could 
reduce the computational cost and yield better performance, see [29, 36, 25, 13, 7]. So, 
we suggest to combine the adaptive and cyclic schemes with �BB1

k
 and �̃�k−1 . In particu-

lar, our method reuses �̃�k−1 for r iterations when 𝛼BB2
k

∕𝛼BB1
k

< 𝜏 for some � ∈ (0, 1) ; 
otherwise, we set �k = �BB1

k
 . We use t as the index to keep track of the number of short 

stepsizes chosen during the iterative process. The stepsize for our algorithm is summa-
rized as

We mention that the parameter � can be chosen dynamically as [24]. However, in 
our test the dynamic scheme does not show much evidence over the above fixed one. 
Our method is formally presented in Algorithm 1.

(35)
c2

c3
− �̃�k =

c2

√
𝜙2
2
− 4𝜙1𝜙3 + c2𝜙2 − 2c3𝜙3

c3

(
𝜙2 +

√
𝜙2
2
− 4𝜙1𝜙3

) .

c2

c3
− �̃�k =

4
(
c2c3𝜙2𝜙3 − (c3𝜙3)

2 − c2
2
𝜙1𝜙3

)

c3Δ

(
𝜙2 +

√
𝜙2
2
− 4𝜙1𝜙3

)

=
4𝜙2

3

(
c2c4 − c2

3

)

c3Δ

(
𝜙2 +

√
𝜙2
2
− 4𝜙1𝜙3

) ,

(36)𝛼
k
=

⎧
⎪⎨⎪⎩

�̃�
k−1, if mod (t, r) = 0 and 𝛼BB2

k
∕𝛼BB1

k
< 𝜏;

𝛼BB1
k

, if mod (t, r) = 0 and 𝛼BB2
k

∕𝛼BB1
k

≥ 𝜏;

𝛼
k−1, otherwise.



1424 X. Li, Y. Huang 

1 3

To establish R-linear convergence of Algorithm 1, we first show the boundedness of 
�̃�k.

Let us denote

and

Using the same arguments as (12) and Lemma 1, we know that both f �
1
(�) = 0 and 

f �
2
(�) = 0 have two roots. In addition, the roots of f �

1
(�) = 0 , say 𝛽k and 𝛽k with 

𝛽k ≤ 𝛽k , are the solutions of

and the roots of f �
2
(�) = 0 , say �̃�k and �̂�k with �̃�k ≤ �̂�k , satisfy

where �1 , �3 are defined in the former section, and �4 = c1c3 − c2
2
 , �5 = c0c2 − c2

1
 

and �6 = c2c4 − c2
3
 . Recall that F(�) = f1(�)f2(�) . Since f1(𝛼) > 0 and f2(𝛼) > 0 , 

any root of F�(�) = f �
1
(�)f2(�) + f1(�)f

�
2
(�) = 0 yields

(37)f1(�) =
gT
k
(I − �A)T�2(A)(I − �A)gk

gT
k
(I − �A)T�2(A)A(I − �A)gk

(38)f2(�) =
gT
k
(I − �A)T�2(A)A(I − �A)gk

gT
k
(I − �A)T�2(A)A2(I − �A)gk

.

(39)�4�
2 − �3� + �5 = 0,

(40)�6�
2 − �1� + �4 = 0,

f �
1
(𝛼) = f �

2
(𝛼) = 0 or f �

1
(𝛼)f �

2
(𝛼) < 0.
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If the root is such that f �
1
(�) ≤ 0 and f �

2
(�) ≥ 0 , we must have

Similarly, for the case f �
1
(�) ≥ 0 and f �

2
(�) ≤ 0 , we get

Now we are ready to prove that �̃�k is bounded between 1∕�n and 1∕�1.

Theorem 5 Under the conditions of Lemma 1, it holds that 1∕𝜆n ≤ �̃�k ≤ 1∕𝜆1.

Proof Since F�(�̃�k) = 0 , when f �
1
(�̃�k) ≤ 0 , it follows from (41) that

For the case f �
1
(�̃�k) ≥ 0 , by (42), we get

Thus, we only need to prove that 1∕𝜆n ≤ 𝛽k, 𝛽k, �̂�k, �̃�k ≤ 1∕𝜆1.
To proceed, we first show that

Since f �
1
(𝛽k) = 0 , we have

which implies that

where the last equality comes from the fact that 𝛽k𝛽k = 𝜙5∕𝜙4.
In order to prove (43), we are suffice to show that

that is,

which holds due to 𝛽k + 𝛽k = 𝜙3∕𝜙4 and the definitions of c1, c2, c3,�3,�4,�5.
Thus, (43) is true. It follows from the definition of f1 and the Rayleigh’s quotient 

property that 1∕𝜆n ≤ 𝛽k = f1(𝛽k) ≤ 1∕𝜆1.

(41)𝛼 ∈ [𝛽k, 𝛽k] and 𝛼 ∈ (−∞, �̃�k] ∪ [�̂�k,+∞).

(42)𝛼 ∈ [�̃�k, �̂�k] and 𝛼 ∈ (−∞, 𝛽k] ∪ [𝛽k,+∞).

𝛽k ≤ �̃�k ≤ min{�̃�k, 𝛽k} or max{�̂�k, 𝛽k} ≤ �̃�k ≤ 𝛽k.

�̃�k ≤ �̃�k ≤ min{𝛽k, �̂�k} or max{𝛽k, �̃�k} ≤ �̃�k ≤ �̂�k.

(43)𝛽k = f1(𝛽k).

(c1 − 2c2𝛽k + c3𝛽
2
k
)(−c1 + c2𝛽k) − (c0 − 2c1𝛽k + c2𝛽

2
k
)(−c2 + c3𝛽k) = 0,

f1(𝛽k) =
c0 − 2c1𝛽k + c2𝛽

2
k

c1 − 2c2𝛽k + c3𝛽
2
k

=
c2𝛽k − c1

c3𝛽k − c2

= 𝛽k
c2𝛽k − c1

c3𝛽k𝛽k − c2𝛽k

= 𝛽k
c2𝛽k − c1

c3
𝜙5

𝜙4

− c2𝛽k

,

c2𝛽k − c1 = c3
𝜙5

𝜙4

− c2𝛽k,

c2𝜙4(𝛽k + 𝛽k) = c1𝜙4 + c3𝜙5,
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Using the same arguments as above, we get 1∕𝜆n ≤ 𝛽k, �̃�k, �̂�k ≤ 1∕𝜆1 . This com-
pletes the proof.   ◻

In [37], the authors prove that any gradient method with stepsizes satisfying 
the following Property B has R-linear convergence rate 1 − �1∕M1 which implies a 
1 − 1∕� rate when M1 ≤ �n . Similar results for gradient methods satisfying the Prop-
erty A in [38] can be found in [39]. However, a stepsize satisfies Property B may not 
meets the conditions of Property A.

Property B: We say that the stepsize �k has Property B if there exist an integer m 
and positive constant M1 ≥ �1 such that 

 (i) �1 ≤ �−1
k

≤ M1;
 (ii) for  some rea l  ana ly t ic  func t ion  �  def ined  as  (7)  and 

v(k) ∈ {k, k − 1,… , max{k − m + 1, 0}} , 

Clearly, �BB1
k

 satisfies Property B with M1 = �n , m = 2 and �2(A) = I , and the new 
stepsize �̃�k satisfies Property B with M1 = �n . So, we are able to show R-linear con-
vergence of Algorithm 1 with 1 − 1∕� rate as Theorem 2 in [37]. For completeness, 
we include the proof here.

Theorem 6 Suppose that the sequence 
{
gk
}
 is generated by Algorithm 1. Then either 

gk = 0 for some finite k or the sequence 
{‖‖gk‖‖2

}
 converges to zero R-linearly in the 

sense that

where � = 1 − 1∕� and

with �i = max
{

�i

�1
− 1, 1 −

�i

�n

}
.

Proof It follows from g(i)
k+1

=
(
1 − �k�i

)
g
(i)

k
 and (i) of Property B that

Clearly, (45) holds for i = 1.

(44)�k ≤
gT
v(k)

�2(A)gv(k)

gT
v(k)

A�2(A)gv(k)
.

(45)|g(i)
k
| ≤ Ci�

k, i = 1, 2,… , n,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

C1 = �g(1)
0
�;

Ci = max

⎧⎪⎨⎪⎩
�g(i)

0
�, �g

(i)

1
�

�
,… ,

�g(i)
r−1

�
�r−1

,
max{�i, �

r
i
}

�r�(�i)

���� i−1�
j=1

�2(�j)C
2
j

⎫⎪⎬⎪⎭
,

i = 2, 3,… n,

(46)
|||g

(i)

k+1

||| ≤ �i
|||g

(i)

k

|||, i = 1, 2,… , n.
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In what follows, we prove (45) by induction on i. Assume that (45) holds for all 
1 ≤ i ≤ L − 1 with L ∈ {2,… , n} . When i = L , it follows from the definition of CL 
that (45) holds for k = 0, 1,… , r − 1 . Assume by contradiction that (45) does not 
hold for k ≥ r when i = L . Let k̂ ≥ r be the minimal index such that |||g

(L)

k̂

||| > CL𝜃
k̂ . 

Then, if 𝛼k̂−1𝜆L ≤ 1 , we get

which contradicts our assumption. Thus we must have 𝛼k̂−1𝜆L > 1 , which combines 
with (46) and 𝜃 < 1 gives that

where G(k, l) =
∑l

i=1

�
�
�
�i
�
g
(i)

k

�2

 . This together with Theorem 4 yields that

Using similar arguments, we can show |||1 − 𝛼BB1

k̂
𝜆L
||| ≤ 𝜃 . Thus, 

|||g
(L)

k̂

||| ≤ 𝜃
|||g

(L)

k̂−1

||| ≤ CL𝜃
k̂ which contradicts our assumption. Hence (45) holds for all i. 

We complete the proof.   ◻

|||g
(L)

k̂

||| =
(
1 − 𝛼k̂−1𝜆L

)|||g
(L)

k̂−1

||| ≤ 𝜃
|||g

(L)

k̂−1

||| ≤ CL𝜃
k̂,

𝜓(𝜆L)|g(L)k̂−j
| ≥

𝜓(𝜆L)|g(L)k̂
|

𝜎
j

L

>
𝜓(𝜆L)CL𝜃

k̂

𝜎
j

L

≥
𝜓(𝜆L)CL𝜃

k̂

max{𝜎L, 𝜎
r
L
}

≥ 𝜃k̂−r

√√√√L−1∑
i=1

𝜓2(𝜆i)C
2
i
≥ 𝜃k̂−r

√√√√L−1∑
i=1

(
𝜓(𝜆i)g

(i)

k̂−j

)2

𝜃2(j−k̂)

= 𝜃j−r
√

G(k̂ − j, L − 1) ≥

√
G(k̂ − j, L − 1), j ∈ [1, r],

��1 − �̃�k̂−1𝜆L
�� = �̃�k̂−1𝜆L − 1 ≤

�
𝜓(A)gk̂−1

�T
A2

�
𝜓(A)gk̂−1

�
�
𝜓(A)gk̂−1

�T
A3

�
𝜓(A)gk̂−1

�𝜆L − 1

=

∑n

i=1

�
𝜆L − 𝜆i

�
𝜆2
i

�
𝜓
�
𝜆i
�
g
(i)

k̂−1

�2

∑n

i=1
𝜆3
i

�
𝜓
�
𝜆i
�
g
(i)

k̂−1

�2

≤

�
𝜆L − 𝜆1

�
𝜆2
1
G(k̂ − 1), L − 1)

𝜆3
1
G(k̂ − 1), L − 1) + 𝜆3

L

�
𝜓
�
𝜆L
�
g
(L)

k̂−1

�2

≤
𝜆L − 𝜆1

𝜆L + 𝜆1
< 𝜃.
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4  Numerical experiments

In this section, we provide numerical experiments of Algorithm  1 on solving 
quadratic problems. All our codes are written in MATLAB R2016b and carried 
out on a PC with an AMD Ryzen 5 PRO 2500U, 2.00 GHz processor and 8 GB of 
RAM running Windows 10 system.

For Algorithm  1, we use �̃�k with �(A) = I . Then, if we compute the vector 
z = Agk at each iteration, and keep into memory w = Agk−1 , �̃�k−1 can be expressed 
as

Hence only one matrix-vector product is required in per iteration for Algorithm 1.
Firstly, we compare Algorithm 1 with the BB1 [8], DY [13], ABBmin2 [28], 

SDC [29] and MGC [7] methods and the Alg.1 method in [25] (we note this 
method as SL) on solving the following quadratic problem [22]:

where V = diag
{
v1,… , vn

}
 is a diagonal matrix and x∗ is randomly generated 

with components in [−10, 10] . Five different distributions of the diagonal elements 
vj, j = 1, 2,… , n , are generated, see Table 1.

The parameter m in SL uses the value m = 5 for the second problem set and 
m = 6 for other sets to get good performance. For ABBmin2, � is set to 0.9 as 
suggested in [28]. For SDC and MGC, the parameter pairs (h, s) and (d1, d2) are 
all set to (8,  6), which are more efficient than other choices for this test. The 
parameters in Algorithm 1 are set to � = 0.3 and r = 5.

For all comparison methods, the stopping condition is ‖‖gk‖‖2 ≤ �‖‖g0‖‖2 , where 
𝜖 > 0 is a given tolerance. The problem dimension is set to n = 1000 . For each prob-
lem set, three different tolerance parameters � = 10−6, 10−9, 10−12 and condition 

c0 =g
T
k−1

gk−1, c1 = gT
k−1

w, c2 = wTw,

c3 =
gT
k
z − c1 + 2�k−1c2

�2
k−1

, c4 =
zTz − c2 + 2�kc3

�2
k

.

(47)f (x) = (x − x∗)
T
V(x − x∗),

Table 1  Distributions of v
j

Problem Spectrum

1 v1 = 1, v
n
= � , 

{
v2,… , v

n−1

}
⊂ (1, 𝜅)

2 v1 = 1, v
n
= � , 

{
v2,… , v

n∕5

}
⊂ (1, 100) , {

v
n∕5+1,… , v

n−1

}
⊂

(
𝜅

2
, 𝜅

)

3 v1 = 1, v
n
= � , 

{
v2,… , v

n∕5

}
⊂ (1, 100) , {

v
n∕5+1,… , v4n∕5

}
⊂

(
100,

𝜅

2

)
 , 
{
v4n∕5+1,… , v

n−1

}
⊂

(
𝜅

2
, 𝜅

)

4
v
j
= �

n−j

n−1 ,    j = 1,… , n

5
v
j
=

�

2

(
cos

n−j

n−1
� + 1

)
,    j = 1,… , n
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Table 2  The average number of iterations required by Algorithm 1, the BB1, DY, SL, SDC, MGC and 
ABBmin2 methods on quadratic problem (47) with spectral distributions in Table 1

� � BB1 DY SL MGC SDC ABBmin2 Algorithm 1

Problem set 1
104 10−6 323.9 308.1 249.3 269.4 262.2 219.8 234.9

10−9 894.8 848.7 660.3 733.5 754.1 366.1 445.8

10−12 1359.1 1328.6 1029.3 1142.7 1176.0 528.6 649.2

105 10−6 231.5 238.2 199.7 204.1 200.3 203.7 199.3
10−9 2265.1 2415.5 1586.9 1733.5 1806.7 525.6 600.3

10−12 4073.0 4335.5 2786.5 3130.5 3268.0 687.5 814.6

106 10−6 221.0 222.1 185.3 196.6 184.3 173.8 182.9

10−9 5221.4 6446.6 3166.5 3891.2 3800.8 798.0 869.8

10−12 11834.4 15815.0 7378.4 8560.6 8276.9 1025.8 1151.6
Problem set 2
104 10−6 286.2 362.4 199.9 264.3 260.9 264.7 170.0

10−9 653.1 849.7 430.5 555.9 556.0 529.0 350.2
10−12 978.1 1301.3 651.2 840.2 810.0 786.7 523.9

105 10−6 432.5 494.0 182.7 244.6 261.7 453.5 141.1
10−9 1444.2 1985.0 616.1 944.2 900.9 1141.2 402.9
10−12 2327.8 3534.1 1003.9 1427.1 1401.9 1809.0 635.7

106 10−6 514.2 459.1 104.8 130.5 126.5 465.4 76.0
10−9 3256.7 3427.3 733.6 925.7 946.0 2556.5 410.9
10−12 5820.9 6938.1 1327.8 1790.8 1801.3 4322.4 742.3

Problem set 3
104 10−6 461.2 452.9 375.9 404.3 396.5 401.3 391.6

10−9 1021.5 1029.5 821.8 926.3 904.4 786.1 790.8

10−12 1550.0 1550.7 1237.5 1371.1 1370.5 1142.1 1165.4

105 10−6 809.7 804.1 657.4 750.6 710.9 938.3 677.2

10−9 3089.1 3058.8 2285.1 2700.0 2555.1 2145.4 2052.6
10−12 5128.4 5104.9 3661.4 4092.1 4014.5 3300.3 3209.4

106 10−6 1155.6 1119.2 856.7 1025.7 982.8 1266.0 694.5
10−9 8562.1 9690.6 6101.3 6876.4 6722.9 5968.5 4084.4
10−12 16239.6 19489.3 10609.8 12340.0 12342.7 9598.3 6956.4

Problem set4
104 10−6 628.7 602.1 497.5 541.3 531.1 514.3 509.9

10−9 1164.8 1159.7 946.6 1055.1 1021.8 913.9 910.3
10−12 1688.5 1670.4 1355.5 1507.8 1479.2 1296.5 1291.3

105 10−6 1480.7 1442.2 1118.1 1304.5 1297.6 1330.6 1177.2
10−9 3440.9 3702.2 2705.9 3056.5 3038.8 2664.7 2469.3
10−12 5437.8 5795.1 4240.0 4665.7 4582.6 3891.6 3718.5

106 10−6 2533.3 2667.0 1941.2 2422.4 2202.7 3119.5 1996.0
10−9 10849.6 12898.5 7542.4 9075.5 8508.5 7713.0 6570.9
10−12 18028.8 23430.2 12681.4 14396.4 13549.1 11838.3 10539.5
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numbers � = 104 , 105, 106 are tested. For each value of � or � , 10 starting points are 
randomly generated in [−10, 10] and the average results are presented in Table 2.

We see that Algorithm  1 clearly outperforms the BB1, DY, SDC and MGC 
methods. As compared with the SL method, Algorithm  1 is usually faster than it 
when a high accuracy is required. Moreover, Algorithm  1 often performs better 
than ABBmin2 for the second to fourth problem sets and is very competitive with 
ABBmin2 for the first and last problem sets.

Next, we compare the above methods on problem (4), where b = Ax∗ and x∗ is a 
random vector as before. We test 14 sparse matrices from the SuiteSparse Matrix 
Collection [30] listed in Table  3. The iteration stops when ‖‖gk‖‖2 ≤ 10−6‖‖g0‖‖2 . In 

Bold values indicated by denote the best one among the compared methods

Table 2  (continued)

� � BB1 DY SL MGC SDC ABBmin2 Algorithm 1

Problem set 5
104 10−6 527.0 535.3 454.3 487.0 487.7 599.6 484.5

10−9 4455.5 5480.7 4115.5 4098.2 3805.4 2879.0 2993.8

10−12 9098.2 10185.5 7358.3 7815.6 7473.1 4312.4 4806.7

105 10−6 552.7 573.5 467.7 525.8 497.4 635.6 489.5

10−9 4633.8 5142.8 3812.0 4047.6 3888.3 2837.5 2879.0

10−12 9007.1 10727.7 7141.0 7150.1 6967.7 4209.8 4767.2

106 10−6 527.5 558.6 476.9 503.0 477.0 669.9 489.9

10−9 4859.5 5423.8 4121.7 4127.7 4363.2 2846.0 3060.0

10−12 9410.7 10661.0 7703.8 7299.8 7528.9 4379.8 5083.6

Table 3  Test problems from 
Suitesparse Matrix Collection

Matrices Size Nonzeros Condition number

bcsstk14 1806 63454 1.192324 × 1010

bcsstk15 3948 117816 6.538185 × 109

bcsstk17 10974 428650 1.296064 × 1010

bcsstk18 11948 149090 3.459995 × 1011

msc01440 1440 44998 3.305875 × 106

msc04515 4515 97707 2.272772 × 106

ex15 6867 98671 8.612330 × 1012

cbuckle 13681 676515 3.299134 × 107

gyro_k 17361 1021159 1.095832 × 109

s3dkq4m2 90449 4427725 1.896133 × 1011

s3dkt3m2 90449 3686223 3.625322 × 1011

s3rmq4m1 5489 262943 1.765559 × 1010

s3rmt3m1 5489 217669 2.481977 × 1010

s3rmt3m3 5357 207123 2.400640 × 1010
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our test, we choose the parameters so that each method achieves the best perfor-
mance. Specifically, we set m = 4 for SL, (h, s) = (3, 4) for SDC, (d1, d2) = (4, 4) for 
MGC, � = 0.3 for ABBmin2 and � = 0.1 and r = 5 for Algorithm 1 .

Table 4  The average number of iterations required by Algorithm 1, the BB1, DY, SL, SDC, MGC and 
ABBmin2 methods on problem (4) with A given by Table 3

Bold values indicated by denote the best one among the compared methods

Matrices BB1 DY SL MGC SDC ABBmin2 Algorithm 1 

bcsstk14 2425.8 1948.7 1791.0 1705.9 1820.6 1667.4 1677.3
bcsstk15 2510.4 2219.6 1966.0 1778.3 2000.3 1788.1 1774.2
bcsstk17 4411.5 4335.5 3721.6 3428.0 3589.0 3035.4 3005.4
bcsstk18 4118.8 4194.9 3498.3 3655.1 4055.5 3334.6 3206.7
msc01440 1423.8 1623.9 1329.4 1233.0 1241.5 1151.9 1139.0
msc04515 1008.8 986.2 903.7 810.7 851.6 821.4 829.7
ex15 913.0 1002.5 802.6 806.7 778.9 716.9 775.4
cbuckle 2335.5 2092.8 2015.9 1884.0 1984.6 1665.4 1730.0
gyro_k 1672.8 1564.6 1461.1 1390.7 1366.9 1321 1329.2
s3dkq4m2 1611.8 1800.6 1600.3 1362.8 1493.4 1205.1 1178
s3dkt3m2 2048.6 2081.8 1802.5 1455.3 1644.5 1158.6 1236.5
s3rmq4m1 1153.7 1191.6 967.1 880.6 911.9 835.7 811.5
s3rmt3m1 1038.7 1099.9 929.4 871.6 906.4 879.8 904.1
s3rmt3m3 1606.7 1612.2 1457.9 1276.6 1286.6 1229.6 1206.6

Table 5  The CPU time required by Algorithm 1, the BB1, DY, SL, SDC, MGC and ABBmin2 methods 
on problem (4) with A given by Table 3

Bold values indicated by denote the best one among the compared methods

Matrices BB1 DY SL MGC SDC ABBmin2 Algorithm 1

bcsstk14 0.40 0.17 0.16 0.31 0.16 0.30 0.15
bcsstk15 0.57 0.28 0.25 0.41 0.24 0.43 0.22
bcsstk17 6.44 3.51 2.99 5.04 2.81 4.49 2.41
bcsstk18 3.27 2.04 1.69 3.02 1.79 2.80 1.54
msc01440 0.13 0.09 0.07 0.12 0.06 0.11 0.06
msc04515 0.21 0.12 0.11 0.19 0.10 0.18 0.10
ex15 0.20 0.13 0.10 0.19 0.10 0.17 0.10
cbuckle 6.12 2.98 2.87 5.00 2.67 4.32 2.29
gyro_k 5.26 2.65 2.49 4.44 2.27 4.23 2.27
s3dkq4m2 26.91 16.35 14.33 23.59 12.91 20.97 10.60
s3dkt3m2 25.26 13.87 12.39 19.27 10.85 15.20 8.62
s3rmq4m1 0.60 0.32 0.26 0.51 0.25 0.51 0.22
s3rmt3m1 0.48 0.27 0.28 0.43 0.22 0.42 0.22
s3rmt3m3 0.79 0.44 0.39 0.67 0.33 0.62 0.32
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For each matrix, ten initial points between −10 and 10 are randomly generated. 
The average number of iterations of compared methods are listed in Table  4. We 
see that for most matrices Algorithm 1 has better performance than BB1, DY, SL, 
MGC, SDC and is competitive with ABBmin2 in the sense of number of iterations. 
Table 5 lists the average CPU time in seconds for those methods. We observe that 
Algorithm 1 takes less CPU time than BB1, DY, MGC, ABBmin2, and is as fast as 
SL and SDC. One important reason for this phenomenon is that our method reuses 
the stepsize �̃�k−1 for r iterations which can reduce computational cost.

5  Conclusions and discussions

For a uniform analysis, we considered a family of gradient methods whose stepsize 
is provided by �k in (9), which includes the Dai–Yang method (5) as a special case. 
It is proved the family zigzags between two directions in a subspace spanned by the 
two eigenvectors corresponding to the smallest and largest eigenvalues of the Hes-
sian. In order to achieve the two dimensional quadratic termination of the family, we 
derived a short stepsize �̃�k (14) that converges to 1∕�n . By using the long BB step-
size and �̃�k−1 in a new adaptive cyclic manner, we designed Algorithm 1 for uncon-
strained quadratic optimization. We proved that Algorithm 1 converges R-linearly at 
a rate of 1 − 1∕� . Our numerical results on minimizing quadratic functions indicate 
the efficiency of Algorithm 1 over other recent successful gradient methods.

By using the same arguments as those in the proof of Theorem 1, we find step-
sizes 𝛽k and �̃�k are such that (37) and (38) achieve the two dimensional quadratic 
termination, respectively. For the n dimensional quadratic problem, by Theorem 1 in 
[5], we obtain

and

In addition, we have limk→∞ �̂�k = 1∕𝜆1 . However, �̂�k , 𝛽k and �̂�k would not be good 
approximations of 1∕�1 , for more details see [36]. It is worth noting that the stepsize 
proposed in [28] is a special case of 𝛽k with �(A) = I . Moreover, it is not difficult 
to prove that 𝛽k and �̃�k are short stepsizes in the sense 𝛽k < c2∕c3 and �̃�k < c1∕c2 . 
Hence, we can replace �̃�k−1 in Algorithm 1 by 𝛽k−1 and �̃�k−1 , which leads to two vari-
ants of Algorithm 1. Preliminary experimental results show that the two variants are 
competitive with Algorithm 1. Furthermore, we can obtain the same convergence 
results as Theorem 6.

The results of this paper show that the two dimensional quadratic termination 
property is useful for designing efficient gradient methods. It would be interesting 
to develop new algorithms for solving general unconstrained optimization problems 
based on such a property. We leave this as our future work.

lim
k→∞

𝛽k =
1

𝜆n
, lim

k→∞
�̃�k =

1

𝜆n

lim
k→∞

𝛽k =
1

𝜆1
, lim

k→∞
�̂�k =

1

𝜆1
.
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