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Abstract
We adapt the quasi-monotone method, an algorithm characterized by uniquely hav-
ing convergence quality guarantees for the last iterate, for composite convex minimi-
zation in the stochastic setting. For the proposed numerical scheme we derive the 
optimal convergence rate of O

�

1
√

k+1

�

 in terms of the last iterate, rather than on 
average as it is standard for subgradient methods. The theoretical guarantee for indi-
vidual convergence of the regularized quasi-monotone method is confirmed by 
numerical experiments on �

1
-regularized robust linear regression.

Keywords  Composite minimization · Quasi-monotone method · Individual 
convergence · Regularization · Stochastic optimization

1  Introduction

In the minimization of nonsmooth convex functions, typically, algorithms generate a 
sequence of iterates using subgradients or estimates thereof. The convergence rates 
are then derived for some linear combination of the iterates, rather than for the last 
estimate computed. Obtaining guarantees on the last iterate per se is often a chal-
lenging task. A significant contribution in that direction – sometimes also refered to 
as individual convergence – was given in [5] with the quasi-monotone subgradient 
method. The corresponding analysis was simplified and extended to solving minimi-
zation problems on decentralized networks in [4]. In this paper we extend the work 

 *	 V. Kungurtsev 
	 kunguvya@fel.cvut.cz

	 V. Shikhman 
	 vladimir.shikhman@mathematik.tu-chemnitz.de

1	 Department of Computer Science, Faculty of Electrical Engineering, Czech Technical 
University in Prague, 121 35 Praha 2, Karlovo náměsí‑13, Prague, Czech Republic

2	 Department of Mathematics, Chemnitz University of Technology, Reichenhainer Str. 41, 
09126 Chemnitz, Germany

http://orcid.org/0000-0003-2229-8824
http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-022-01931-4&domain=pdf


1216	 V. Kungurtsev, V. Shikhman 

1 3

of [5] in two important directions, first we consider a composite minimization prob-
lem with a simple additive function (usually a regularizer), and second we consider 
the stochastic case. We develop the Lyapunov-like analysis from [4] to handle the 
new elements and present numerical experiments confirming the performance guar-
antees. We obtain the convergence rate of order O

�

1
√

k+1

�

 in expectation of function 
evaluations, which is optimal for nonsmooth convex optimization.

Let us briefly comment on the related literature. In [6] the authors introduce an 
adaptation of mirror descent in order to attain the optimal individual convergence. 
They successively apply the latter for regularized nonsmooth learning problems 
in the stochastic setting. As shown in [7], the Nesterov’s acceleration alternatively 
provides the individual convergence of projected subgradient methods as applied 
to nonsmooth convex optimization. Especially, the suggested methodology guaran-
tees the regularization structure while keeping an optimal rate of convergence. Our 
contribution to individual convergence consists in theoretically justifying that also 
the initially proposed quasi-monotone subgradient method from [5] can be succes-
sively adjusted for composite minimization in the stochastic setting. We note that 
the setting we consider is distinct from the specialized algorithms that also adapt 
mirror descent for the important case wherein there are separable linear constraints, 
e.g., the classical [3] or more recent alternating minimization [2] and proximal point 
based method [1], but extending to this setting could be an interesting topic to pur-
sue for future work.

2 � Regularized quasi‑monotone method

We consider the composite minimization problem

where f̄ , g ∶ ℝ
n
→ ℝ ∪ {+∞} are closed convex functions. Moreover,

for some f closed and convex in the first argument and � is a sample from some 
random space � . We assume that dom (f (⋅, 𝜉)) ⊂ dom (g) for a.e. � , and dom (g) 
is closed. Usually, f̄  plays the role of a loss function, whereas g is used for regu-
larization. In our setting, f need not to be differentiable, but unbiased finite variance 
estimates of its subgradients, i.e. w(x, �) ∼ ∇f (x, ⋅) with �[w(x, 𝜉)] ∈ 𝜕f̄ (x) , should 
be available. Here, we use ∇f̄ (x) to denote an element of the convex subdifferential 
𝜕f̄ (x) = 𝜕�[f (x, 𝜉)] , i.e.

In addition, g has to be simple. The latter means that we are able to find a closed-
form solution for minimizing the sum of g with some simple auxiliary functions. 
For that, we assume that for the effective domain of g there exists a prox-function 

(1)min
x

F(x) = f̄ (x) + g(x),

f̄ (x) = �
[

f (x, 𝜉)
]

(2)f̄ (y) ≥ f̄ (x) + ⟨∇f̄ (x), y − x⟩, y ∈ dom (g).
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� ∶ ℝ
n
→ ℝ ∪ {+∞} w.r.t. an arbitrary but fixed norm ‖ ⋅ ‖ . The prox-function � 

has to fulfil: 

	 (i)	 � (x) ≥ 0 for all x ∈ dom (g).
	 (ii)	 �  is strongly convex on dom (g) with convexity parameter 𝛽 > 0 , i.e. for all 

x, y ∈ dom (g) and � ∈ [0, 1] it holds: 

	 (iii)	 The auxiliary minimization problem 

 is easily solvable for s ∈ ℝ
n and 𝛾 > 0.

In our analysis, we consider that g is strongly convex with convexity parameter 
� ≥ 0 w.r.t. the norm ‖ ⋅ ‖ . Note that � = 0 corresponds to the mere convexity of g.

For stating our method, we choose a sequence of positive parameters (ak)k≥0 , 
which is used to average the subdifferential information of f. We set:

Equivalently, it holds:

Another sequence of positive parameters (�k)k≥0 controls the impact of the prox-
function � . We assume:

Now, we are ready to formulate the regularized quasi-monotone method for solving 
the composite minimization problem (1):

Regularized Quasi-Monotone Method (RQM)

0. Initialize x0 = arg min
x

{

A0g(x) + �0� (x)
}

 , s−1 = 0.
1. Sample �k ∼ �.
2. Compute w

(

xk, �k
)

 and set sk = sk−1 + akw
(

xk, �k
)

.
3. Forecast x+

k
= arg min

x

�

⟨sk, x⟩ + Ak+1g(x) + �k+1� (x)
�

.

4. Update 
xk+1 =

Ak

Ak+1

xk +
ak+1

Ak+1

x+
k .

�
�

�x + (1 − �)y
� ≤ �� (x) + (1 − �)� (y) −

�

2
�(1 − �)‖x − y‖2.

min
x

{⟨s, x⟩ + g(x) + �� (x)}

Ak =

k
∑

�=0

a
�
.

(3)Ak+1 = Ak + ak+1.

(4)�k+1 ≥ �k, k ≥ 0.
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It is clear that iterates of (RQM) are convex combinations of forecasts:

In order to achieve convergence rates for RQM, the control parameters 
(

ak
)

k≥0 and 
(

�k
)

k≥0 should be properly specified. How to do this, will be clear from our conver-
gence analysis in the next section, cf. possible choices in (18), (21) and (22) below.

3 � Convergence analysis

Before performing the convergence analysis of (RQM), let us deduce some useful 
properties of the following auxiliary function:

Since Akg + �k� is strongly convex with convexity parameter

the convex function �k is differentiable and its gradient ∇�k is 1
�k

-Lipschitz continu-
ous. The latter property means:

Moreover, it holds:

Let us derive the convergence rate of (RQM). For that, we set:

where ‖ ⋅ ‖∗ denotes the dual norm of ‖ ⋅ ‖ . We shall denote, as standard, the filtra-
tion �-algebra corresponding to the sequence of iterates as {Fk}.

Theorem 1  Let x∗ ∈ dom (g) solve the composite optimization problem (1), and the 
sequence 

(

xk
)

k≥0 be generated by (RQM). Then, it holds for k ≥ 0 that:

Proof  Let us define the stochastic Lyapunov function:

(5)xk =
1

Ak

(

a0x0 +

k
∑

�=1

a
�
x+
�−1

)

.

(6)�k(s) = max
x∈ℝn

�

⟨s, x⟩ − Akg(x) − �k� (x)
�

, s ∈ ℝ
n.

(7)�k = Ak� + �k�,

(8)�k(s
�) ≤ �k(s) + ⟨∇�k(s), s

� − s⟩ +
1

2�k

‖s� − s‖2
∗
, s, s� ∈ ℝ

n.

(9)∇�k(−sk−1) = x+
k−1

.

(10)Bk =
1

2

k
∑

�=0

a2
�

�
�

�‖
‖

w(x
�
, �

�
)‖
‖

2

∗
, k ≥ 0,

(11)�
[

F(xk)
]

− F(x∗) ≤ �k

Ak

� (x∗) +
Bk

Ak

.

Vk = Ak

�

F(xk) − F(x∗)
�

+ �k(−sk) + ⟨sk, x∗⟩ + Akg(x∗) − Bk.
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We consider the expected difference:

Let us estimate the expressions I-IV from above.
Estimation of I We split:

Due to convexity of f, the definitions of Ak and xk , we obtain:

By using convexity of g, it also follows:

Overall, we deduce:

�
�

Vk+1�Fk

�

− Vk = Ak+1

�

�
�

F(xk+1)�Fk

�

− F(x∗)
�

− Ak

�

F(xk) − F(x∗)
�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=I

+ �
�

�k+1(−sk+1)�Fk

�

− �k(−sk)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=II

+ �
�

⟨sk+1, x∗⟩�Fk

�

+ Ak+1g(x∗) − ⟨sk, x∗⟩ − Akg(x∗)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=III

−�
�

Bk+1�Fk

�

+ Bk

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=IV

.

I = Ak+1

(

�
[

�
[

f (xk+1, �)
]

|Fk

]

− �
[

f (x∗, �)
])

− Ak

(

�
[

f (xk, �)
]

− �
[

f (x∗, �)
])

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= If

+ Ak+1

(

�
[

g(xk+1)|Fk

]

− g(x∗)
)

− Ak

(

g(xk) − g(x∗)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= Ig

.

If
(3)
= ak+1

(

�
[

�
[

f (xk+1, 𝜉)
]

|Fk

]

− �
[

f (x∗, 𝜉)
])

+ Ak

(

�
[

�
[

f (xk+1, 𝜉)
]

|Fk

]

− �
[

f (xk, 𝜉)
])

(2)≤ ak+1�
[⟨

∇f̄ (xk+1), xk+1 − x∗
⟩

|Fk

]

+ Ak�
[⟨

∇f̄ (xk+1), xk+1 − xk
⟩

|Fk

]

�.
= �

[⟨

ak+1∇f̄ (xk+1), x
+
k
− x∗

⟩

|Fk

]

.

Ig

�.≤ Ak+1

(

Ak

Ak+1

g(xk) +
ak+1

Ak+1

�
[

g(x+
k
)|Fk

]

− g(x∗)

)

− Ak

(

g(xk) − g(x∗)
)

(3)
= ak+1

(

�
[

g(x+
k
)|Fk

]

− g(x∗)
)

.
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Estimation of II First, in view of the definitions of �k , Ak , and x+
k
 , we obtain:

Second, due to Lipschitz continuity of ∇�k and definitions of sk and x+
k
 , we have:

By using these two auxiliary inequalities, we are ready to estimate:

Estimation of III
The definitions of sk and Ak provide:

Estimation of IV
Here, we have:

I ≤ �
[⟨

ak+1∇f̄ (xk+1), x
+
k
− x∗

⟩

|Fk

]

+ ak+1
(

�
[

g(x+
k
)|Fk

]

− g(x∗)
)

.

(12)

�
[

�k(−sk)|Fk

]
(6)≥ �

[⟨

−sk, x
+
k

⟩]

− Ak�
[

g(x+
k
) − �k� (x+

k
)|Fk

]

(3)
= �

[⟨

−sk, x
+
k

⟩

− Ak+1g(x
+
k
) − �k+1� (x+

k
)
]

+ �
[

ak+1g(x
+
k
) +

(

�k+1 − �k
)

� (x+
k
)|Fk

]

�.
= �

[

�k+1(−sk) + ak+1g(x
+
k
) +

(

�k+1 − �k
)

� (x+
k
)|Fk

]

.

(13)

�
�

�k+1(−sk+1)
�

(8)≤ �
�

�k+1(−sk) + ⟨∇�k+1(−sk),−sk+1 + sk⟩�Fk

�

+
1

2�k+1

�
�

‖ − sk+1 + sk‖
2
∗
�Fk

�

�.,(9)
= �

�

�k+1(−sk) − ⟨x+
k
, ak+1w(xk+1, �k+1)⟩�Fk

�

+
a2
k+1

2�k+1

�
�

‖w(xk+1, �k+1)‖
2
∗
�Fk

�

.

II = �
�

�k+1(−sk+1) − �k(−sk)�Fk

�

(12)≤ �
�

�k+1(−sk+1) − �k+1(−sk) − ak+1g(x
+
k
) −

�

�k+1 − �k
�

� (x+
k
)�Fk

�

(13)≤ − �

�

⟨ak+1w(xk+1, �k+1), x
+
k
⟩ +

a2
k+1

2�k+1

‖w(xk+1, �k+1)‖
2
∗
�Fk

�

− �
�

ak+1g(x
+
k
) −

�

�k+1 − �k
�

� (x+
k
)�Fk

�

.

III
�.
= �

�

⟨ak+1w(xk+1, �k+1), x∗⟩�Fk

�

+ ak+1g(x∗).
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Altogether, we can see that

Since x+
k
 is defined given Fk , we have:

By additionally using that the sequence (�k)k≥0 is by assumption nondecreasing, and 
� (x) ≥ 0 for all x ∈ dom (g) , we obtain:

Hence, we get by induction and taking total expectations:

It turns out that the expectation of V0 is nonnegative. For that, we first estimate due 
to the choice of x0:

This gives:

where again the last inequality is due to the assumptions on �0 and � . Additionally, 
it holds by definition of �k:

IV
(10)
= −

a2
k+1

2�k+1

�

[

‖

‖

w(xk+1, �k+1)
‖

‖

2

∗
|Fk

]

.

�
�

Vk+1�Fk

�

− Vk ≤ �
�

⟨ak+1w(xk+1, �k+1), x∗ − x+
k
⟩�Fk

�

− �
��

ak+1∇f (xk+1), x
+
k
− x∗

�

�Fk

�

−
�

�k+1 − �k
�

� (x+
k
).

�
�

⟨ak+1w(xk+1, 𝜉k+1), x∗ − x+
k
⟩�Fk

�

= �
�

⟨ak+1∇f̄ (xk+1), x∗ − x+
k
⟩�Fk

�

.

�
[

Vk+1|Fk

]

− Vk ≤ 0.

(14)�[Vk] ≤ �[V0].

(15)

�0(−s0)
(8)≤ �0(0) + ⟨∇�0(0),−s0⟩ +

1

2�0

‖s0‖
2
∗

�.
= − a0g(x0) − �0� (x0) − ⟨x0, a0w(x0, �0)⟩

+
a2
0

2�0

�

�

w(x0, �0)
�

�

2

∗
.

(16)

�[V0] = A0�
�

F(x0) − F(x∗)
�

+ �
�

𝜑0(−s0) + ⟨s0, x∗⟩
�

+ A0g(x∗) − B0

(2)≤ a0
�

∇f̄ (x0), x0
�

+ �[𝜑0(−s0)] + a0g(x0) − B0

(15),(10)≤ − 𝛾0𝛹 (x0) ≤ 0,
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Hence, we obtain:

The assertion (11) then follows.

Now, let us show that the convergence rate of (RQM) derived in Theorem 1 is 
optimal for nonsmooth optimization, i.e. it is of order O

�

1
√

k+1

�

 . For that, we exem-
plarily consider the following choice of control parameters:

We also assume that the subgradients’ estimates of f have uniformly bounded second 
moments, i.e. there exists G > 0 such that

Corollary 1  Let x∗ ∈ dom (g) solve the composite optimization problem (1), and the 
sequence 

(

xk
)

k≥0 be generated by (RQM) with control parameters from (18). Then, it 
holds for all k ≥ 0:

Proof  In order to obtain (20), we estimate the terms in (11) which involve control 
parameters:

	�  ◻

(17)�k(−sk) ≥ ⟨−sk, x∗⟩ − Akg(x∗) − �k� (x∗).

Ak�
��

F(xk) − F(x∗)
��

= �
�

Vk − �k(−sk) − ⟨sk, x∗⟩
�

− Akg(x∗) + Bk

(14)

(16), (17)≤ �k� (x∗) + Bk.

(18)ak = 1, �k =
√

k + 1, k ≥ 0.

(19)�
�

‖w(x, �)‖∗
� ≤ G, x ∈ dom (f ).

(20)�
�

F(xk)
�

− F(x∗) ≤
�

� (x∗) +
G2

�

�

1
√

k + 1
.

�k

Ak

=

√

k + 1

k + 1
=

1
√

k + 1
,

Bk

Ak

=
1

2(k + 1)

k
�

�=0

1

�
�

�

�

�

�

w(x
�
, �

�
)�
�

2

∗

� (7),(19)≤ G2

2�(k + 1)

k
�

�=0

1
√

� + 1

≤ G2

2�(k + 1) �
k+

1

2

−
1

2

d �
√

� + 1
=

G2

�(k + 1)

�
�

k +
3

2
−

�

1

2

�

≤ G2

�
√

k + 1
.
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From the proof of Corollary 1 we see that also other choices of control param-
eters guarantee the optimal convergence rate of RQM. E.g., we may have chosen:

We show that the convergence rate of (RQM) derived in Corollary 1 can be 
improved to O

(

ln k

k

)

 if the regularizer g turns out to be strongly convex. Addition-
ally, an estimate in terms of generated iterates can be obtained. For that, consider the 
control parameters as follows:

Corollary 2  Let x∗ ∈ dom (g) solve the composite optimization problem (1), and the 
sequence 

(

xk
)

k≥0 be generated by (RQM) with control parameters from (22). Addi-
tionally, let g be strongly convex with convexity parameter 𝜎 > 0 . Then, it holds for 
all k ≥ 0:

Proof  In order to obtain (23), we estimate the terms in (11) which involve control 
parameters:

For (24), we use the assumption that g is strongly convex, hence, also F is. In par-
ticular, we obtain:

Since x∗ solves (1), we have 0 ∈ �F(x∗) and it follows:

(21)ak = k, �k = (k + 1)
3

2 , k ≥ 0.

(22)ak = 1, �k = ln(2k + 3), k ≥ 0.

(23)�
[

F(xk)
]

− F(x∗) ≤
(

� (x∗) +
G2

�

)

ln(2k + 3)

k + 1
.

(24)�‖
‖

xk − x∗
‖

‖

2 ≤ 2

�

(

� (x∗) +
G2

�

)

ln(2k + 3)

k + 1
.

�k

Ak

=
ln(2k + 3)

k + 1
,

Bk

Ak

=
1

2(k + 1)

k
∑

𝓁=0

1

�
𝓁

�

[

‖

‖

w(x
𝓁
, �

𝓁
)‖
‖

2

∗

] (7),(19)≤ G2

2�(k + 1)

k
∑

𝓁=0

1

𝓁 + 1

≤ G2

2�(k + 1) �
k+

1

2

−
1

2

d �

� + 1
=

G2

�(k + 1)

(

ln
(

k +
3

2

)

− ln
1

2

)

=
G2

�
⋅
ln(2k + 3)

k + 1
.

F(xk) ≥ F(x∗) + ⟨s, xk − x∗⟩ +
�

2
�

�

xk − x∗
�

�

2
, s ∈ �F(x∗).
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By taking expectation and recalling (23), we are done. 	�  ◻

Finally, we note that estimating convergence rates for the generated sequence of 
iterates itself is a hard task in the framework of subgradient methods. We refer e.g. 
to [8], where the dual averaging methods were adjusted for stochastic composite 
minimization. There, just the boundedness of iterates could be in general shown. If 
g is strongly convex, an estimate was nevertheless provided. This is also the case for 
RQM as we have shown in Corollary 2.

4 � Numerical experiments

We performed numerical experiments on two representative synthetic problems 
with various parameters for the data generation and observed two general patterns in 
regards to the relative performance of solvers.

For each problem instance we ran one hundred trials of (RQM) in order to inves-
tigate the robustness and spread of the performance. Note that the initial x0 set by 
(RQM) is the zero vector. First, we compare the parameter choice Parameters A as 
in (18), i.e. ak = 1 and, thus, Ak = k + 1 , with �k =

√

k + 1 , to the choice of ak = k 
and, thus, Ak =

k(k+1)
2

 , with the more aggressive constant step-size �k = 10 Parameters 
B.

We also compare (RQM) to the stochastic regularized subgradient (SRSG) with 
Nesterov’s extrapolation from [7]. There, by choosing control parameters

the authors iterate:

Finally, we also compare the procedure to the standard mirror descent algorithm, in 
this case the update becomes,

In the experiments we use the Euclidean dual map � (x) =
1

2
‖x‖2

2
 and the theoreti-

cally optimal rate �k =
√

k + 1.

‖

‖

xk − x∗
‖

‖

2 ≤ 2

�

(

F(xk) − F(x∗)
)

.

�k =
2

k + 1
, �k = (k + 1)3∕2,

(25)
yk = x̂k + 𝜃k

�

𝜃−1
k−1

− 1
��

x̂k − x̂k−1
�

,

x̂k+1 = arg min
x

�

⟨w(yk, 𝜉k), x⟩ + g(x) + 𝛾k𝛹 (x − yk)
�

.

(26)xk+1 = arg min
x

�

⟨w(xk, �k), x⟩ + g(x) + �k� (x − xk)
�

.
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4.1 � Huber loss and �
1
‑regularization

Consider linear regression with a robust Huber loss and �1-regularization, i.e.

where

Here, we expect the number N of data samples to be large. The �1-regularization 
on the parameters encourages sparsity, i.e. most of the parameters to become zero. 
The Huber loss is a means of mitigating the impact of outliers on the stability of the 
regression estimate, i.e. by enforcing linear as opposed to quadratic growth of the 
loss beyond the influence boundary � . We take the subgradients

Denoting x = (�, b) and choosing as prox-function � (x) =
1

2
‖x‖2

2
 , the subproblem in 

(RQM) admits an explicit solution:

The explicit solution of the subproblem in (25) is

Now we describe the generation of the synthetic data used to generate the problem 
for comparison. We let � ∈ ℝ

10 , � = 2 , and N = 10000 and conduct the following 
procedure: 

1.	 Choose 4 components of � to be nonzero. Randomly sample these components 
and b.

2.	 Choose 10000 input samples {xi} uniformly in [−5, 5].

min
�,b

N
�

i=1

L�
�

�
Txi + b − yi

�

+ �‖(�, b)‖1,

L�(z) =

⎧

⎪

⎨

⎪

⎩

1

2
z2 for �z� ≤ �,

�
�

�z� −
1

2
�
�

otherwise.

�L�(z) ∋

{

z for |z| ≤ �,

� ⋅ sign(z) otherwise.

x+ = argmin
x

�

⟨s, x⟩ + A�‖x‖1 +
�

2
‖x‖2

2

�

= sgn

�

−
s

�

�

max

�

�

�

�

�

−
s

�

�

�

�

�

−
A�

�
, 0

�

.

x̂ = argmin
x

�

⟨w, x⟩ + 𝜆‖x‖1 +
𝛾

2
‖x − y‖2

2

�

= sgn

�

y −
w

𝛾

�

max

�

�

�

�

�

y −
w

𝛾

�

�

�

�

−
𝜆

𝛾
, 0

�

.
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3.	 With probability 0.95 generate yi ∼ N
(

�Txi + b, 1
)

 ,  and otherwise 
yi ∼ N

(

�Txi + b, 5
)

.
4.	 Run (RQM).

We set � = 0.1 . The trajectory of the objective value with the associated one stand-
ard deviation confidence interval is shown in Fig.  1. Note that for the Nesterov’s 
extrapolation algorithm we report the objective value on x̂k , as this is what the theo-
retical convergence guarantees in [7] are derived for. We see that SRSG with Nest-
erov’s extrapolation performs better that our method with the theoretically optimal 
choice of Parameters A. However, it is worth mentioning that alternative parameter 
choices (Parameter B) may work better in practice. In any case, all the methods pro-
duce convergent sequences w.r.t. the function value.

4.2 � �
1
‑regression and box constraint

Now, we present a problem and data generation parameters for which the theoreti-
cally optimal algorithm RQM exhibit the better comparative performance. The opti-
mization problem is defined to be �1-regression with an indicator of membership to 
a box constraint

where

min
�,b

N
∑

i=1

|

|

|

�
Txi + b − yi

|

|

|

+ �C(�, b),

C = {x ∶ xl ≤ x ≤ xu}.

Fig. 1   Evolution of the objective error with the iterations for Huber Loss and �
1
-Regularization



1227

1 3

Regularized quasi‑monotone method for stochastic…

In this case, the subproblem uses a stochastic subgradient of the loss term, i.e., for 
sample i, we have that s or w, respectively for the two algorithms is given by

Additionally, we use the same prox-function � (x) =
1

2
‖x‖2

2
 . Finally, incorporating 

the indicator in the subproblem is simply projection onto the box C. We let � ∈ ℝ
5 

and N = 1000 and generate the data as follows: 

1.	 Randomly sample � ∼ N(0, 7�) and b ∼ N(0, 8).
2.	 Choose 1000 input samples {xi} uniformly in [−15, 15].
3.	 Generate yi ∼ N

(

�Txi + b, 1
)

.
4.	 Finally �l = xl� was chosen randomly uniformly in [−20, 0] and �u = xu� in 

[0, 20].

We can see now in Fig.  2 that in this case the theoretically optimal choice of 
Parameters A exhibit the best performance.

Acknowledgements  The authors would like to thank the anonymous referees for their suggestions in 
improving the presentation and content of this work. Research Supported by the OP VVV project CZ.
02.1.01/0.0/0.0/16\_019/0000765 “Research Center for Informatics”.

References

	 1.	 Bai, J., Zhang, H., Li, J.: A parameterized proximal point algorithm for separable convex optimi-
zation. Optim. Lett. 12(7), 1589–1608 (2018)

sign
(

�
Txi + b − yi

)

(

xi
1

)

.

Fig. 2   Evolution of the objective error with the iterations for �
1
-Regression and Box Constraint



1228	 V. Kungurtsev, V. Shikhman 

1 3

	 2.	 Bitterlich, S., Boţ, R.I., Csetnek, E.R., Wanka, G.: The proximal alternating minimization algo-
rithm for two-block separable convex optimization problems with linear constraints. J. Optim. 
Theory Appl. 182(1), 110–132 (2019)

	 3.	 Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and sta-
tistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 
3(1), 1–122 (2011)

	 4.	 Liang, S., Wang, L., Yin, G.: Distributed quasi-monotone subgradient algorithm for nonsmooth 
convex optimization over directed graphs. Automatica 101, 175–181 (2019)

	 5.	 Nesterov, Y., Shikhman, V.: Quasi-monotone subgradient methods for nonsmooth convex mini-
mization. J. Optim. Theory Appl. 165(3), 917–940 (2015)

	 6.	 Tao, W., Pan, Z., Wu, G., Tao, Q.: Primal averaging: a new gradient evaluation step to attain the 
optimal individual convergence. IEEE Trans. Cybern. 50, 835–845 (2020)

	 7.	 Tao, W., Pan, Z., Wu, G., Tao, Q.: Strength of Nesterov’s extrapolation in the individual conver-
gence of nonsmooth optimization. IEEE Trans. Neural Netw. Learn. Syst. 31, 1–12 (2020)

	 8.	 Xiao, L.: Dual averaging methods for regularized stochastic learning and online optimization. J. 
Mach. Learn. Res. 11(88), 2543–2596 (2010)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and applicable law.


	Regularized quasi-monotone method for stochastic optimization
	Abstract
	1 Introduction
	2 Regularized quasi-monotone method
	3 Convergence analysis
	4 Numerical experiments
	4.1 Huber loss and -regularization
	4.2 -regression and box constraint

	Acknowledgements 
	References




