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Abstract
Cross validation is widely used to assess the performance of prediction models for 
unseen data. Leave-k-out and m-fold are among the most popular cross validation 
criteria, which have complementary strengths and limitations. Leave-k-out (with 
leave-1-out being the most common special case) is exhaustive and more reliable 
but computationally prohibitive when k > 2 ; whereas m-fold is much more tracta-
ble at the cost of uncertain performance due to non-exhaustive random sampling. 
We propose a new cross validation criterion, leave-worst-k-out, which attempts to 
combine the strengths and avoid limitations of leave-k-out and m-fold. The leave-
worst-k-out criterion is defined as the largest validation error out of C

nk
 possible 

ways to partition n data points into a subset of (n − k) for training a prediction 
model and the remaining k for validation. In contrast, the leave-k-out criterion takes 
the average of the C

nk
 validation errors from the aforementioned partitions, and 

m-fold samples m random (but non-independent) such validation errors. We prove 
that, for the special case of multiple linear regression model under the L

1
 norm, 

the leave-worst-k-out criterion can be computed by solving a mixed integer linear 
program. We also present a random sampling algorithm for approximately comput-
ing the criterion for general prediction models under general norms. Results of two 
computational experiments suggested that the leave-worst-k-out criterion clearly 
outperformed leave-k-out and m-fold in assessing the generalizability of prediction 
models; moreover, leave-worst-k-out can be approximately computed using the ran-
dom sampling algorithm almost as efficiently as leave-1-out and m-fold, and the 
effectiveness of the approximated criterion may be as high as, or even higher than, 
the exactly computed criterion.
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1  Introduction

Cross validation is a widely used technique to estimate how the performance of a 
prediction model on a given in-sample dataset is generalizable to an unseen out-of-
sample dataset. Take multiple linear regression for example, which predicts the 
response of a given explanatory data x ∈ ℝ

n×p with a linear function: ŷ = x𝛽 . For a 
given in-sample dataset of (xin, yin) , the parameter � can be trained to fit the in-sam-
ple data with minimal distance between actual and predicted responses: 
�∗ ∈ argmin

�

{||yin − xin�||} . However, the model ŷ = x𝛽∗ is not expected to fit an 

unseen out-of-sample dataset (xout, yout) as well as it did the in-sample dataset that it 
was trained to fit, or overfit [1, 2]. The essence of overfitting is to mistakenly extract 
noises as representative underlying model structure [3]. This phenomenon is par-
ticularly common [4] when the number of explanatory variables, p, far exceeds the 
number of data points, n. Bartlett et al. [5] analyzed the mysterious phenomenon of 
benign overfitting, which allows deep neural networks to achieve good prediction 
accuracy despite a perfect fit to noisy training data. They found that, for linear 
regression, overfitting cannot be benign unless the unimportant directions in param-
eter space significantly outnumber the sample size. When this characterization is 
not satisfied, overfitting often leads to large out-of-sample prediction errors. As a 
remedy to this challenge, cross validation can be used to estimate the extent of 
overfitting and to select prediction models that are less overfitted [1, 6, 7].

In order to estimate the performance of a prediction model in out-of-sample 
data, a common practice in cross validation is to partition the given in-sample data 
into training and validation subsets, train the model with the training data, calculate 
the prediction error using the validation data, and use the validation error as an 
estimation of the out-of-sample performance [8].

Cross validation criteria are either exhaustive or non-exhaustive. Exhaustive cri-
teria evaluate the performance of a prediction model on all possible partitions of 
training and validation datasets subject to cardinality constraints. As perhaps the 
most popular exhaustive cross validation criterion, leave-k-out (LKO) consists of 
three steps. Step 1, enumerate all possible partitions to divide a given in-sample of 
n data points into a training subset with n − k data points and a validation subset 
with k. Step 2, for each partition, train the prediction model and calculate its cor-
responding validation error. Step 3, use the average validation error as the LKO cri-
terion [9, 10]. Due to the computational complexity, only the special case of leave-
1-out is widely used [8, 11, 12]. Commonly used non-exhaustive cross validation 
criteria include m-fold [13, 14], holdout [15], random sampling [16], etc. It is worth 
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mentioning that leave-k-out is the exhaustive counterpart of (n/k)-fold when n is an 
integer multiple of k. As a special case, leave-1-out and n-fold are equivalent.

Exhaustive and non-exhaustive cross validation criteria have complementary 
strengths and limitations. Exhaustive criteria, on the one hand, take all possible 
partitions of training and validation subsets into consideration, at the cost of com-
putational intractability. Non-exhaustive criteria, on the other hand, introduce the 
tradeoff between solution quality and computational complexity by sampling ran-
dom partitions.

Recent studies in the literature have compared different cross validation methods, 
proposed new variants, and applied these methods in different application fields. 
Magnusson et al. [17] proposed a new method for model comparison by combining 
fast approximate leave-1-out surrogates with exact leave-1-out sub-sampling. Xu 
et al. [18] proposed to improve the effectiveness of m-fold by splitting the training 
dataset before applying m-fold to each split and pooling the prediction errors. Jung 
[19] suggested a variant of m-fold, which uses m − 1 folds of data for model valida-
tion and the remaining fold for model construction. Ramezan [20] compared three 
cross validation methods (leave-1-out, m-fold, and Monte Carlo) using high spatial 
resolution remotely sensed datasets and found “minimal differences in accuracy for 
the different cross-validation tuning methods.” Duarte [21] found cross validation 
to be more effective than internal metrics for tuning SVM hyperparameters. Recent 
applications of cross validation included detecting Alzheimer disease [22], predict-
ing basketball game outcomes [23], cryo-EM map reconstruction [24], and wind 
energy predition [25].

The proposed leave-worst-k-out (LWKO) criterion can be defined as a variant 
of LKO. With the first two steps of the aforementioned LKO definition being the 
same, LWKO uses the largest one (as opposed to the average) of the Ck

n
 valida-

tion errors in the third step. As such, LWKO has two advantages over the LKO or 
m-fold criteria. First, LWKO is less intractable than LKO. To compute LKO, all 
the Ck

n
 validation errors need to be calculated, whereas LWKO only requires the 

identification of the largest error without having to calculate the exact values of 
the others. In Sect.  2.2, we present a random sampling algorithm for calculating 
LWKO approximately, which has a lower yet comparable computational efficiency 
with leave-1-out and m-fold. In Sect.  2.3, for the special case of using multiple 
linear regression as the prediction model under L1 norm, we present a mixed inte-
ger linear programming (MILP) formulation for computing the exact value of the 
LWKO criterion. Second, LWKO has been found to be more effective than LKO 
and m-fold in identifying outliers to the prediction model, which could be caused 
by underfitted or overfitted models. The LKO and m-fold criteria favor models that 
fit the validation data well on average, allowing a large number of good fits to com-
pensate for the bad performance of a few outliers. In contrast, the LWKO criterion 
favors models whose worst outliers are not too outlying, even though the average fit 
may not be the best possible.
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2 � Methods

2.1 � Definition of LWKO as a bilevel optimization model

The LWKO criterion is defined as the largest possible validation error when the 
model is trained using n − k data points and validated using the remaining k data 
points. Since there are Cnk possible such partitions of training and validation sub-
sets, a brute force algorithm for calculating LWKO or LWO would require training 
the prediction model and calculating its validation error Cnk times. In this section, 
we present the following bilevel optimization model (1)–(6), whose optimal solu-
tion yields the LWKO criterion:

Here, the upper level objective function (1) is to maximize the validation error 
under norm L . Function h(xV|�) predicts the response from validation data xV using 
parameter � . Variable w indicates the partition decision: wi = 1 or wi = 0 means 
that data point i is used in the training set, T  , or the validation set, V , respectively. 
Constraints (2) and (3) require w to be a binary vector with exactly n − k elements 
being 1 and k being 0. Constraints (4) and (5) define the training set, T  , and valida-
tion sets, V , respectively. The lower level (6) finds the optimal parameter � to mini-
mize the training error under norm L.

This bilevel optimization model (1)–(6) suggests three underlying approaches to 
computing the LWKO criterion, exactly or approximately. First, train the prediction 
model for all Ck

n
 partitions in a brute force manner, compute their corresponding 

validation errors, and then use the largest one as LWKO. Second, train the predic-
tion model with a random sample of partitions and use the largest validation error 
to approximate LWKO. Third, take advantage of special (such as linear) properties 
of function h(x|�) to identify one training-validation dataset partition that results in 
the largest validation error, without having to compute the exact values of all other 
validation errors. The latter two approaches will be discussed in more details in the 
following two subsections.

(1)max
w,�,T,V

||yV − h(xV|�)||L

(2)s.t.
∑

j

wj = n − k

(3)w ∈ �
n

(4)T = {j ∶ wj = 1}

(5)V = {j ∶ wj = 0}

(6)� ∈ argmin b||yT − h(xT|b)||L.
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2.2 � Random sampling algorithm for computing LWKO approximately

We present a random sampling algorithm for calculating LWKO approximately, 
which is applicable to a general prediction function h(x|�) under a general norm L . 
This algorithm trains the prediction model for a randomly sampled subset of parti-
tions and uses the largest validation error among the samples as an underestimated 
approximate value of LWKO. The premise of this algorithm is that approximate 
values of LWKO may also be informative for model selection when all prediction 
models are cross validated by the same approximate algorithm.

2.3 � LWKO for multiple linear regression under the L
1
 norm

In this section, we consider a special case using multiple linear regression for the pre-
diction function h(x|�) = x� under the L1 norm and present an approach for calculat-
ing the LWKO criterion exactly. In such special case, model (1)–(6) reduces to the 
following bilevel optimization model:

Then, we reformulate model (7)–(10) as the following MILP, which can be solved 
efficiently by numerous algorithms [26–28] and commercial solvers such as 
CPLEX [29] and GUROBI [30]:

(7)max
w,𝛽

1

k
(1 − w)⊤|y − x𝛽|

(8)s.t. 1⊤w = n − k

(9)w ∈ �
n

(10)𝛽 ∈ argmin
b

{
1

n − k
w⊤|y − xb|

}
.
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Theorem 1  Bilevel model (7)–(10) and MILP (11)–(20) are equivalent in the sense 
that (w, �) is an optimal solution to (7)–(10) if and only if there exists (l, u, �,�, r) 
such that (w, l, u, �,�, r, �) is an optimal solution to (11)–(20). As such, the LWKO 
criterion can be calculated by solving the MILP (11)–(20).

Proof  This proof consists of three steps of equivalent reformulations. First, we 
reformulate (7)–(10) as follows to linearize the absolute value functions in both 
upper and lower levels:

(11)max
w,l,u,𝜆,𝜇,r,𝛽

1

k

[
1⊤r − (n − k)y⊤(𝜇 − 𝜆)

]

(12)s.t. r ≤ Ml + x� − y

(13)r ≤ Mu + y − x�

(14)l + u ≤ 1

(15)1⊤w = n − k

(16)r ≥ x� − y

(17)r ≥ y − x�

(18)x⊤(𝜇 − 𝜆) = 0

(19)� + � =
w

n − k

(20)w, l, u ∈ �
n;�,� ≥ 0;r, � free.

(21)max
w,l,u,r,𝛽

1

k
(1 − w)⊤r

(22)s.t. r ≤ Ml + x� − y

(23)r ≤ Mu + y − x�

(24)l + u ≤ 1

(25)1⊤w = n − k
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Linearization of the absolute value under minimization at the lower level is 
straightforward. At the upper level, which is a maximization problem, it requires 
additional binary variables l and u, free variable r, a big-M parameter M, and new 
constraints to establish r = |y − x�| . Constraints (22)–(24) ensure that r ≤ |y − x�| , 
and the maximization objective will close any gap between r and |y − x�|.

Second, we replace constraint (27) with the optimality condition of the underly-
ing linear program:

where � and r correspond to, respectively, decision variables b and s at optimality.
Finally, according to strong duality, we have 1

n − k
w⊤r = y⊤(𝜇 − 𝜆) , which helps 

convert the bilinear objective function 1
k
(1 − w)⊤r into an equivalent linear one 

1

k

[
1⊤r − (n − k)y⊤(𝜇 − 𝜆)

]
 . 	�  ◻

3 � Computational experiments

3.1 � Data

We collected two data sets from publicly available sources for our computational 
experiments. The first dataset was from regression problem 3 of the CoEPrA (Com-
parative Evaluation of Prediction Algorithms) 2006 competition [31]. The explanatory 
data x has a dimension of 133 rows and p = 5, 787 columns, representing 133 objects 
of nonapeptides, each described by 5,787 descriptors; the response data y represents 
the property of the 133 nonapeptides.

The second dataset was from the DRYAD repository: DOI:10.5061/dryad.fc55k 
[32]. After the removal of incomplete data points, the explanatory data x has a dimen-
sion of 2,034 rows and p = 353 columns, representing 2,034 mice specimens, each 

(26)w, l, u ∈ �
n;r free

(27)𝛽 ∈ argmin
s,b

{
1

n − k
w⊤s ∶ x𝛽 − y ≤ s;y − x𝛽 ≤ s

}

(28)r ≥ x� − y

(29)r ≥ y − x�

(30)x⊤(𝜇 − 𝜆) = 0

(31)� + � =
w

n − k

(32)�,� ≥ 0,



552	 L. Wang 

1 3

genotyped at 353 single nucleotide polymorphisms on the 19 autosomal chromo-
somes; total body weight was used as the response data y. The datasets generated and/
or analysed during the current study are available from the corresponding author on 
reasonable request.

3.2 � Design of experiments

3.2.1 � Experiment 1

Experiment 1 used the first dataset to represent the n << p scenario. Eight cross 
validation criteria were selected to test the performance of the LWKO criterion in 
comparison with its counterpart LKO or (n/k)-fold for a range of k values under the 
L1 norm. For k = 1 and k = 2 , LKO was calculated with brute force enumeration; 
for k = 4 and k = 8 , enumeration became computationally expensive, thus (n/k)-
fold was used instead as the counterpart. This experiment consisted of the follow-
ing 6 steps.

Step 1 Randomly partition the data into an in-sample subset that consists of n = 
24 data points and an out-of-sample subset that consists of the remaining 109 
data points.
Step 2 Build ten models by solving the best subset problem with the parameter 
t ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}:

Step 3 Cross validate the ten models from Step 2 with the following eight crite-
ria using the in-sample data:

❶ Leave-1-out (L-1-O) ❷ Leave-worst-1-out (LW-1-O)
❸ Leave-2-out (L-2-O) ❹ Leave-worst-2-out (LW-2-O)
❺ 6-fold ❻ Leave-worst-4-out (LW-4-O)
❼ 3-fold ❽ Leave-worst-8-out (LW-8-O)

The LW-1-O and LW-2-O criteria were calculated with brute force enumeration; 
LW-4-O and LW-8-O were calculated using both the MILP model (11)–(20) 
(with a time limit for the solver) and the random sampling algorithm 1 to com-
pare the performances of exact and approximate algorithms.
Step 4 For each cross validation criterion, select one model with the smallest 
cross validation error.
Step 5 Calculate the mean absolute errors of the eight selected models using out-
of-sample data.
Step 6 Repeat Steps 1–5 three hundred times with different random partitions of 
in-sample and out-of-sample subsets.

min
�

{
1

n
||y − x�||L1

∶ ||�||0 ≤ t
}
.
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3.2.2 � Experiment 2

Experiment 2 was designed to use the second dataset to test the performance of 
LWKO for a general prediction model, random forest, under L2 norm using realistic 
explanatory and response data. This experiment had the following 6 steps.

Step 1 Randomly partition the data into an in-sample subset that consists of n 
= 1000 data points and an out-of-sample subset that consists of the remaining 
1034 data points.
Step 2 Build ten random forest models with the number of vari-
ables to select at random for each decision split, q, being 
q ∈ {20, 40, 60, 80, 100, 120, 140, 160, 180, 200} . All other hyper-parameters are 
the same (100 trees in the forest, each created using 200 random data points).
Step 3 Cross validate the ten models from Step 2 with the following eight crite-
ria using the in-sample data:

❶ Leave-1-out (L-1-O) ❷ Leave-worst-1-out (LW-1-O)
❸ 200-fold ❹ Leave-worst-5-out (LW-5-O)
❺ 100-foldww ❻ Leave-worst-10-out (LW-10-O)
❼ 50-fold ❽ Leave-worst-20-out (LW-20-O)

The LW-1-O criterion was calculated with brute force enumeration; LW-5-O; 
LW-10-O, and LW-20-O were calculated using the random sampling algo-
rithm 1, in which parameter s was set to be 10n

k
 so that each data point is used 

ten times on average to build binary decision trees.
Step 4 For each cross validation criterion, select one model with the smallest 
cross validation error.
Step 5 Calculate the root mean square errors of the eight selected models using 
out-of-sample data.
Step 6 Repeat Steps 0–5 three hundred times with different random partitions of 
in-sample and out-of-sample subsets.

Experiment 2 had three major differences with experiment 1. First, linear regres-
sion models in experiment 1 were created by solving the best subset problem, 
whereas random forest was used as the prediction model in experiment 2. Second, 
experiment 1 represented a scenario with a small number of data points ( n = 24 ) 
and a large number of variables ( p = 5, 787 ). In contrast, there was a larger number 
of data points ( n = 1, 000 ) and a smaller number of variables ( p = 353 ) in experi-
ment 2. Third, in experiment 1, both the MILP formulation (11)–(20) and the ran-
dom sampling algorithm 1 were used to compute LWKO, whereas only the random 
sampling algorithm 1 was used under the L2 norm in experiment 2.
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3.3 � Simulation results

The two experiments were carried out in Matlab on a laptop with 16 GB of ram 
and 2.8 GHz CPU. Gurobi with default settings was used as the MILP solver for 
model (11)–(20); a time limit of 10 minutes was imposed for the solver, although it 
was able to terminate ahead of time in majority of the instances. The Matlab code 
for solving the MILP (11)–(20) was uploaded to https://github.com/lzwang2017/
LWKO. Matlab function fitrtree.m was used to fit binary decision tree for 
regression.

3.3.1 � Results from experiment 1

Table  1 gives an example of simulation result from experiment 1. Each column 
corresponds to a multiple linear regression model with t non-zero variable effects. 
The in-sample error, errorin , decreases as t increases from 2 to 20. In contrast, the 
out-of-sample errors, errorout , of the ten models do not have such monotonic prop-
erty; the errors may be high for very small or large values of t due to underfitting or 
overfitting. An ideal cross validation criterion would be able to estimate the out-of-
sample performance of the models by using in-sample data. The ten models were 
validated against the eight cross validation criteria using the in-sample data, and 
the validation errors are given in the table in four groups of rows, for comparison 
between LKO or (n/k)-fold and the proposed LWKO criteria, and also for compari-
son between exact and approximate algorithms for computing LWKO. For each of 
the eight criteria (in ten rows), the smallest validation error is bolded, and its cor-
responding t∗ that achieved such smallest error is recorded. As a benchmark, the 

Table 1   Results from a sample simulation of experiment 1

Bolded errors are the smallest ones in each row. LW-4-O and LW-8-O were computed using both MILP 
and random sampling (RS) algorithms

t 2 4 6 8 10 12 14 16 18 20

errorin 0.29 0.21 0.20 0.15 0.09 0.07 0.06 0.04 0.01 0.01
errorout 1.11 1.01 0.94 0.78 0.75 0.82 0.95 2.50 1.39 1.45
L-1-O 0.32 0.38 0.45 0.26 0.17 0.13 0.20 0.33 0.08 0.14
LW-1-O 1.31 3.02 4.54 0.97 0.63 0.75 0.48 1.73 0.20 1.04
L-2-O 0.31 0.36 0.34 0.26 0.18 0.13 0.19 0.36 0.08 0.30
LW-2-O 1.26 3.11 5.18 0.85 0.49 0.59 0.89 2.06 0.84 9.68
6-fold 0.35 0.38 0.32 0.33 0.19 0.17 0.32 0.38 0.18 1.33
LW-4-O (MILP) 1.03 2.64 4.20 0.93 1.06 1.32 2.90 376.68 999.89 999.84
LW-4-O (RS) 1.49 1.09 1.27 1.38 1.49 2.57 3.50 7.06 115.66 510.61
3-fold 0.36 0.40 0.56 0.31 0.37 0.49 0.72 2.93 7.57 17.23
LW-8-O (MILP) 1.06 5.62 6.08 4.03 3.66 25.83 717.38 890.01 976.59 999.93
LW-8-O (RS) 1.06 1.13 1.27 2.75 3.26 2.68 103.81 47.84 358.81 38.43
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smallest errorout and its corresponding t∗ are also recorded, which represent the best 
possible performance of any cross validation criterion in this experiment.

The sample simulation of Table  1 was repeated for 300 times randomly and 
independently, each time with a different partition of the in-sample and out-of-
sample data sets. Average computation time for ten different models under LW-
4-O (MILP) and LW-8-O (MILP) criteria are shown in Table  2. The histograms 
of t∗ for the selected models and the corresponding errorout are plotted in the two 

Table 2   Average computation time (in seconds) for ten different models under LW-4-O (MILP) and LW-
8-O (MILP) criteria in experiment 1

The > signs are used when the 10-minute time limit had been exceeded and 600 seconds recorded as the 
computation time

t 2 4 6 8 10 12 14 16 18 20

LW-4-O (MILP) 3 28 139 > 301 > 442 > 485 > 478 > 440 275 42
LW-8-O (MILP) 6 42 218 > 509 > 583 > 597 > 599 > 598 > 588 > 542

Fig. 1   Left Histograms of t∗ for the selected models of eight cross validation criteria using the in-sample 
data over 300 random simulations in experiment 1. Results for the “optimal” criterion were obtained 
after observing the out-of-sample data, which represent the best possible performance of any cross vali-
dation criterion. Right Histograms and means of errorout for the selected models of eight cross validation 
criteria using the in-sample data over 300 random simulations in experiment 1
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subfigures in Fig. 1. We make three observations. First, when used for a very small 
k value (e.g., k = 1 or k = 2 ), LKO may not be an effective indicator of the model’s 
out-of-sample performance. Second, compared with LKO for the same k value, 
the LWKO criterion is more likely to lead to a smaller out-of-sample error. Third, 
approximate LWKO calculated using the random sampling algorithm could be an 
even more effective indicator of the model’s out-of-sample performance than the 
exact LWKO.

Table 3   Relative performance 
of LWKO and the counterpart 
LKO or (n/k)-fold in experiment 
1, in terms of the percentages of 
times that LWKO led to a lower 
(better), higher (worse), or the 
same errorout in 300 random 
simulations

The sum of each row may not add up to 100% due to rounding errors

LWKO 
better (%)

LWKO 
worse (%)

Same (%)

LW-1-O versus L-1-O 19 14 67
LW-2-O versus L-2-O 40 13 46
LW-4-O (MILP) versus 6-fold 65 15 21
LW-4-O (RS) versus 6-fold 89 11 0
LW-8-O (MILP) versus 3-fold 58 27 15
LW-8-O (RS) versus 3-fold 76 20 4

Fig. 2   Left Histograms of q∗ for the selected models of eight cross validation criteria using the in-sample 
data over 300 random simulations in experiment 2. Results for the “optimal” criterion were obtained 
after observing the out-of-sample data, which represent the best possible performance of any cross vali-
dation criterion. Right Histograms and means of errorout for the selected models of eight cross validation 
criteria using the in-sample data over 300 random simulations in experiment 2
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Direct comparisons between LKO and LWKO are presented in Table 3, which 
summarizes the percentages of times that the models selected by the LWKO cross 
validation criteria have led to a lower, higher, or the same out-of-sample errors in 
experiment 1, compared with the counterpart LKO or (n/k)-fold criteria. Results 
suggested that (both exact and approximate) LWKO outperformed the counterparts 
LKO and (n/k)-fold for all four compared cases of k ∈ {1, 2, 4, 8} , with k = 4 show-
ing the most significant advantage.

3.3.2 � Results from experiment 2

The histograms of q∗ for the selected models and the corresponding errorout are plot-
ted in the two subfigures in Fig. 2. Direct comparisons between LKO and LWKO 
are presented in Table 4. The observations from these results are similar with those 
from experiment 1, suggesting a consistent performance of the LWKO criterion for 
different sizes of data sets, different prediction models, and different norms. Results 
from experiment 2 also suggest that, even when the optimality of the worst valida-
tion dataset cannot be guaranteed, the LWKO criteria calculated using the random 
sampling algorithm 1 could still be more effective than their counterparts LKO or 
(n/k)-fold in estimating the performance of general prediction models for out-of-
sample data.

Table  5 compares the computation time for ten different models under eleven 
cross validation criteria for a random sample simulation in experiment 2. Results 
suggested that, using algorithm  1, leave-worst-k-out has a lower yet comparable 

Table 4   Relative performance 
of LWKO and the counterpart 
LKO or (n/k)-fold in experiment 
2, in terms of the percentages of 
times that LWKO led to a lower 
(better), higher (worse), or the 
same errorout in 300 random 
simulations

The sum of each row may not add up to 100% due to rounding errors

LWKO 
better (%)

LWKO 
worse (%)

same (%)

LW-1-O versus L-1-O 58 19 23
LW-5-O (RS) versus 200-fold 58 19 23
LW-10-O (RS) versus 100-fold 60 17 22
LW-50-O (RS) versus 20-fold 56 18 26

Table 5   Computation time (in seconds) for ten different models under eight cross validation criteria for a 
random sample simulation in experiment 2

q 20 40 60 80 100 120 140 160 180 200

L-1-O 16 16 16 16 16 16 17 17 17 17
LW-1-O (enumeration) 16 16 16 16 16 16 17 17 17 17
200-fold 5 6 6 6 6 6 6 7 7 7
LW-5-O (RS) 36 37 37 38 39 39 40 41 41 41
100-fold 7 7 8 8 9 9 10 11 11 11
LW-10-O (RS) 24 28 26 27 27 28 30 31 32 32
50-fold 18 24 23 25 27 28 31 32 34 36
LW-20-O (RS) 56 66 66 71 75 80 85 90 92 100
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computational speed with leave-1-out and (n/k)-fold for a wide range of k. Moreo-
ver, parameter s in algorithm 1 can also be adjusted to balance the tradeoff between 
speed and solution quality.

4 � Conclusion

We proposed the leave-worst-k-out as a new criterion for cross validation. This 
work makes three major contributions. First, we proved that, for the special case of 
using multiple linear regression as the prediction model under L1 norm, the LWKO 
criterion is an optimal solution to a mixed integer linear program, which can be 
solved by numerous algorithms and commercially available solvers more efficiently 
than brute force enumeration. Second, we proposed a random sampling algorithm 
for computing LWKO approximately for general prediction models and norms. 
Third, we demonstrated with two computational experiments that LWKO not only 
is more effective than its counterparts LKO and (n/k)-fold but also can be computed 
much more efficiently than LKO and almost as fast as (n/k)-fold.

As a new cross validation criterion, LWKO faces similar challenges as LKO 
does. First, using the random sampling algorithm 1, LWKO has a higher yet com-
parable complexity with leave-1-out and (n/k)-fold, which may be considered com-
putationally intractable under certain circumstances. When effectiveness is more 
important than speed, our simulation results suggested that using the worst valida-
tion error instead of the average could be more informative, even if the search for 
the k worst validation data points is approximate and non-exhaustive. Second, there 
is no guaranteed correlation between LWKO and the out-of-sample performance, 
although such correlation appeared to be higher than that of LKO according to our 
computational experiment results. Third, the selection of value k is more of an art 
than science, in the sense that the extent to which LWKO outperformed LKO did 
not demonstrate a clear pattern with respect to k. However, it was clear from both 
experiments that the popular choice of leave-1-out was not the most effective crite-
rion for cross validation. Since algorithm 1 applies to nonlinear models and more 
general norms, testing the LWKO criterion on more prediction models (such as 
neural networks) appears to be an interesting follow up research direction.
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