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Abstract
A small polygon is a polygon of unit diameter. The maximal area of a small polygon 
with n = 2m vertices is not known when m ≥ 7 . Finding the largest small n-gon for 
a given number n ≥ 3 can be formulated as a nonconvex quadratically constrained 
quadratic optimization problem. We propose to solve this problem with a sequential 
convex optimization approach, which is an ascent algorithm guaranteeing conver-
gence to a locally optimal solution. Numerical experiments on polygons with up to 
n = 128 sides suggest that optimal solutions obtained are near-global. Indeed, for 
even 6 ≤ n ≤ 12 , the algorithm proposed in this work converges to known global 
optimal solutions found in the literature.

Keywords Planargeometry · Polygons · Isodiametric problem · Maximal area · 
Quadratically constrained quadratic optimization · Sequential convex optimization · 
Concave-convex procedure

1 Introduction

The diameter of a polygon is the largest Euclidean distance between pairs of its ver-
tices. A polygon is said to be small if its diameter equals one. For a given integer 
n ≥ 3 , the maximal area problem consists in finding a small n-gon with the largest 
area. The problem was first investigated by Reinhardt [16] in 1922. He proved that

• when n is odd, the regular small n-gon is the unique optimal solution;
• when n = 4 , there are infinitely many optimal solutions, including the small 

square;
• when n ≥ 6 is even, the regular small n-gon is not optimal.
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When n ≥ 6 is even, the maximal area problem is solved for n ≤ 12 . In 1961, Bieri 
[5] found the largest small 6-gon, assuming the existence of an axis of symmetry. In 
1975, Graham [9] independently constructed the same 6-gon, represented in Fig. 2c. 
In 2002, Audet et  al. [3] combined Graham’s strategy with global optimization 
methods to find the largest small 8-gon, illustrated in Fig. 3c. In 2013, Henrion and 
Messine [10] found the largest small 10- and 12-gons by also solving globally a non-
convex quadratically constrained quadratic optimization problem. They also found 
the largest small axially symmetrical 14- and 16-gons. In 2017, Audet [1] showed 
that the regular small polygon has the maximal area among all equilateral small 
polygons. In 2021, Audet et al. [4] determined analytically the largest small axially 
symmetrical 8-gon.

The diameter graph of a small polygon is the graph with the vertices of the poly-
gon, and an edge between two vertices exists only if the distance between these vertices 
equals one. Graham [9] conjectured that, for even n ≥ 6 , the diameter graph of a small 
n-gon with maximal area has a cycle of length n − 1 and one additional edge from the 
remaining vertex. The case n = 6 was proven by Graham himself [9] and the case n = 8 
by Audet et al. [3]. In 2007, Foster and Szabo [8] proved Graham’s conjecture for all 

(a) (b)

Fig. 1  Two small 4-gons (�
4
,A(�

4
))

(c)(b)(a)

Fig. 2  Three small 6-gons (�
6
,A(�

6
))
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even n ≥ 6 . Figures 1, 2, and 3 show diameter graphs of some small polygons. The 
solid lines illustrate pairs of vertices which are unit distance apart.

In addition to exact results and bounds, uncertified largest small polygons have been 
obtained both by metaheurisitics and nonlinear optimization. Assuming Graham’s con-
jecture and the existence of an axis of symmetry, Mossinghoff [13] in 2006 constructed 
large small n-gons for even 6 ≤ n ≤ 20 . In 2020, using a formulation based on polar 
coordinates, Pintér [14] presented numerical solutions estimates of the maximal area 
for even 6 ≤ n ≤ 80 . The polar coordinates-based formulation was recently used by 
Pintér et al. [15] to obtain estimates of the maximal area for even 6 ≤ n ≤ 1000.

The maximal area problem can be formulated as a nonconvex quadratically con-
strained quadratic optimization problem. In this work, we propose to solve it with a 
sequential convex optimization approach, also known as the concave-convex procedure 
[11, 12]. This approach is an ascent algorithm guaranteeing convergence to a locally 
optimal solution. Numerical experiments on polygons with up to n = 128 sides suggest 
that optimal solutions obtained are near-global. Indeed, without assuming Graham’s 
conjecture nor the existence of an axis of symmetry in our quadratic formulation, opti-
mal n-gons obtained with the algorithm proposed in this work verify both conditions 
within the limit of numerical computations. Moreover, for even 6 ≤ n ≤ 12 , this algo-
rithm converges to known global optimal solutions. The algorithm is implemented as 
a MATLAB-based package, OPTIGON, which is available on GitHub [6]. Using the 
algorithm in MATLAB  requires that CVX [7] be installed.

The remainder of this paper is organized as follows. In Sect. 2, we recall principal 
results on largest small polygons. Section 3 presents the quadratic formulation of the 
maximal area problem and the sequential convex optimization approach to solve it. We 
report in Sect. 4 computational results. Section 5 concludes the paper.

2  Largest small polygons

Let A(�) denote the area of a polygon � . Let �n denote the regular small n-gon. We 
have

(c)(b)(a)

Fig. 3  Three small 8-gons (�
8
,A(�

8
))
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We remark that A(�n) < A(�n−1) for all even n ≥ 6 [2]. This suggests that �n does not 
have maximum area for any even n ≥ 6 . Indeed, when n is even, we can construct 
a small n-gon with a larger area than �n by adding a vertex at distance 1 along the 
mediatrix of an angle in �n−1 . We denote this n-gon by �+

n−1
 and we have

Theorem 1 (Reinhardt [16]) For all n ≥ 3 , let A∗
n
 denote the maximal area among all 

small n-gons and let An ∶=
n

2

(
sin

�

n
− tan

�

2n

)
.

• When n is odd, A∗
n
= An is only achieved by �n.

• A∗
4
= 1∕2 < A4 is achieved by infinitely many 4-gons, including �4 and �+

3
 illus-

trated in Figure 1.
• When n ≥ 6 is even, A(�n) < A∗

n
< An.

When n ≥ 6 is even, the maximal area A∗
n
 is known for even n ≤ 12 . Using geo-

metric arguments, Graham [9] determined analytically the largest small 6-gon, repre-
sented in Fig. 2c. Its area A∗

6
≈ 0.674981 is about 3.92% larger than A(�6) = 3

√
3∕8 . 

The approach of Graham, combined with methods of global optimization, has been 
followed by [3] to determine the largest small 8-gon, represented in Fig. 3c. Its area 
A∗
8
≈ 0.726868 is about 2.79% larger than A(�8) =

√
2∕2 . Henrion and Messine [10] 

found that A∗
10

≈ 0.749137 and A∗
12

≈ 0.760730.
For all even n ≥ 6 , let �n denote an optimal small n-gon.

Theorem 2 (Graham [9], Foster and Szabo [8]) For even n ≥ 6 , the diameter graph 
of �n has a cycle of length n − 1 and one additional edge from the remaining vertex.

Conjecture 1 For even n ≥ 6 , �n has an axis of symmetry corresponding to the pend-
ing edge in its diameter graph.

From Theorem 2, we note that �+
n−1

 has the same diameter graph as the largest small 
n-gon �n . Conjecture 1 is only proven for n = 6 and this is due to Yuan [17]. However, 
the largest small polygons obtained by [3] and [10] are a further evidence that the con-
jecture may be true.

A(�n) =

{
n

2

(
sin

�

n
− tan

�

2n

)
if n is odd,

n

8
sin

2�

n
if n is even.

A(�+
n−1

) =
n − 1

2

(
sin

�

n − 1
− tan

�

2n − 2

)
+ sin

�

2n − 2
−

1

2
sin

�

n − 1
.
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3  Nonconvex quadratically constrained quadratic optimization

We use cartesian coordinates to describe an n-gon �n , assuming that a vertex �i , 
i = 0, 1,… , n − 1 , is positioned at abscissa xi and ordinate yi . Placing the vertex �0 
at the origin, we set x0 = y0 = 0 . We also assume that the n-gon �n is in the half-
plane y ≥ 0 and the vertices �i , i = 1, 2,… , n − 1 , are arranged in a counterclock-
wise order as illustrated in Fig. 4, i.e., yi+1xi ≥ xi+1yi for all i = 1, 2,… , n − 2 . The 
maximal area problem can be formulated as follows 

 At optimality, for all i = 1, 2,… , n − 2 , ui = (yi+1xi − xi+1yi)∕2 , which corresponds 
to the area of the triangle �0�i�i+1 . It is important to note that, unlike what was done 
in [3, 10], this formulation does not make the assumption of Graham’s conjecture, 
nor of the existence of an axis of symmetry.

Problem  (1) is a nonconvex quadratically constrained quadratic optimization 
problem and can be reformulated as a difference-of-convex optimization (DCO) 
problem of the form 

(1a)max
x,y,u

n−2∑

i=1

ui

(1b)s.t. (xj − xi)
2 + (yj − yi)

2
≤ 1 ∀1 ≤ i < j ≤ n − 1,

(1c)x2
i
+ y2

i
≤ 1 ∀1 ≤ i ≤ n − 1,

(1d)yi ≥ 0 ∀1 ≤ i ≤ n − 1,

(1e)2ui ≤ yi+1xi − xi+1yi ∀1 ≤ i ≤ n − 2,

(1f)ui ≥ 0 ∀1 ≤ i ≤ n − 2.

Fig. 4  Definition of variables: 
case of n = 6 vertices
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 where g0,… , gm and h0,… , hm are convex quadratic functions. We note that the 
feasible set

is compact with a nonempty interior, which implies that g0(z) − h0(z) < ∞ for all 
z ∈ �.

For a fixed c , we have

for all i = 0, 1,… ,m . Then the following problem 

 is a convex restriction of the DCO problem  (2) as stated by Proposition 1. Con-
straint (1e) is equivalent to

for all i = 1, 2,… , n − 2 . For a fixed (a, b) ∈ ℝ
n−1 ×ℝ

n−1 , if we replace (1e) in (1) 
by

for all i = 1, 2,… , n − 2 , we obtain a convex restriction of the maximal area 
problem.

Proposition 1 If z is a feasible solution of (3) then z is a feasible solution of (2).

Proof Let z be a feasible solution of (3), i.e., g
i
(z;c) − hi(z) ≥ 0 for all i = 1, 2,… ,m . 

Then gi(z) − hi(z) ≥ g
i
(z;c) − hi(z) ≥ 0 for all i = 1, 2,… ,m . Thus, z is a feasible 

solution of (2).   ◻

Proposition 2 If c is a feasible solution of (2) then (3) is a feasible problem. Moreo-
ver, if z∗ is an optimal solution of (3) then g0(c) − h0(c) ≤ g0(z

∗) − h0(z
∗).

Proof Let c be a feasible solution of (2), i.e., gi(c) − hi(c) ≥ 0 for all i = 1, 2,… ,m . 
Then there exists z = c such that g

i
(c;c) − hi(c) = gi(c) − hi(c) ≥ 0 for all 

(2a)max
z

g0(z) − h0(z)

(2b)s.t. gi(z) − hi(z) ≥ 0 ∀1 ≤ i ≤ m,

� ∶= {z ∶ gi(z) − hi(z) ≥ 0, i = 1, 2,… ,m}

g
i
(z;c) ∶= gi(c) + ∇gi(c)

T (z − c) ≤ gi(z)

(3a)max
z

g
0
(z;c) − h0(z)

(3b)s.t. g
i
(z;c) − hi(z) ≥ 0 ∀1 ≤ i ≤ m

(yi+1 − xi)
2 + (xi+1 + yi)

2 + 8ui ≤ (yi+1 + xi)
2 + (xi+1 − yi)

2

(yi+1 − xi)
2 + (xi+1 + yi)

2 + 8ui ≤ 2(bi+1 + ai)(yi+1 + xi)

− (bi+1 + ai)
2 + 2(ai+1 − bi)(xi+1 − yi) − (ai+1 − bi)

2
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i = 1, 2,… ,m . Thus, (3) is a feasible problem. Moreover, if z∗ is an optimal solution 
of (3), we have g0(c) − h0(c) = g

0
(c;c) − h0(c) ≤ g

0
(z∗;c) − h0(z

∗) ≤ g0(z
∗) − h0(z

∗) .  
 ◻

From Proposition  2, the optimal small n-gon (x, y) obtained by solving a convex 
restriction of Problem (1) constructed around a small n-gon (a, b) has a larger area than 
this one. Proposition 3 states that if (a, b) is the optimal n-gon of the convex restriction 
constructed around itself, then it is a local optimal n-gon for the maximal area problem.

Proposition 3 Let c be a feasible solution of  (2). We suppose that 
�(c) ∶= {z ∶ g

i
(z;c) − hi(z) ≥ 0, i = 1, 2,… ,m} satisfies Slater condition. If c is an 

optimal solution of (3) then c is a critical point of (2).

Proof If c is an optimal solution of (3) then there exist m scalars �1,�2,… ,�m such 
that

Since g
i
(c;c) = gi(c) and ∇g

i
(c;c) = ∇gi(c) for all i = 0, 1,… ,m , we conclude that c 

is a critical point of (2).   ◻

We propose to solve the DCO problem (2) with a sequential convex optimization 
approach given in Algorithm 1, also known as concave-convex procedure. A proof of 
showing that a sequence {zk}∞k=0 generated by Algorithm 1 converges to a critical point 
z∗ of the original DCO problem (2) can be found in [11, 12].

4  Computational results

Problem  (1) was solved in MATLAB using CVX  2.2 with MOSEK  9.1.9 and 
default precision (tolerance � = 1.49 × 10−8 ). All the computations were 
carried out on an Intel(R) Core(TM) i7-3540M CPU @ 3.00 GHz 

∇g
0
(c;c) +

m∑

i=1

�i∇g
i
(c;c) = ∇h0(c) +

m∑

i=1

�i∇hi(c),

g
i
(c;c) ≥ hi(c) ∀i = 1, 2,… ,m,

�i ≥ 0 ∀i = 1, 2,… ,m,

�ig
i
(c;c) = �ihi(c) ∀i = 1, 2,… ,m.
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computing platform. Algorithm  1 was implemented as a MATLAB package: 
OPTIGON, which is freely available on GitHub [6]. Using Algorithm 1 in MAT-
LAB requires that CVX be installed. CVX is a MATLAB-based modeling sys-
tem for convex optimization, which turns MATLAB into a modeling language, 
allowing constraints and objectives to be specified using standard MATLAB 
expression syntax [7].

We chose the following values as initial solution:

which define the n-gon �+
n−1

 , and the stopping criteria � = 10−5 . At each itera-
tion, we forced MOSEK to solve the dual problem by setting the parameter 
���_����_������_�����_���� to ���_�����_����. Table 1 shows the areas of 
the optimal n-gons �̂n for even numbers n = 6, 8,… , 128 , along with the areas of the 
initial n-gons �+

n−1
 , the best lower bounds A

n
 found in the literature, and the upper 

bounds An . We also report the number k of iterations of Algotithm 1 for each n. The 
results in Table 1 support the following keypoints: 

1. For 6 ≤ n ≤ 12 , A
n
− A(�̂n) ≤ 10−8 , i.e., Algorithm 1 converges to the best known 

optimal solutions found in the literature.
2. For 32 ≤ n ≤ 80 , A

n
< A(�+

n−1
) < A(�̂n) , i.e., it appears that the solutions obtained 

by Pintér [14] are suboptimal.
3. For all n, the solutions �̂

n
 obtained with Algorithm 1 verify, within the limit of 

the numerical computations, Theorem 2 and Conjecture 1, i.e., 

 We illustrate the largest small 16-, 32- and 64-gons in Fig. 5. Furthermore, we 
remark that Theorem  2 and Conjecture  1 are verified by each polygon of the 
sequence generated by Algorithm 1. All 6-gons generated by the algorithm are 
represented in Fig. 6 and the coordinates of their vertices are given in Table 2.

a0 = 0, b0 = 0,

ai =
sin

2i�

n−1

2 cos
�

2n−2

= −an−i, bi =
1 − cos

2i�

n−1

2 cos
�

2n−2

= bn−i ∀i = 1,… , n∕2 − 1,

an∕2 = 0, bn∕2 = 1,

xn∕2 = 0, yn∕2 = 1,

‖�n∕2−1‖ = 1, ‖�n∕2+1‖ = 1,

‖�i+n∕2 − �i‖ = 1, ‖�i+n∕2+1 − �i‖ = 1 ∀i = 1, 2,… , n∕2 − 2,

‖�n−1 − �n∕2−1‖ = 1,

xn−i = −xi, yn−i = yi ∀i = 1, 2,… , n∕2 − 1.
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Table 1  Maximal area problem

n A(�+
n−1

) A
n

A
n

A(�̂
n
) # iter. 

k

6 0.6722882584 0.6749814429 [5, 9, 13] 0.6961524227 0.6749814387 5
8 0.7253199909 0.7268684828 [3, 13] 0.7350842599 0.7268684802 10
10 0.7482573378 0.7491373459 [10, 13] 0.7531627703 0.7491373454 16
12 0.7601970055 0.7607298734 [10, 13] 0.7629992851 0.7607298710 24
14 0.7671877750 0.7675310111 [13] 0.7689359584 0.7675310093 33
16 0.7716285345 0.7718613220 [13] 0.7727913493 0.7718613187 43
18 0.7746235089 0.7747881651 [13] 0.7754356273 0.7747881619 55
20 0.7767382147 0.7768587560 [13] 0.7773275822 0.7768587517 68
22 0.7782865351 0.7783773308 [14] 0.7787276939 0.7783773228 81
24 0.7794540033 0.7795240461 [14] 0.7797927529 0.7795240330 95
26 0.7803559816 0.7804111201 [14] 0.7806217145 0.7804111058 109
28 0.7810672517 0.7811114192 [14] 0.7812795297 0.7811114002 122
30 0.7816380102 0.7816739255 [14] 0.7818102598 0.7816739044 136
32 0.7821029651 0.7818946320 [14] 0.7822446490 0.7821325276 148
34 0.7824867354 0.7823103007 [14] 0.7826046775 0.7825113660 159
36 0.7828071755 0.7826513767 [14] 0.7829063971 0.7828279054 169
38 0.7830774889 0.7829526627 [14] 0.7831617511 0.7830950955 177
40 0.7833076096 0.7832011589 [14] 0.7833797744 0.7833226804 183
42 0.7835051276 0.7834135187 [14] 0.7835674041 0.7835181187 185
44 0.7836759223 0.7835966860 [14] 0.7837300377 0.7836871900 184
46 0.7838246055 0.7837554636 [14] 0.7838719255 0.7838344336 179
48 0.7839548353 0.7838942710 [14] 0.7839964516 0.7839634510 172
50 0.7840695435 0.7840161496 [14] 0.7841063371 0.7840771278 162
52 0.7841711020 0.7841233641 [14] 0.7842037903 0.7841778072 150
54 0.7842614465 0.7842192995 [14] 0.7842906181 0.7842674010 138
56 0.7843421691 0.7843044654 [14] 0.7843683109 0.7843474779 128
58 0.7844145892 0.7843807534 [14] 0.7844381066 0.7844193386 118
60 0.7844798073 0.7844492943 [14] 0.7845010402 0.7844840717 109
62 0.7845387477 0.7845111362 [14] 0.7845579827 0.7845425886 101
64 0.7845921910 0.7834620877 [14] 0.7846096710 0.7845956631 94
66 0.7846408000 0.7845910589 [14] 0.7846567322 0.7846439473 88
68 0.7846851407 0.7846139029 [14] 0.7846997026 0.7846880001 82
70 0.7847256986 0.7846403575 [14] 0.7847390429 0.7847283036 77
72 0.7847628920 0.7847454020 [14] 0.7847751508 0.7847652718 72
74 0.7847970830 0.7845564840 [14] 0.7848083708 0.7847992622 68
76 0.7848285863 0.7847585719 [14] 0.7848390031 0.7848305850 64
78 0.7848576763 0.7845160579 [14] 0.7848673094 0.7848595143 61
80 0.7848845934 0.7848252941 [14] 0.7848935195 0.7848862871 58
82 0.7849095487 – 0.7849178354 0.7849111119 55
84 0.7849327284 – 0.7849404352 0.7849341725 52
86 0.7849542969 – 0.7849614768 0.7849556352 50
88 0.7849744002 – 0.7849811001 0.7849756425 48
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Table 1  (continued)

n A(�+
n−1

) A
n

A
n

A(�̂
n
) # iter. 

k

90 0.7849931681 – 0.7849994298 0.7849943223 46
92 0.7850107163 – 0.7850165772 0.7850117894 44
94 0.7850271482 – 0.7850326419 0.7850281477 42
96 0.7850425565 – 0.7850477130 0.7850434878 40
98 0.7850570245 – 0.7850618708 0.7850578951 39
100 0.7850706272 – 0.7850751877 0.7850714422 38
102 0.7850834323 – 0.7850877290 0.7850841941 36
104 0.7850955008 – 0.7850995538 0.7850962152 35
106 0.7851068883 – 0.7851107156 0.7851075587 34
108 0.7851176450 – 0.7851212630 0.7851182747 33
110 0.7851278167 – 0.7851312404 0.7851284086 32
112 0.7851374450 – 0.7851406881 0.7851380017 31
114 0.7851465680 – 0.7851496430 0.7851470916 30
116 0.7851552203 – 0.7851581386 0.7851557129 29
118 0.7851634339 – 0.7851662060 0.7851639010 29
120 0.7851712379 – 0.7851738734 0.7851716781 28
122 0.7851786591 – 0.7851811668 0.7851790741 27
124 0.7851857221 – 0.7851881101 0.7851861129 26
126 0.7851924497 – 0.7851947255 0.7851928211 26
128 0.7851988626 – 0.7852010332 0.7851992126 25

(a) (b) (c)

Fig. 5  Three largest small n-gons (�̂
n
,A(�̂

n
))
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5  Conclusion

We proposed a sequential convex optimization approach to find the largest small 
n-gon for a given even number n ≥ 6 , which is formulated as a nonconvex quad-
ratically constrained quadratic optimization problem. The algorithm, also known 
as the concave-convex procedure, guarantees convergence to a locally optimal 
solution.

Without assuming Graham’s conjecture nor the existence of an axis of symmetry 
in our quadratic formulation, numerical experiments on polygons with up to n = 128 
sides showed that each optimal n-gon obtained with the algorithm proposed verifies 
both conditions within the limitation of the numerical computations. Futhermore, 
for even 6 ≤ n ≤ 12 , the n-gons obtained correspond to the known largest small 
n-gons.

(c)(b)(a)

(d) (e) (f)

Fig. 6  All 6-gons (�k
6
,A(�k

6
)) generated by Algorithm 1
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