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Abstract
We investigate the properties of robust solutions of the Capacitated Facility Location
Problem with uncertain demand. We show that the monotonic behavior of the price
of robustness is not guaranteed, and therefore that one cannot discriminate among
alternative robust solutions by simply relying on the trade-off price-vs-robustness.
Furthermore, we report a computational study on benchmark instances from the liter-
ature and on instances derived from a real-world application, which demonstrates the
validity in practice of our findings.

Keywords Integer programming · Robust optimization · Network/graphs:
applications

1 Introduction

The Capacitated Facility Location Problem (CFLP) [10,21] considered in this paper
can be described as follows. We are given a set M of potential facility locations and a
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set N of customers. Associated with each i ∈ M is a maximum capacity of the facility
si , and each customer j ∈ N is associated with a nonnegative demand d j . Two types
of cost arise: (i) the decision to establish a facility at i incurs a fixed-charge (setup)
cost fi and (ii) for i ∈ M and j ∈ N , a transportation cost ci j reflecting the expense
if all of the demand of customer j is satisfied from facility i . The problem consists of
minimizing the sum of the setup costs of opened facilities and of the transportation
costs, while satisfying demand requirements and capacity constraints. The CFLP can
be mathematically formulated as follows:

(CFLP) min
∑

i∈M
fi yi +

∑

i∈M

∑

j∈N
ci j xi j

s.t.
∑

i∈M
xi j = 1, ∀ j ∈ N , (1)

∑

j∈N
d j xi j ≤ si yi , ∀i ∈ M, (2)

x ∈ X , (3)

yi ∈ {0, 1}, ∀i ∈ M . (4)

Problem CFLP deals with the following two-level decision variables: (i) strategic
variables y, used to model the long-term decisions, and (ii) operational variables x,
which model the short-term, operational part of the problem. In the literature, there
are two main variants of the CFLP: the single source CFLP (SS-CFLP), where a
customer must be completely assigned to a single facility (i.e, X = {0, 1}m×n), and
the multiple source CFLP (MS-CFLP) where a customer could be assigned to several
facilities [15] (i.e., X ⊆ Rm×n+ ). Several applications in transportation, logistics,
telecommunications, and production planning can be formulated using models having
the same structure of model CFLP.

We assume that the demand coefficients d j are uncertain, and that the model of data
uncertainty is based upon the following scenario space. Let each coefficient d j ≥ 0
be an (independent), symmetric, and bounded random variable d̃ j taking values in the
interval d̄ j ± εd̄ j , i.e., d̄ j (1− ε) ≤ d̃ j ≤ d̄ j (1+ ε) with ε > 0 and d̄ j corresponding
to the nominal value of the uncertain parameter. We define the scenario space U (ε)

as follows:

U (ε) =
{
d̃ j ∈ R+ : d̄ j (1 − ε) ≤ d̃ j ≤ d̄ j (1 + ε),∀ j ∈ N

}
.

Therefore, the scenario space is the uncertainty set within which the decision maker
hypothesizes every realization of the uncertain parameter will occur. In addition, we
assume that the uncertainty can affect the objective function of problem CFLP, as the
cost vector c can be computed as a function of the uncertainty coefficients d j .

One way of dealing with the uncertainty of the parameters of the problem is pro-
vided by Robust Optimization (RO) [6]. RO ensures that a robust solution (y, x) be
feasible with respect to every realization of the robust parameters in the pre-specified
interval defined by ε. However, while in certain applications it might be of paramount
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importance to guarantee feasibility of the robust solution 100% of the times (e.g., in
medical applications, or some critical engineering applications), in most realms of
application of robust optimization, e.g., in management, it is not necessary to produce
a solution that hedges against every possible realization of the uncertain parameters in
the scenario space, since full immunization comes at a high cost in terms of objective
function value. Therefore, while recognizing the nature of the data in a support or
uncertainty setU which defines the scenario space, to avoid being overly conservative
and, therefore, to mitigate the adverse effect of full immunization on the objective
function value, one might want to optimize over a smaller support Ũ ⊆ U . The ratio-
nale is that, if Ũ is properly crafted, one might obtain important benefits in terms of
costs while keeping the risk of incurring infeasible scenarios very low.

This strategy is of particular interest to the business community, where the fact
that customer demand may vary does not typically have drastic repercussions as, for
example, in medical or engineering applications. Therefore, in line with the reasoning
put forth by Bertsimas and Sim [6], given a set of uncertain parameters taking values
in U , the goal of a practitioner using a robust model could be to define a support
Ũ ⊆ U and to find a robust solution such that (i) if nature selects a realization of
the uncertain parameters from Ũ , the solution is deterministically feasible, and (ii) if
nature selects a realization of the parameters in U\Ũ , the probability of incurring an
infeasible scenario is still very low. The next section motivates our study by means of
an introductory example.

1.1 Motivation and introductory example

The work in this paper is also motivated by a real-world application from amajor dairy
companywhose core business is the production and distribution of perishable products.
Our study addresses a strategic problem of defining the partition of the customers to
a set of depots under uncertain customer demands. We consider the following robust
formulation of SS-CFLP:

(R-SS-CFLP)min
∑

i∈M
fi yi + max

d∈U (ε)

∑

i∈M

∑

j∈N
(d j ci j )xi j

s.t.
∑

j∈N
d j xi j ≤ si yi , ∀i ∈ M,d ∈ U (ε),

(1), (4), xi j ∈ {0, 1},∀i ∈ M, j ∈ N , (5)

where d ∈ Rn+, andU (ε) ⊆ Rn+ denotes the support (box uncertainty set) at hand and
ci j denotes the unitary transportation cost for serving j from i . We then consider the
following experimental setup.

(i) Optimization over the support U (ε). We solve the robust counterpart of
formulation SS-CFLP (see Sect. 3) with box support U (ε), with ε ∈
{0.05, 0.1, 0.15, 0.2, . . . , 0.9}, and we obtain the corresponding robust solution
(y, x)ε of cost (z)ε. Clearly, we have (z)ε′′ ≥ (z)ε′ if ε′′ > ε′.
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Fig. 1 R-SS-CFLP: example about the real-world instance A

(ii) Evaluation over the scenario space U (ε̂). We define a family of nested scenarios
spacesU (ε̂), with ε̂ ∈ {0.1, 0.2, . . . , 0.9}, and for each ε̂ we generate 1,000,000
realizations of coefficients d j andwe evaluate, in terms of violation of constraints
(5), the solutions (y, x)ε.

Figure1 presents the results of the aforementioned experiment on a SS-CFLP real-
world instance. On the horizontal axis, we indicate the size of the support used for
the optimization step (ε), and on the vertical axis we report the number of infeasible
scenarios evaluated by using the robust solution (y, x)ε over the nested scenarios
spaces (ε̂).

In the figure, consider the pair of values ε = 0.45 and ε = 0.5, for the line given
by ε̂ = 0.85. We observe that the robust solution associated with the smaller support,
i.e., (y, x)0.45, is more robust than the solution associated with the larger uncertainty
set, i.e., (y, x)0.5. A similar behaviour can also be observed for other values of ε

and lines given by ε̂. This empirical observation poses a problem when it comes to
comparing and evaluating two robust solutions using the “price of robustness” [6] as
a proxy: due to the fact that the monotonic behavior of the curve is not guaranteed,
one cannot discriminate among alternative robust solutions by simply relying on the
trade-off price-vs-robustness. As evinced from Fig. 1, a more expensive solution,
obtained over a larger support, could be less robust than a cheaper solution, obtained
over a smaller support. It is worth mentioning that, RO does not make a claim about
the solution quality for instances outside of the support set, and therefore we are not
identifying a potential fault of the RO framework, but we are rather highlighting that
the monotonic behavior of the price of robustness is not guaranteed whenever the
underlying uncertainty set is subject to a variation.
Contributions and paper organization Our distinct contributions in this paper are as
follows: (i) it is the first time that a limitation/drawback associated with the price
of robustness is identified for the CFLP: the monotonicity of the trade-off price-vs-
robustness cannot be guaranteed a priori. Furthermore, we show that there always
exists a situation in which a nominal solution can be more robust, and cheaper, than a
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robust solution, (ii) we conduct a computational study on both real-world and bench-
mark instances, to ascertain the significance of such phenomenon. Empirical evidence
suggests that such phenomenon cannot be neglected by the decision maker, since it
has a significant impact in terms of costs and reliability of the implemented solution.

The remainder of the paper is organized as follows. Section 2 reviews contributions
related to the optimization problems addressed in this paper. The main results of this
paper are given in Sect. 3, where the properties of nominal and robust solutions are
investigated. Section 4 reports the computational studies, and conclusions are given
in Sect. 5.

2 Literature review

RO has received a considerable increase of interest over the last decade. There exists a
vast literature on this topic, and for a detailed introduction to robust optimization, we
refer the reader to [5,7], whereas for an overview of developments in robust optimiza-
tion since 2007 the reader is referred to [12,17], where the latter provides a review
with a special focus on the application of robust optimization to operations manage-
ment. More recent works on RO have developed solution frameworks to produce less
conservative solutions such as two-stage RO and more general multi-stage RO, also
known as robust adjustable [4].

When alternative robust solutions are compared, two prominent criteria have been
proposed in the literature, the Pareto Robust Optimality criterion of [14] and the price
of robustness of [6]. With respect to the former, the idea is to exploit the degeneracy of
many RO models and select a Pareto-optimal solution, i.e., a solution that is optimal
with respect to the worst-case scenario, and is not dominated by any other solution for
all the possible scenarios of the uncertainty set. For example, if the uncertainty of the
problem is in the objective function, a robust solution x∗ is Pareto-optimal if the cost
associated with the worst case realization of the uncertain parameter is minimal and,
in addition, no other solution is cheaper that x∗ for any realization of the uncertain
parameter in the uncertainty set. Therefore, the Pareto-optimality criterion focuses
on the selection of alternative robust solution within the same uncertainty set. On
the other hand, the price of robustness is employed to discriminate among alternative
robust solutions obtained using different uncertainty sets. Thus, it considers the trade-
off between the size of Ũ , and therefore the value of the objective function, and the
probability of violation of the uncertain constraints (2) has been employed to select
and discriminate among alternative robust solutions. More specifically, as mentioned,
one would expect a monotonically non-decreasing behavior of the price of robustness
curve with respect to the size of the support Ũ . In other words, if we assume that the
size of Ũ is proportional to the value of ε, then the trade-off captured by the price of
robustness states that a larger values of ε should lead to optimal solutions associated
with an increase in the objective function value and a decrease in the probability
of violation of constraints (2). Pareto-optimal solutions were also investigated by
Chassein and Goerigk [8]. The authors considered linear programming problems with
uncertain cost functions and presented a column generation approach that requires no
direct solution of the computationally expensive worst-case problem.
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It is worth pointing out that our study goes beyond the search of a Pareto Robust
Optimal (PRO) solution, as done in [8,14]. A PRO solution is defined as a minimum
cost solution which provides the maximum slack of the robust constraint (e.g., unused
capacity in a facility location problem) for every realization of the uncertain parameter
in the uncertainty set. Our approach departs from that of [14] since (i) their analysis
is based on the fact that the uncertainty sets used in the optimization and evaluation
phases are the same. We want to explore whether the price-of-robustness framework
holds when the uncertainty set used in the evaluation phase is decoupled from the one
used in the evaluation phase; (ii) our analysis is not limited to PRO solutions, but we
extend the analysis by comparing solutions in terms of expected values of constraints
violation, and (iii) we compare alternative robust solutions obtained over different
uncertainty sets extending the reasoning to other measures to capture the robustness
of a solution, which goes beyond the slack measure proposed in [14].

Facility location problems find application in a number of realms, e.g., supply chain
management, distribution system design and telecommunication network design,
amongothers. Laporte et al. [15] andMelo et al. [19] present a comprehensive literature
review of facility location models in the context of supply chain management.

Uncertain versions of the facility location problem consider different types of uncer-
tainties (for instance, regarding demand, costs, and facility reliability), and mainly
focus on the uncertainty of the demands. For example, Lodi et al. [16] investi-
gated machine learning methods to address uncertainties in input parameters whereas
McGarvey and Thorsen [18] considered uncertainty with respect to the number of
future facilities required. Different methods have been proposed to deal with uncer-
tainty, among them RO. For a comprehensive overview of robust facility location
approaches we direct the interested reader to [9,22] and references therein. A detailed
review of facility location with uncertain parameters and their solution methods can
also be found in Laporte et al. [15].

While the literature on the deterministicCFLP is vast, the robust version of theCFLP
has not received much attention so far. Opher et al. [20] studied a variant of the multi-
period CFLP in which the maximum capacity of each facility must be determined,
and showed that the robust approach offers significant improvements when compared
with the nominal solution. In a similar fashion, Gülpinar et al. [13] presented different
robust models for the CFLP, with both known and ambiguous demand probability
distribution function. Both papers ascertain the superiority of the robust solution over
the deterministic one on an extensive set of benchmark instances. An et al. [1] inves-
tigated two-stage RO models for the reliable p-median facility location problem by
considering two practical features, i.e., facility capacity and demand change due to site
disruption. The authors designed an exact algorithm based on column-and-constraint
generation and Bender decomposition methods, and solved to optimality instances
with up to 49 sites. Zeng and Zhao [23] described a column-and-constraint generation
algorithm to solve two-stage RO problems as an alternative to Benders-style cutting
plane methods. The proposed solution framework was used to solve a two-stage robust
location-transportation problem. Recently, Du et al. [11] have considered two-stage
facility location problems in an uncertain and dynamic environment, aiming at build-
ing a network that serves demand in both general and disruptive situations. The paper
compared a two-stage robust model and a two-stage stochastic model for the reliable

123



Robustness of solutions to the capacitated facility… 2717

p-center problem, and the experiments reported showed that the solutions produced
by the two-stage robust model are not overly conservative.

3 Non-monotonicity of the price of robustness

In this section, we investigate properties of the nominal and robust solutions. We first
show that, given an optimal robust solution over a box supportU (ε) (i.e., optimization
scenario), it is possible to construct a scenario from an uncertainty set of sizeU (ε̂) ⊃
U (ε) (i.e., evaluation scenario) for which the nominal solution remains feasible while
the robust solution becomes infeasible.

Definition 1 Apolyhedral support for the uncertain parametersd j is defined as Q(ε) =
{d ≥ 0 : Wd ≤ h(ε)}, where W ∈ Rr×n , and h(ε) ∈ Rr is the parameter which
controls the size of the support and, therefore, the degree of immunization of the robust
solution.

The robust counterpart of CFLP can be derived by reformulating the semi-infinite
constraints (5) as shown by the following theorem.

Theorem 1 [3] The robust counterpart of problem CFLP can be formulated as a the
following MILP:

(R-CFLP) min
∑

i∈M
fi yi +

∑

i∈M

∑

j∈N
ci j xi j

s.t. (1), (3), (4),
r∑

t=1

htψi t ≤ si yi , ∀i ∈ M,

r∑

t=1

wt jψi t ≥ xi j , ∀ j ∈ N , i ∈ M,

ψi ∈ Rr+, ∀i ∈ M,

where wt j ∈ W and ht ∈ h, with W and h specified as in Definition 1.

Let (y∗, x∗) be an optimal solution to the nominal problem CFLP with nominal
values d̄i j and cost z∗. Moreover, let (y, x)ε be an optimal solution to formulation
R-CFLP over the box support U (ε), ε > 0, of cost (z)ε > z∗. The following theorem
holds.

Theorem 2 If solution (y, x)ε is evaluated over a scenario spaceU (ε̂)with ε̂ > ε > 0,
theremay exist a sample [d̂ j ] ∈ U (ε̂) such that the nominal solution (y∗, x∗) is feasible
whereas solution (y, x)ε is infeasible.
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Proof.Theproof is by an example.Consider an instancewherem = 2 (i.e.,M = {1, 2})
and n = 3 (i.e., N = {1, 2, 3}) with X ⊆ R2×3+ , defined by the following parameters:

– d̄1 = d̄2 = d̄3 = d̄; f1 = f2;

– The cost matrix [ci j ] is defined as follows: c =
[
c11 0 B
c21 B 0

]
where c11 < c21

and B is a large constant;
– s1 ≥ 2d̄ , s2 ≥ 2d̄, s1 ≥ d̄(2 + ε), s1 < 2d̄(1 + ε), s2 ≥ d̄(1 + ε).

Then, the nominal solution (y∗, x∗) is y∗ =
[
1
1

]
, x∗ =

[
1 1 0
0 0 1

]
while the robust

solution (y, x)ε depends on ε and is y =
[
1
1

]
, x =

[
s1−d̄(1+ε)

d̄(1+ε)
1 0

1 − α 0 1

]
where the

term x11 = α = s1−d̄(1+ε)

d̄(1+ε)
< 1. Clearly, (z)ε > z∗.

Consider ε̂ such that ε̂ > ε, then there exists a scenario [d̂ j ] ∈ U (ε̂)whichmakes the
robust solution (y, x)ε infeasible while the nominal solution (y∗, x∗) remains feasible.
Consider [d̂i j ] = [

d̄(1 + δ) d̄(1 − ε̂)
]
, with 0 ≤ δ ≤ ε̂. Below, we aim to find a

value of δ such that constraints (2) are satisfied by the nominal solution x∗ for the
scenario [d̂ j ], that is the constraints with i = 1, 2 are satisfied by solution x∗:

{
x∗
11d̄(1 + δ) + x∗

12d̄(1 − ε̂) ≤ s1 (a)

x∗
23d̄(1 + ε̂) ≤ s2, (b)

(6)

whereas the constraint (2) with i = 2 is violated by solution x, i.e., x21d̄(1 + δ) +
x23d̄(1 + ε̂) > s2, or, equivalently,

⎧
⎪⎨

⎪⎩

d̄(1 + δ) + d̄(1 − ε̂) ≤ s1,

d̄(1 + ε̂) ≤ s2,

(1 − s1−d̄(1+ε)

d̄(1+ε)
)d̄(1 + δ) + d̄(1 + ε̂) > s2,

(7)

which implies ε̂ ≤ s2−d̄
d̄

, and max{0, δL} < δ ≤ min{ε̂, δU } with δU = s1−d̄(1−ε̂)

d̄
− 1

and δL = s2−d̄(1+ε̂)

2d̄(1+ε)−s1
(1 + ε) − 1.

Note that if constraint (a) (case i = 1) of inequalities (6) is satisfied, then also
constraint x11d̄(1+δ)+x12d̄(1− ε̂) ≤ s1 is satisfied by any x solution since x12 = x∗

12
and x13 = 0 and x11 < 1.

Since s1 ≥ 2d̄, we have s1 − d̄(1− ε̂) > d̄ , hence δU > 0. Sufficient conditions for
the existence of a set of values of δ such that the statement of the theorem is verified
are:

{
s1 − d̄(1 − ε̂) ≥ [

s2 − d̄(1 + ε̂)
]
(1 + ε)

d̄ ≤ 2d̄(1 + ε) − s1
, (8)

which lead to ε ≥ s1−d̄
2d̄

, ε̂ > ε, ε̂ ≤ s2−d̄
d̄

, and ε̂ ≥ s2(1+ε)−d̄ε−s1
d̄(2+ε)

.
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Fig. 2 Representation of Theorem 3

The choice of values of ε and ε̂ in the halfspaces derived above guarantees that
δL ≤ δU . Thus, a suitable value of δ exists. �

As previously stated, consider a nominal optimal solution (y∗, x∗) and an optimal
solution (y′, x′)ε′ to R-CFLP over the box support U (ε′) with cost (z′)ε′ > z∗. In
the following, we show that by optimizing R-CFLP on a larger support U (ε′′) (with
ε′′ > ε′) does not necessarily provide a solution which is more robust than the solution
associated with U (ε′), if the solutions are evaluated over a scenario space U (ε̂), with
U (ε̂) ⊃ U (ε′′) ⊃ U (ε′). Indeed, the following theorem holds.

Theorem 3 Let (y′′, x′′)ε′′ be an optimal robust solution of R − CFLP over the box
support U (ε′′), with ε′′ > ε′. If solution (y′′, x′′)ε′′ is evaluated over a scenario
space U (ε̂) with U (ε̂) ⊃ U (ε′′) ⊃ U (ε′), and the uncertain parameters d j are
uniformly distributed in U (ε̂), then the violation probability of solution (y′′, x′′)ε′′ can
be strictly greater than the violation probability of solution (y′, x′)ε′ and the ratio
between solution costs (z′)ε′ and (z′′)ε′′ can be arbitrarily small.

Proof. The proof is by an example. Consider an instance where m = 3 (i.e., M =
{1, 2, 3}) and n = 2 (i.e., N = {1, 2}) with X ⊆ R2×3+ , defined by the following
parameters:

– The nominal values are d̄1 = 3
2 and d̄2 = 3

2 ;
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– The cost matrix [ci j ] is defined as follows: c =
⎡

⎣
c11 c12
c21 c22
B c32

⎤

⎦ where c11 = c12,

c21 = c22, c11 < c21, c12 < c22, c32 < c22, c12 < c32 + f3 and B is a large
constant;

– The capacities of the facilities are s1 = s2 = s3 = 3.

The nominal solution (y∗, x∗) is y∗ =
⎡

⎣
1
0
0

⎤

⎦ , x∗ =
⎡

⎣
1 1
0 0
0 0

⎤

⎦ . Consider ε′ = 1;

then the robust optimal solution (y′, x′)ε′ is y′ =
⎡

⎣
1
1
0

⎤

⎦ , x′ =
⎡

⎣
1
2

1
2

1
2

1
2

0 0

⎤

⎦ . Clearly,

(z′)ε′ > z∗.
Consider now a value ε′′ > ε′, with ε′′ = 4

3 ; we have U (ε′′) ⊃ U (ε′). For

the support U (ε′′), a corresponding optimal solution (y′′, x′′)ε′′ is y′′ =
⎡

⎣
1
1
1

⎤

⎦ ,

x′′ =
⎡

⎣
6
7 0
1
7

1
7

0 6
7

⎤

⎦ . Let (z′′)ε′′ be the cost of solution (y′′, x′′)ε′′ . We have (z′′)ε′′ >

(z′)ε′ > z∗. Note that, if f3 
 f2, the ratio between solution costs (z′)ε′ and (z′′)ε′′
can be arbitrarily small.

For solution (y′, x′)ε′ constraints (2) for i = 1, 2 correspond to: 1
2d1 + 1

2d2 ≤ 3,
whereas the constraint for i = 3 is redundant. For solution (y′′, x′′)ε′′ constraints (2)
are as follows:

i = 1 : 6
7
d1 ≤ 3; i = 2 : 1

7
d1 + 1

7
d2 ≤ 3; i = 3 : 6

7
d2 ≤ 3, (9)

where the constraint for i = 2 is dominated by the constraints for i = 1, 3. Figure2
illustrates the different regions corresponding to the above inequalities. Consider a
value ε̂ > ε′′, such that U (ε̂) ⊃ U (ε′′) ⊃ U (ε′), with ε̂ = 5

3 . Assuming that the
uncertain parameters d j are uniformly distributed in the boxU (ε̂), the probability that
solution (y′, x′)ε′ is not feasible can be computed as:

Pin f eas(y′, x′) = Vol(U (ε̂)\{d ∈ U (ε̂) : 1
2d1 + 1

2d2 ≤ 3})
Vol(U (ε̂))

= 8

64
= 0.125, (10)

where Vol(S) denotes the volume of region S (see also Fig. 2), whereas the probability
that solution (y′′, x′′)ε′′ is not feasible can be computed as:

Pin f eas(y′′, x′′) = Vol(U (ε̂)\{d ∈ U (ε̂) : d1 ≤ 7
2 , d2 ≤ 7

2 }
Vol(U (ε̂))

= 15

64
� 0.23. (11)
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We therefore have Pin f eas(y′, x′) < Pin f eas(y′′, x′′), thus the probability of viola-
tion of a supposedly more robust solution can be higher than the probability of the
less robust solution. �

The counter-intuitive behavior showed in this section leads to less expensive solu-
tions obtained by considering a specified uncertainty set that aremore robust thanmore
expensive solutions obtained by considering a larger uncertainty set. In the following
section we investigate how often this behaviour happens in practice.

4 Computational study

In this section we introduce a set of indicators created ad-hoc to measure the incidence
of the non-monotonicity of the price of robustness in practice. The computational
results are presented on two classes of instances: real-world instances and instances
taken from widely used benchmarks from the literature.

The models presented are implemented in C++ using IBM ILOG CPLEX 12.8.0 as
MILP solver. All experiments are executed on a single core of an Intel Xeon E5-4620
at 2.2 GHz with 4 GB of available memory. All the instances from the literature are
solved to optimality within 1 h. A total of 102 out of 160 real-world instances are
solved to optimality, for the remaining 58 real-world instance we consider the best
feasible solution obtained within a time limit of 24 h.

4.1 Indicators

In this section we introduce the indicators used to evaluate the inversion of mono-
tonicity for a given instance. Given an instance of a class of problems, and two sets
within which ε and ε̂ can vary, we are interested in measuring how often the inversion
of monotonicity occurs.

Letinstbe a deterministic instance andinstε be the robust counterparts obtained
with a box supportwith a givenvalueof ε > 0.Wecall (y∗, x∗), (y∗, x∗)ε the associated
optimal solutions and with z∗ and (z∗)ε their corresponding optimal values.

We measure the robustness of a solution (y, x) with respect to a given scenario
d ∈ U (ε̂) with the basic binary indicator FV that is equal to one if the solution (y, x)
is not feasible for the given scenario d.

LetEd∈U (ε̂)(FV ((y∗, x∗),d)) be the average value of the indicator FV , for a given
solution (y∗, x∗) and scenario space U (ε̂). To compute an approximate estimate of
Ed∈U (ε̂), we use a sampling/Montecarlo simulation. Let ns be the number of samples,

we have:Ed∈U (ε̂)(FV ((y∗, x∗),d)) ≈
∑ns

i=1 FV ((y∗,x∗),di )
ns

with di uniformly generated

in U (ε̂).1 In the rest of this section, we exemplify the use of the indicator on the real-
world instance A, for which all the associated problems where solved to optimality by
the MIP solver within the imposed time limit.

As a first step, we solve the deterministic version (ε = 0) and the robust versions of
the instance with box supports with ε ranging from 0.05 up to 0.9 with step 0.05. Next,

1 More precisely, we have that
∑ns

i=1 FV ((y∗,x∗),di )
ns

→ Ed∈U (ε̂)(FV ((y∗, x∗), d)) for ns → ∞.
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for each solution (y∗, x∗), we calculate Ed∈U (ε̂)(FV ((y∗, x∗),d)) with ε̂ also ranging
from 0.05 up to 1.0. Each solution is evaluated by generating ns = 106 scenarios.

Table 1 reports under column “of” the normalized value of the objective function (in
percentage), the average values of FV for each combination of solution andU (ε̂) used
to generate the scenariosd. For example, the fist rowof Table 1 reports the values corre-
sponding to (y∗, x∗), the deterministic solution,while the second row reports the values
relative to (y∗, x∗)0.05, and soon, until the last row,with thevalues related to (y∗, x∗)0.9.
Note that for compactness, the values of FV are reported in percentage. From the first
row, we observe thatEd∈U (0.05)(FV ((y∗, x∗),d)) = 42.78%, the percentage of infea-
sibility increases along the line, up to a value ofEd∈U (1)(FV ((y∗, x∗),d)) = 86.28%,
obtained when we consider scenarios generated with ε̂ = 1.0.

Under the price of robustness framework, each column, read from top to bottom,
should report non-increasing values since, for increasing values of ε, i.e., the size
of the uncertainty set used in the optimization phase, while keeping ε̂ (the size of
the evaluation space) constant, one would expect to obtain more robust, albeit more
expensive -see column ‘of’- solutions. In other words, FV should be monotonically
non-increasing columnwise. More formally, if ε′ ≤ ε′′ ≤ ε̂ we would expect to
haveEd∈U (ε̂)(FV ((y∗, x∗)ε′′ ,d)) ≤ Ed∈U (ε̂)(FV ((y∗, x∗)ε′ ,d)). However, this is not
always the case. If we consider again Table 1, we observe the following values:

Ed∈U (0.9)(FV ((y∗, x∗)0.45,d)) = 0.83% Ed∈U (0.9)(FV ((y∗, x∗)0.5,d)) = 1.15% .

The values indicate that, if we consider the scenarios from U (ε̂) with ε̂ = 0.9, the
solution obtainedwith a smaller support is infeasible significantly less than the solution
obtained with a supposedly more robust support.

To summarize the overall behaviour of Table 1, we introduce the following two
derived indicators, based on FV :

– The number of variations n(FV ):

n(FV ) =
1∑

ε̂=0.05

1∑

ε=0.05

1{
Ed∈U(ε̂)[FV ((y,x)ε,d)]>Ed∈U(ε̂)[FV ((y,x)ε−0.05,d)]

} . (12)

Value n(FV ) counts the number of inversions of monotonicity in the price of
robustness with respect to the indicator FV . The twelve entries when it happens
are reported in bold in Table 1.

– The average variation avg(FV ) = α/n(FV ), where α is computed as:

1∑

ε̂=0.05

1∑

ε=0.05

max
{
0,Ed∈U (ε̂)

[
FV ((y∗, x∗)ε,d)

]

−Ed∈U (ε̂)

[
FV ((y∗, x∗)ε−0.05,d)

]}
.

Value avg(FV ) is the average of the difference between the value of one entry
of the table and the value of the entry above, when such a difference is positive.
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With respect to Table 1, we obtain the following two derived indicators, n(FV ) = 12
out of 189 potential cases and avg(FV ) = 0.218. We have therefore 12 cases where
themonotonicity of the price of robustness is not respected, and the average increase in
the number of infeasible scenarios for such cases is 0.218%. Finally, it is important to
analyze the change in the objective function value when the monotonicity of the price

of robustness is not respected. Let us indicate with: δ∗
z = 100.0

(z∗)ε − (z∗)ε−0.05

(z∗)ε
the gap, in percentage, of the objective function values when comparing two robust
solutions obtained over two “adjacent” support sets, i.e., robust solutions obtained
over the support sets defined by ε − 0.05 and ε. We thus define the average objective
function loss as:

of l(FV ) =
∑1

ε̂=0.05

∑1

ε=0.05
1{Ed∈U (ε̂)[FV ((y∗,x∗)ε,d)]>Ed∈U (ε̂)[FV ((y∗,x∗)ε−0.05,d)]}δ∗

z

n(FV )
,

i.e., of l(FV ) indicates the average increase in the objective function when the value
of FV of an entry is strictly greater than the value of the entry above it.

With respect to the example, the value of of l(FV ) is 1.69%, i.e, if we only consider
the 12 cases where the monotonicity of the price of robustness is not respected, the
average increase in the objective function is almost 2%.

4.2 Results on real-world instances

The data of the real-world instances were prepared and provided by the dairy company
that motivated our study. Four different distributions centres (denoted as A, B, C, and
D) corresponding to the distribution areas of four regions were selected by the com-
pany for the computational study. The customer demands were estimated based on
representative historical data, and are computed as a function of the different products
delivered to the customers. The locations of the potential facilities and the correspond-
ing capacities were defined based on the existing infrastructures. In this context, the
aim of the company is to investigate scenarios where the main goal is to minimize the
number of facilities used, followed by the minimization of the transportation costs,
i.e., fixed costs fi are assumed to be equal to a large positive constant. The number
of facilities for the four instances is equal to 10, the number of customers varies from
157 to 197 and the minimum number of facilities is either 5 or 6.

In Table 2 we report the aggregated values of the indicators for the real-world SS-
CFLP instances, where for each instance the value of indicator n(FV ) is out of 189
potential cases.

The values reported clearly evince that the phenomenon cannot be neglected. It is
interesting to mention that for instances A, C and D, a positive value of of l(FV ) is
due to an increase of the transportation cost (i.e., the term of the objective function
relative to the x variables), while for the instance B, the positive value of of l(FV ) is
also due to an increase of the fixed cost (i.e., the number of facilities accounted for by
the y variables).
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Table 2 Real-world instances Inst n(FV ) avg(FV ) of l(FV )

A 12 0.218 1.690

B 16 1.250 2.340

C 0 0.000 0.000

D 2 0.003 0.000

Table 3 CFLP: z-xy instance description

x 6 7 9 10 12 13 y 1 2 3 4

Facilities 16 16 25 25 50 50 Fixed cost proportion 1 5/3 7/3 10/3

Customers 50 50 50 50 50 50 z 12 15

Capacity tightness 1.25 1

Table 4 SS-CFLP instances Name n(FV ) avg(FV ) of l(FV )

12-x1 0.000 0.000 0.000

12-x2 2.333 0.028 1.013

12-x3 12.000 0.260 1.957

12-x4 10.667 0.140 2.853

15-x1 0.000 0.000 0.000

15-x2 0.000 0.000 0.000

15-x3 0.000 0.000 0.000

15-x4 3.667 0.076 1.526

4.3 Results on the capacitated facility location problem (CFLP)

We use as CFLP instances a subset of the MS-CFLP instances proposed by [2] and
available at http://people.brunel.ac.uk/~mastjjb/jeb/info.html. The original instances
have a name of the form xy, where x gives information about the graph and the
number of commodities, while y gives information about the cost structure. Table 3
reports the properties of the instances studied. The fixed cost proportion computed as
(maxi∈M fi )/(

∑
i∈M

∑
j∈M ci j/(|M ||N |)), representing the relative importance of

the fixed costs with respect to the variable costs. To obtain instances with controlled
capacity tightness we modified the original xy instances by increasing the capacities
values and obtaining z-xy instances, where z indicates the capacity of each facility.
The total number of SS-CFLP instances is 48, each of them tested with a box supports
with ε ranging from 0 to 1 with a step equal to 0.05. Therefore, we solved a total of
48 nominal problems and 48 × 20 = 960 robust problems.

In Table 4 we report the aggregated values of the indicators n(FV ), avg(FV ),
of l(FV ) for the SS-CFLP. Note that the values reported in the tables are fractional,
since they are obtained as average values. The values reported in the row labeled 12.x1
are obtained as the average values of the following six values: 12.6, 12.7, 12.9, 12.10,
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12.12, 12.13, where each of them represents a combination of facility capacity and
number of customers as reported in Table 3. Looking at the table, the values of the
indicators are often non-negligible, confirming that the inversionof themonotonicity of
the price of robustness is not an isolated phenomenon. The table shows that increasing
the y parameter (the fixed cost proportion) from 1 to 4 has a non-negligible impact.

5 Conclusions

We showed that, for the Capacitated Facility Location Problem (CFLP) with uncertain
demand, the framework of the price of robustness might fail to capture the actual
relation between price and robustness of a set of optimal solutions. More specifically,
via both theoretical and empirical results, we evinced that (i) it is possible to find a
scenario (a realization of the uncertain parameters brought about by nature) for which
the nominal solution is cheaper and more robust than a solution obtained over a non-
empty support set; (ii) an optimal solution obtained over a smaller support set might
be cheaper and more robust than a solution obtained over a larger support set; (iii) this
type of behavior, when exists, holds for a wide interval of realizations of the uncertain
parameters, thus showing that the non-monotonicity of the price of robustness is not
just a statistical fluke.
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