ORIGINAL PAPER ORIGINAL PAPER

Trigonometric approximation of the Max-Cut polytope is star-like

Romain Ageron[1](http://orcid.org/0000-0003-1393-5238)

Received: 9 July 2021 / Accepted: 13 December 2021 / Published online: 3 February 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

The Max-Cut polytope appears in the formulation of many difficult combinatorial optimization problems. These problems can also be formulated as optimization problems over the so-called *trigonometric approximation* which possesses an algorithmically accessible description but is not convex. Hirschfeld conjectured that this trigonometric approximation is star-like. In this article, we provide a proof of this conjecture.

Keywords Max-Cut polytope · Trigonometric approximation

Mathematics Subject Classification 90C20 · 90C27

1 Introduction

A common problem in combinatorial optimization is the maximization of a quadratic form over $\{-1, 1\}^n$

$$
\max_{x \in \{-1,1\}^n} x^T A x = \max_{\substack{X = xx^T \\ x \in \{-1,1\}^n}} \langle A, X \rangle \tag{1}
$$

where $\langle \cdot, \cdot \rangle$ denotes the usual scalar product on real symmetric matrices of size *n*.

The decision problem associated to this optimization problem is NP-complete. Indeed the Max-Cut problem, one of Karp's 21 NP-complete problems, can be reduced in polynomial time to the maximization of a quadratic form over $\{-1, 1\}^n$ [\[3\]](#page-4-0). The reformulation in the form of [\(1\)](#page-0-0) of several common hard combinatorial optimization problems such as vertex cover, knapsack, traveling salesman, etc, can be found in [\[4](#page-4-1)].

 \boxtimes Romain Ageron romain.ageron@student-cs.fr

¹ CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

Consider the set

$$
S\mathcal{R} = \{X \succeq 0 \mid \text{diag } X = 1\}
$$

in the space of real symmetric $n \times n$ matrices, where $X \geq 0$ means that *X* is a positive semidefinite matrix. It serves as a simple and convex outer approximation of the *Max-Cut polytope*

$$
\mathcal{MC} = \text{conv}\{X \in \mathcal{SR} \mid \text{rk } X = 1\},\
$$

where conv denotes the convex envelope and rk *X* denotes the rank of *X*.

Note that ${X \in \mathcal{SR} \mid \text{rk } X = 1} = {X \mid \exists x \in \{-1, 1\}^n, X = xx^T\}}$. Indeed a positive semidefinite matrix *X* has rank 1 if and only if there exists a nonzero vector *x* such that $X = xx^T$. Then the condition diag $X = 1$ implies that $x_i^2 = 1$ for every $i \in \{1, ..., n\}$, i.e., $x_i = \pm 1$, and conversely.

The maximal value of a linear functional $\langle A, . \rangle$ over a set E does not change if the set *E* is replaced by its convex envelope conv *E*. Therefore

$$
\max_{\substack{X=xx^T\\x\in\{-1,1\}^n}} \langle A, X \rangle = \max_{X\in\mathcal{MC}} \langle A, X \rangle.
$$

However, the Max-Cut polytope is a difficult polytope. Indeed, "due to the NP-completeness of the max-cut problem, it follows from a result of Karp and Papadimitriou [1982] that there exists no polynomially concise linear description of MC unless $NP = co-NP''$ [\[1,](#page-4-2) Section 4.4]. A good review of results on the Max-Cut polytope can be found in [\[1\]](#page-4-2).

Maximizing $\langle A, X \rangle$ over SR instead of MC for $A \succeq 0$ approximates the exact solution of the problem with relative accuracy $\mu = \frac{\pi}{2} - 1$ [\[5\]](#page-4-3):

$$
\frac{2}{\pi} \max_{X \in \mathcal{SR}} \langle A, X \rangle \le \max_{X \in \mathcal{MC}} \langle A, X \rangle \le \max_{X \in \mathcal{SR}} \langle A, X \rangle.
$$

Define a function $f : [-1, 1] \rightarrow [-1, 1]$ by $f(x) = \frac{2}{\pi} \arcsin x$. Let **f** be the operator which applies *f* element-wise to a matrix. A non-convex inner approximation of *MC* is given by the *trigonometric approximation* [\[3,](#page-4-0) Section 4]

$$
\mathcal{TA} = \{ \mathbf{f}(X) \mid X \in \mathcal{SR} \}.
$$

Nesterov proved in [\[5,](#page-4-3) Theorem 2.5] that

$$
\max_{X \in T\mathcal{A}} \langle A, X \rangle = \max_{X \in \mathcal{MC}} \langle A, X \rangle.
$$

Although not convex, $T A$ is simpler than MC in the sense that checking whether a matrix *X* is in $T A$ can be done in polynomial time by computing $f^{-1}(X)$ and checking

whether $f^{-1}(X)$ is in $S\mathcal{R}$. This allows to reformulate the initial difficult problem [\(1\)](#page-0-0) as an optimization problem over the algorithmically accessible set *T A*. The complexity of the problem in this form arises solely from the non-convexity of this set.

Hirschfeld studied $T A$ in [\[3,](#page-4-0) Section 4]. In this work, we prove that $T A$ possesses an additional beneficial property. Namely, we prove the conjecture of Hirschfeld that it is starlike, i.e., for every $X \in T\mathcal{A}$ and every $\lambda \in [0, 1]$, the convex combination $\lambda X + (1 - \lambda)I$ of *X* and the central point *I*, the identity matrix, is in $T A$ (Fig. [1\)](#page-2-0).

Although this result does not directly lead to a better algorithm, it has the potential to do so because we know something about $T A$ that we did not know before (a review of the properties and applications of starshaped sets can be found in [\[6](#page-4-4)] and [\[2](#page-4-5)]).

2 Hirschfeld's conjecture

In this section, we describe the conjecture and related results which have been obtained by Hirschfeld in his thesis [\[3,](#page-4-0) Section 4.3].

In order to show that $T A$ is star-like, one has to prove that

$$
\forall X \in \mathcal{SR}, \ \forall \lambda \in [0, 1], \ \mathbf{f}^{-1}(\lambda \mathbf{f} X + (1 - \lambda) I) \in \mathcal{SR}.
$$

Note that the operator acting on X is nearly an element-wise one, defined by the function

$$
f_{\lambda} : [-1, 1] \longrightarrow [-1, 1]
$$

$$
x \longmapsto f^{-1}(\lambda f(x)) = \sin(\lambda \arcsin x)
$$

acting on the off-diagonal elements, while the diagonal elements remain equal to 1, contrary to $f_{\lambda}(1) = f^{-1}(\lambda) = \sin \frac{\pi \lambda}{2}$ $\frac{1}{2}$. Thus one has to show that

$$
\forall X \in \mathcal{SR}, \forall \lambda \in [0, 1], \mathbf{f}_{\lambda}(X) + \left(1 - \sin \frac{\pi \lambda}{2}\right) I \succeq 0.
$$

A sufficient condition is that $f_\lambda(X) \geq 0$ for all $X \in \mathcal{SR}$ and for all $\lambda \in [0, 1]$, i.e., the element-wise operator f_{λ} is positivity preserving. Hirschfeld conjectured that this sufficient condition is verified [\[3](#page-4-0), Conjecture 4.9].

Lemma 1

$$
\forall X \in \mathcal{SR}, \forall \lambda \in [0, 1], \mathbf{f}_{\lambda}(X) \succeq 0
$$

A sufficient (and necessary) condition for an operator of this type to be positivity preserving is that all of the Taylor coefficients of f_{λ} are nonnegative [\[7\]](#page-4-6).

Lemma [1](#page-3-0) proves the following theorem.

Theorem 1 *T A is star-like.*

3 Proof of the conjecture

In this section, we prove Lemma [1.](#page-3-0)

Proof Let $\lambda \in [0, 1]$ and write f_{λ} as a power series

$$
f_{\lambda}(x) = \sum_{n \in \mathbb{N}} a_n(\lambda) x^n.
$$

The first two derivatives of f_{λ} are given by

$$
f'_{\lambda}(x) = \frac{\lambda}{\sqrt{1 - x^2}} \cos(\lambda \arcsin x)
$$

and

$$
f_{\lambda}''(x) = \frac{x}{1 - x^2} \frac{\lambda \cos(\lambda \arcsin x)}{\sqrt{1 - x^2}} - \frac{\lambda^2}{1 - x^2} \sin(\lambda \arcsin x).
$$

Hence f_{λ} is a solution on (-1, 1) of the differential equation

$$
(1 - x^2)f''_{\lambda} - xf'_{\lambda} + \lambda^2 f_{\lambda} = 0.
$$

Therefore, the Taylor coefficients of f_{λ} verify the recurrence relation

$$
(n+2)(n+1)a_{n+2}(\lambda) - n(n-1)a_n(\lambda) - na_n(\lambda) + \lambda^2 a_n(\lambda) = 0
$$

which can be re-expressed as

$$
a_{n+2}(\lambda) = \frac{n^2 - \lambda^2}{(n+2)(n+1)} a_n(\lambda)
$$
 (2)

with initial conditions

$$
\begin{cases} a_0(\lambda) = 0 \\ a_1(\lambda) = \lambda \end{cases}.
$$

Given that $\lambda \in [0, 1]$, a trivial induction shows that

$$
\forall n \in \mathbb{N}, \quad a_n(\lambda) \geq 0.
$$

 \Box

Recursion [\(2\)](#page-4-7) also proves that the roots of the polynomials $a_n(\lambda)$ are located at $0, \pm 1, ..., \pm n$ and are given by the polynomials $P_n(\lambda)$ [\[3,](#page-4-0) eq. 4.23], as also conjectured
by Higgshfald by Hirschfeld.

Acknowledgements This work was accomplished while the author was at an internship at Laboratoire Jean Kuntzmann, Université Grenoble-Alpes.

References

- 1. Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer (1997). [https://doi.org/10.1007/978-](https://doi.org/10.1007/978-3-642-04295-9) [3-642-04295-9](https://doi.org/10.1007/978-3-642-04295-9)
- 2. Hansen, G., Herburt, I., Martini, H., Moszyńska, M.: Starshaped sets. Aequ. Math. 94, 1001–1092 (2020). <https://doi.org/10.1007/s00010-020-00720-7>
- 3. Hirschfeld, B.: Approximative Lösungen des Max-Cut-Problems mit semidefiniten Programmen (2004). <https://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-2738/738.pdf>
- 4. Lucas, A.: Ising formulations of many NP problems. Front. Phys. **2**, 5 (2014). [https://doi.org/10.3389/](https://doi.org/10.3389/fphy.2014.00005) [fphy.2014.00005](https://doi.org/10.3389/fphy.2014.00005)
- 5. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw. **9**(1–3), 141–160 (1998). <https://doi.org/10.1080/10556789808805690>
- 6. Rubinov, A.M., Yagubov, A.A.: The Space of Star-Shaped Sets and its Applications in Nonsmooth Optimization, pp. 176–202. Springer, Berlin, Heidelberg (1986). <https://doi.org/10.1007/BFb0121146>
- 7. Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. **9**(1), 96–108 (1942). [https://doi.](https://doi.org/10.1215/S0012-7094-42-00908-6) [org/10.1215/S0012-7094-42-00908-6](https://doi.org/10.1215/S0012-7094-42-00908-6)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.