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Abstract
In this paper we propose the forward–backward splitting methods with linesearches
for solving nonsmooth optimization problems without the standard assumption of the
Lipschitz continuity of the gradient in Banach spaces.We prove the weak convergence
of the iterative sequence generated by these methods, and further prove convergence
with asymptotic rate 1

n to the optimal value under the assumption of the boundedness
of the iterative sequence.

Keywords Banach space · Forward–backward splitting method · Minimization
problems · Error bound · Linesearch

1 Introduction

Let X be a reflexive, strictly convex and smooth Banach space with dual space X∗.
Consider the optimization problem:

min
x∈X Φ(x) := f (x) + g(x), (1)

where f : X → (−∞,+∞] is proper, lower semicontinuous and convex, g : X →
(−∞,+∞) is convex Gâteaux differentiable. We denote by Φ∗ the infimum value of
the problem (1). The set of solutions to problem (1) is denoted by S. We shall assume
in what follows that the set S is nonempty. Since Φ is proper, lower semicontinuous
and convex, S is a nonempty closed and convex set. Despite its simple form, problem
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(1) has been shown to cover a wide range of apparently unrelated signal recovery
formulations (see [12–14,18]).

The forward–backward splitting method is an effective method to solve (1), which
allows to decouple the contributions of the functions f and g in a gradient descent step
determined by f and in a backward implicit step induced by g. Forward–backward
methods belong to the class of proximal splitting methods. These methods require the
computation of the proximity operator and the approximation of proximal points(see
[14,20]).

The forward–backward splitting iteration procedure proposed in [14] is given in
Hilbert space H and is governed by the updating rule:

xn+1 ∈ argminy∈H {1
2
‖y − xn‖2 + tn(〈∇g(xn), y〉 + f (y))}. (2)

Generalization of this method from Hilbert spaces to Banach spaces is not imme-
diate. The main difficulties are due to the fact that the inner product structure of a
Hilbert space is missing in a Banach space. The proposed forward–backward split-
ting method for solving problem (1) in Banach space suggested in this work aims at
establishing a bridge between the well known forward–backward splitting in Hilbert
spaces [14,20] and that in Banach spaces. The use of a general regularizing function
‖ · ‖p instead of the square of the norm is rather natural in a Banach space, where
the square of the norm loses the privileged role it enjoys in Hilbert spaces [4]. For
instance, it is not hard to verify that in the spaces X = l p or X = L p(1 < p < +∞),

xn+1 ∈ argminy∈X { 1p‖y − xn‖p + tn(〈∇g(xn), y〉 + f (y))} becomes simpler than

xn+1 ∈ argminy∈X { 12‖y − xn‖2 + tn(〈∇g(xn), y〉 + f (y))}. In [10], the following
generalization of the forward–backward iteration procedure was proposed in reflexive
Banach spaces X :

x0 ∈ X , xn+1 ∈ argminy∈X { 1
p
‖y − xn‖p + tn(〈∇g(xn), y〉 + f (y))}, (3)

where, the gradient operator ∇g is (p − 1) Hölder-continuous on X , i.e., there exists
a constant L such that

‖∇g(x) − ∇g(y)‖ ≤ L‖x − y‖p−1, ∀ x, y ∈ X .

In [16], Guan and Song proposed another type generalization of the forward–backward
method in reflexive Banach spaces

xn+1 = argminy∈X { 1
p
‖y‖p − 〈Jp(xn), y〉 + tn(〈∇g(xn) + Jp(zn), y〉 + f (y))},

(4)

where Jp : X → X∗ is the p-duality mapping and {zn} is absolutely summable
sequence.
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In particular, if X is a Hilbert space and p = 2, then formula (3) and (4) reduces
to formula (2). In [16], it is shown that the sequence of functional values converges
with the convergence rate n1−p to the optimal value of Problem (1) under appropriate
assumptions. In [17], Guan and Song further extended forward–backward splitting
method (3) to more general case, i.e., by taking a convex combination of the current
step and the previous step:

{
yn = argminy∈X { 1p‖xn − y‖p + tn(〈∇g(xn) + Jp(zn), y〉 + f (y))},
xn+1 = (1 − λn)xn + λn yn,

(5)

and proved that the sequence of the functional values converges with an asymptotic
rate n1−p to the optimal value. They also proved that the sequence of the functional
values converges with an asymptotic rate under an error bound assumption.

The convergence of the forward–backward splitting method to an optimal solution
of (1) is usually established under the assumption that the gradient of g is Lipschitz
continuous and the stepsize tn is taken less than some constant related with Lipschitz
modulus. When∇g is Lipschitz continuous but somehow the Lipschitz constant is not
known or ∇g is not Lipschitz continuous, finding the stepsize tn that guarantees the
convergence of (2) would be a challenge.

Beck andTeboulle [6] proposed a proximal gradientmethodwith backtracking step-
size rules overcome this inconvenience.As far asweobserve, the theory of convergence
and complexity for the proximal forward–backward is almost complete under such a
Lipschitz assumption. However, the Lipschitz condition fails in many natural circum-
stance; see, e.g., [15]. Bello Cruz and Nghia [7] introduced two new linesearches into
the frame of the forward–backward splitting method and prove the convergence analy-
sis and complexity results of cost values. These two linesearch rules were also recently
studied in [19,21,22] in conjunction with the forward–backward splitting algorithm
for convexminimization problems without the assumption of the Lipschitz continuous
gradient.

Bauschke, Bolte and Teboulle [5] introduced Bregman-based proximal gradient
methods which share most of the convergence properties and complexity of the clas-
sical proximal-gradient, instead of the restrictive condition of Lipschitz continuity of
the gradient of the differentiable they assuming a more general and flexible convexity
condition. [8] further extended the above approach to nonconvex composite model
with smooth adaptable functions and proved the global convergence to a critical point
under natural assumptions on the problems data.

In this paper, following the lines of [7,21], we propose the forward–backward
splitting method with linesearches in the framework of Banach spaces. The main
advantage of our algorithms is that the Lipschitz constants of the gradient of functions
do not require in computation. The paper is organized as follows. The next section
presents some preliminary results that will be used throughout the paper. Section 4 is
devoted to the study of the forward–backward splitting method (3) with Linesearch
1. We prove that the sequence of the functional values converges with an asymptotic
rate 1

n to the optimal value of the minimization Problem (1). In Sect. 5, we further
study forward–backward splitting method (5) with Linesearch 2. We prove that the
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sequence of the functional values converges with an asymptotic rate 1
n to the optimal

value. We also prove that the sequence of the functional values Q-linear converges
under an error bound assumption if tn ≥ t̄ > 0.

2 Preliminaries

In this section we present some definitions and results needed for our paper. Let f be a
lower semi-continuous proper convex function from X to (−∞,+∞]. We denote the
domain of f by dom f := {x ∈ X | f (x) < +∞}. The subdifferential of f at x ∈ X
is the convex set

∂ f (x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ f (y) − f (x), ∀y ∈ X}. (6)

It follows from definition (6) that a point x̂ is a minimizer of f if and only if
0 ∈ ∂ f (x̂). The subdifferential mapping x → ∂ f (x) has following property of
monotonicity, i.e.,

〈x∗
1 − x∗

2 , x1 − x2〉 ≥ 0, ∀ x1, x2 ∈ X ,∀ x∗
1 ∈ ∂ f (x1),∀ x∗

2 ∈ ∂ f (x2).

The subdifferential operator ∂ f is maximal monotone [2]. Moreover, the graph
of ∂ f is demiclosed [2], i.e., if {(xn, x∗

n )} ⊂ Gph(∂ f ) satisfies that {xn} converges
weakly to x and {x∗

n } converges strongly to x∗, then (x, x∗) ∈ Gph(∂ f ). If f and g
are two lower semicontinuous proper convex functions and if the regularity condition
0 ∈ int(dom f − domg) holds, then for any x̄ ∈ dom f ∩ domg, we have (see [9])
∂( f + g)(x̄) = ∂ f (x̄) + ∂g(x̄)

The p-duality mapping Jp : X → X∗ is defined by

Jp(x) = {x∗ ∈ X∗|〈x∗, x〉 = ‖x∗‖‖x‖, ‖x∗‖ = ‖x‖p−1}, ∀x ∈ X .

The Hahn-Banach theorem guarantees that Jp(x) �= ∅ for every x ∈ X . It is clear
that Jp(x) = ∂( 1p‖ · ‖p)(x) for all x ∈ X . It is well known that if X is smooth, then
Jp is single valued and is norm-to-weak star continuous. Properties of the duality
mapping have been given in [1,11,23].

Let {xn} be a sequence in X that converges to x̄ . We say that the convergence is
Q-linear if there exists a constant r ∈ (0, 1) such that

‖xn+1 − x̄‖ ≤ r‖xn − x̄‖,

for all n sufficiently large. We say that the convergence is R-linear if there exists a
sequence of nonnegative scalars {αn} such that

‖xn − x̄‖ ≤ αn,∀ n ≥ 1,

and {αn} converges Q-linearly to zero.
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Definition 1 [2]A functional f is called lower semicontinuous at the point x0 ∈ dom f
if for any sequence xn ∈ dom f such that xn → x0 there holds the inequality

f (x0) ≤ lim inf
n→∞ f (xn). (7)

If the inequality (7) occurs with the condition that the convergence of xn to x0 is weak,
then the functional f is called weakly lower semicontinuous at x0.

Lemma 1 [2]Let f be a convex and lower semicontinuous functional. Then it is weakly
lower semicontinuous.

Lemma 2 [3] Let {an}, {bn} and {εn} be real sequences. Assume that {an} is bounded
from below, {bn} is nonnegative, ∑∞

n=1 |εn| < +∞ and an+1 − an + bn ≤ εn . Then
{an} converges and ∑∞

n=1 bn < +∞.

Definition 2 [10] Let f : X → (−∞,+∞] be proper, convex and lower semicontin-
uous. f is called totally convex at x̄ ∈ X , if for each x∗ ∈ ∂ f (x̄) and each sequence
{xn}, the following implication holds

f (xn) − f (x̄) − 〈x∗, xn − x̄〉 → 0 ⇒ ‖xn − x̄‖ → 0.

The following standing assumptions on the data of problem (1)will be used through-
out the paper:

Assumption 1 The gradient ∇g is uniformly continuous on any bounded subset of X
and maps any bounded subset of X to a bounded set in X∗.

3 The FBSMethod with Linesearch 1

In this section,we shall consider the convergence and convergence rate of the following
forward–backward splitting method:

Linesearch 1(x, α, θ, β).
Given x ∈ dom f , p > 1, α > 0, θ ∈ (0, 1) and β ∈ ( 12 , 1).

Input.
Set t = α and x̂t = argminy∈X { 1p‖x − y‖p + t(〈∇g(x), y〉 + f (y))}.

While t‖∇g(x̂t ) − ∇g(x)‖ > β‖x̂t − x‖p−1

do t = θ t .
End While

Output. t .
Iterative Method 3.1. Given x0 ∈ X , for every n ∈ N, set

xn+1 = argminy∈X { 1
p
‖xn − y‖p + tn(〈∇g(xn), y〉 + f (y))},

where tn = Linesearch 1(xn, α, θ, β).
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Lemma 3 [17] For any x ∈ X and t > 0, let

x̂t = argminy∈X { 1
p
‖y − x‖p + t(〈∇g(x), y〉 + f (y))}.

Then, for any 0 < t1 ≤ t2, we have

‖x − x̂t1‖ ≤ ‖x − x̂t2‖ ≤
(
t2
t1

) 1
p−1 ‖x − x̂t1‖. (8)

Lemma 4 If x ∈ dom f , then Linesearch 1(x, α, θ, β) stops after finitely many steps.

Proof If x ∈ S, then x = x̂α. Thus the linesearch stops at zero step and gives us the
output α. If x /∈ S, by contradiction suppose that for all tk = αθk, k ∈ N

tk‖∇g(x̂tk ) − ∇g(x)‖ > β‖x̂tk − x‖p−1. (9)

It follows from Lemma 3 that ‖x − x̂tk‖ ≤ ‖x − x̂α‖, that is, {x̂tk } is bounded. Thus
we get from (9) that ‖x̂tk − x‖ → 0 as k → +∞ thanks to Assumption 1. The latter
implies ‖∇g(x̂tk ) − ∇g(x)‖ → 0 as k → +∞ by Assumption 1 again. From (9) we
also obtain

lim
k→+∞

‖x̂tk − x‖p−1

tk
= 0. (10)

The optimality of x̂tk implies

0 ∈ ∂

(
1

p
‖x − ·‖p + tk(〈∇g(x), ·〉 + f (·))

)
(x̂tk ).

Then, we have

Jp(x − x̂tk )

tk
− ∇g(x) ∈ ∂ f (x̂tk ).

By letting k → +∞ in the above inclusion and using (10), we get from the demi-
closedness of Gph(∂ f ) that 0 ∈ ∂ f (x)+∇g(x). This contradicts the assumption that
x is not an optimal solution to problem (1) and completes the proof of the lemma. ��
Remark 1 We observe from Lemma 4 that for finding the stepsize tn in the above
scheme is finite. Hence the choice of sequence {xn} in Iterative Method 3.1 is well
defined. Another important feature from the definition of Linesearch 1 useful for our
analysis is the following inequality

tn‖∇g(xn+1) − ∇g(xn)‖ ≤ β‖xn+1 − xn‖p−1. (11)
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Proposition 1 Let {xn} be a sequence generated by Iterative Method 3.1 and define

h(xn) := f (xn) − f (xn+1) + 〈∇g(xn), xn − xn+1〉.

Then, we have

(i) ‖xn − xn+1‖p ≤ tnh(xn).
(ii) Φ(xn+1) ≤ Φ(xn) − (1 − β)h(xn).
(iii) Φ(xn) converges and

∑∞
n=1 h(xn) < +∞.

Proof (i) The optimality of xn+1 implies

0 ∈ ∂

(
1

p
‖xn − ·‖p + tn(〈∇g(xn), ·〉 + f (·))

)
(xn+1).

Then, we have

Jp(xn − xn+1)

tn
− ∇g(xn) ∈ ∂ f (xn+1). (12)

Hence, 〈
Jp(xn − xn+1)

tn
− ∇g(xn), xn − xn+1

〉
≤ f (xn) − f (xn+1),

and so that

‖xn − xn+1‖p ≤ tn f (xn) − tn f (xn+1) + tn〈∇g(xn), xn − xn+1〉 = tnh(xn).

(ii) Using the definition of h(xn) and (11) we have

Φ(xn) − Φ(xn+1) = h(xn) + g(xn) − g(xn+1) − 〈∇g(xn), xn − xn+1〉
≥ h(xn) + 〈∇g(xn+1), xn − xn+1〉 − 〈∇g(xn), xn − xn+1〉
≥ h(xn) − 〈∇g(xn) − ∇g(xn+1), xn − xn+1〉
≥ h(xn) − ‖∇g(xn) − ∇g(xn+1)‖‖xn − xn+1‖
≥ h(xn) − β

tn
‖xn − xn+1‖p

≥ h(xn) − βh(xn)

= (1 − β)h(xn).

(iii) The conclusion follows using Lemma 2 and Proposition 1 (ii). ��
Proposition 2 Let {xn} be a sequence generated by Iterative Method 3.1. Assume the
sequence {xn} is bounded. Then,
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(i) lim
n→∞ Φ(xn) = Φ∗.

(ii) all weak accumulation points of {xn} belong to S.

Proof (i) Let x̂ ∈ S. Since g(xn) − g(x̂) ≤ 〈∇g(xn), xn − x̂〉 and Φ(xn) − Φ∗ =
f (xn) − f (x̂) + g(xn) − g(x̂), we have that

Φ(xn) − Φ∗ ≤ f (xn) − f (x̂) + 〈∇g(xn), xn − x̂〉
= h(xn) + f (xn+1) − f (x̂) + 〈∇g(xn), xn+1 − x̂〉. (13)

Then, by (12) and (13), we have

Φ(xn) − Φ∗ ≤ h(xn) −
〈
Jp(xn − xn+1)

tn
, x̂ − xn+1

〉

≤ h(xn) + 1

tn
‖xn − xn+1‖p−1‖x̂ − xn+1‖. (14)

Now let us split our further analysis into two distinct cases.

Case 1 Suppose that there exists t̄ > 0 such that tn ≥ t̄ for all n ∈ N. Then, by
Proposition 1 and (14), we have

Φ(xn) − Φ∗ ≤ Φ(xn) − Φ(xn+1)

1 − β
+ 1

tn
‖xn − xn+1‖p−1‖x̂ − xn+1‖

≤ Φ(xn) − Φ(xn+1)

1 − β
+

(
Φ(xn) − Φ(xn+1)

1 − β

) p−1
p

t
− 1

p
n ‖x̂ − xn+1‖.

Since {xn} is bounded and α ≥ tn ≥ t̄ > 0, there exists c1 ≥ 0 such that t
− 1

p
n ‖x̂ −

xn+1‖ ≤ c1. Hence,

Φ(xn) − Φ∗ ≤ Φ(xn) − Φ(xn+1)

1 − β
+

(
Φ(xn) − Φ(xn+1)

1 − β

) p−1
p

c1. (15)

Since {Φ(xn) − Φ∗} is bounded by Proposition 1(iii), there exist c2 ≥ 0 such that

(Φ(xn) − Φ(xn+1))
1
p + (1 − β)

1
p c1 ≤ c2. (16)

Then, by (15) and (16), we have

(1 − β)(Φ(xn) − Φ∗)

≤ (Φ(xn) − Φ(xn+1)) + (Φ(xn) − Φ(xn+1))
p−1
p (1 − β)

1
p c1

= (Φ(xn) − Φ(xn+1))
p−1
p

(
(Φ(xn) − Φ(xn+1))

1
p + (1 − β)

1
p c1

)
≤ (Φ(xn) − Φ(xn+1))

p−1
p c2. (17)
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Using (17), we get that

1 − β

c2
(Φ(xn) − Φ∗) ≤ (Φ(xn) − Φ(xn+1))

p−1
p ,

and so that,

(Φ(xn+1) − Φ∗) ≤ (Φ(xn) − Φ∗) −
(
1 − β

c2

) p
p−1

(Φ(xn) − Φ∗)
p

p−1 . (18)

Hence, by (18) and Lemma 2, we easily obtain, limn→∞ Φ(xn) = Φ∗.
Case 2 Suppose now that {tk} ⊂ {tn} and limk→+∞ tk = 0. Since {xn} is bounded,
the set of its weak accumulation points is nonempty. Without loss of generality, we
assume that {xk} weakly converging to x̄ . Define t̂k = tk

θ
> tk > 0 and

x̂t̂k = argminy∈X { 1
p
‖xk − y‖p + t̂k(〈∇g(xk), y〉 + f (y))}.

Due to Lemma 3 we have

‖xk − x̂t̂k‖ ≤
(
t̂k
tk

) 1
p−1

‖xk − xk+1‖ = (
1

θ
)

1
p−1 ‖xk − xk+1‖,

which combines with the boundedness of {xk} to show that the sequence {x̂t̂k } is also
bounded. It follows from the definition of Linesearch 1 that

t̂k‖∇g(xk) − ∇g(x̂t̂k )‖ > β‖xk − x̂t̂k‖p−1. (19)

Since limk→+∞ t̂k = 0 and both {xk} and {x̂t̂k } are bounded, (19) together with
Assumption 1 tell us that limk→+∞ ‖xk − x̂t̂k‖ = 0 and thus {x̂t̂k } also weakly con-
verges to x̄ . Thanks to Assumption 1 again, we have

lim
k→+∞ ‖∇g(xk) − ∇g(x̂t̂k )‖ = 0. (20)

This and (19) imply that

lim
k→+∞

1

t̂k
‖xk − x̂t̂k‖p−1 = 0. (21)

Since

Jp(xk − x̂t̂k ) − t̂k∇g(xk)

t̂k
+ ∇g(x̂t̂k ) ∈ ∂ f (x̂t̂k ) + ∇g(x̂t̂k ) = ∂( f + g)(x̂t̂k ).
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By letting k → +∞, we get from (20) and (21) that 0 ∈ ∂( f + g)(x̄), which means
x̄ ∈ S. It remains to verify (i) in this case. Indeed, we get from Lemma 3 that

‖xk − x̂t̂k‖ ≥ ‖xk − xk+1‖.

This together with (21) yields

lim
k→+∞

1

tk
‖xk − xk+1‖p−1 = 0.

Hence, by Proposition 1(iii) and (14), we have Φ(xn) → Φ∗.
(ii) Since limn→∞ Φ(xn) = Φ∗, the sequence {xn} is minimizing sequence, thus,

due to the weak lower semicontinuity of Φ(see lemma 1), all weak accumulation
points of {xn} belong to S. ��

Proposition 3 Let {xn} be a sequence generated by Iterative Method 3.1. Suppose
that the sequence {xn} is bounded and there exists t̄ > 0 such that tn ≥ t̄ . Then,
Φ(xn) − Φ∗ ≤ λn1−p for some λ > 0.

Proof By the mean value theorem, we have

1

(Φ(xn+1) − Φ∗)q−1 − 1

(Φ(xn) − Φ∗)q−1

= (Φ(xn) − Φ∗)q−1 − (Φ(xn+1) − Φ∗)q−1

(Φ(xn+1) − Φ∗)q−1(Φ(xn) − Φ∗)q−1

= (q − 1)ξq−2[(Φ(xn) − Φ∗) − (Φ(xn+1) − Φ∗)]
(Φ(xn+1) − Φ∗)q−1(Φ(xn) − Φ∗)q−1 ,

where, q is the dual exponent, i.e., 1
p + 1

q = 1 andΦ(xn+1)−Φ∗ ≤ ξ ≤ Φ(xn)−Φ∗.
Thus,

ξq−2 ≥ (Φ(xn+1) − Φ∗)q−1(Φ(xn) − Φ∗)−1

and, by (18),

1

(Φ(xn+1) − Φ∗)q−1 − 1

(Φ(xn) − Φ∗)q−1

≥ (q − 1)c̄[(Φ(xn+1) − Φ∗)q−1(Φ(xn) − Φ∗)q−1]
(Φ(xn+1) − Φ∗)q−1(Φ(xn) − Φ∗)q−1

= (q − 1)c̄,
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where, c̄ =
(
1−β
c2

) p
p−1

. Summing up then yields

1

(Φ(xn) − Φ∗)q−1 − 1

(Φ(x0) − Φ∗)q−1

=
n−1∑
i=0

1

(Φ(xi+1) − Φ∗)q−1 − 1

(Φ(xi ) − Φ∗)q−1

≥ n(q − 1)c̄.

and consequently,

(Φ(xn) − Φ∗)q−1 ≤ ((Φ(x0) − Φ∗)1−q + n(q − 1)c̄)−1.

Hence, there exists λ > 0, such that Φ(xn) − Φ∗ ≤ λn1−p. ��

4 The FBSMethod with Linesearch 2

Linesearch 2(x, θ). Given x ∈ dom f , θ ∈ (0, 1) and p > 1.
Input. Set t = 1 and x̂ = argminy∈X { 1p‖x − y‖p + 〈∇g(x), y〉 + f (y))}.
While
( f + g)(x − t(x − x̂))

> ( f + g)(x) − t( f (x) − f (x̂)) − t〈∇g(x), x − x̂〉 + t
p‖x̂ − x‖p

do t = θ t .
End While

Output. t .

Lemma 5 If x ∈ dom f , then Linesearch 2(x, θ) stops after finitely many steps.

Proof If x ∈ S, then x = x̂ . Thus the linesearch immediately give us the output 1
without proceeding any step. If x /∈ S, by contradiction let us assume thatLinesearch
2 does not stop after finitely many steps. Thus for all t ∈ {1, θ, θ2, · · · }, we obtain

( f + g)(x − t(x − x̂)) > ( f + g)(x) − t( f (x) − f (x̂)) − t〈∇g(x), x − x̂〉
+ t

p
‖x̂ − x‖p.

Since f (x − t(x − x̂)) ≤ (1 − t) f (x) + t f (x̂), we have

g(x − t(x − x̂)) − g(x)

t
+ 〈∇g(x), x − x̂〉 >

1

p
‖x̂ − x‖p.

Then we get that

0 = lim
t→0

g(x − t(x − x̂)) − g(x) + t〈∇g(x), x − x̂〉
t

≥ 1

p
‖x̂ − x‖p.
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Hencewe have x̂ = x,which readily implies that 0 ∈ ∂ f (x)+∇g(x).This contradicts
the assumption that x is not an optimal solution to problem and completes the proof
of the lemma. ��

In this section, we shall consider the convergence and convergence rate of the
following forward–backward splitting method:

Iterative Method 4.1.
Given x0 ∈ X , for every n ∈ N, set

{
yn = argminy∈X { 1p‖xn − y‖p + 〈∇g(xn), y〉 + f (y)},
xn+1 = (1 − tn)xn + tn yn,

where tn = Linesearch 2(xn, θ).

Remark 2 Let {xn} and {yn} be sequences generated by IterativeMethod 4.1. It follows
from Linesearch 2(xn, θ) that

( f + g)(xn+1) ≤ ( f + g)(xn) − tn( f (xn) − f (yn))

−tn〈∇g(xn), xn − yn〉 + tn
p

‖xn − yn‖p.

If we remove the f term fromLinesearch 2(xn, θ),we can still get this result from
the convexity of f . However, if f is a strictly convex or strongly convex function, the
number of iteration step for Linesearch 2 may be reduced.

Next we obtain some similar results for Iterative Method 4.1 to the ones in Sect. 4
for Iterative Method 3.1.

Proposition 4 Let {xn} be a sequence generated by Iterative Method 4.1 and define

ρ(xn) := f (xn) − f (yn) + 〈∇g(xn), xn − yn〉.

Then, we have

(i) 1
t pn

‖xn − xn+1‖p ≤ ρ(xn).

(ii) Φ(xn+1) ≤ Φ(xn) − tn(1 − 1
p )ρ(xn).

(iii) Φ(xn) converges and
∑∞

n=1 tnρ(xn) < +∞.

Proof (i) The optimality of yn implies

0 ∈ ∂

(
1

p
‖xn − ·‖p + 〈∇g(xn), ·〉 + f (·)

)
(yn).

Then, we have

Jp(xn − yn) − ∇g(xn) ∈ ∂ f (yn). (22)
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Hence, by yn = 1
tn
xn+1 + (1 − 1

tn
)xn, we have

〈
Jp(

xn − xn+1

tn
) − ∇g(xn), xn − (

1

tn
xn+1 + (1 − 1

tn
)xn)

〉
≤ f (xn) − f (yn),

and so that

‖ xn − xn+1

tn
‖p ≤ f (xn) − f (yn) + 〈∇g(xn), xn − yn〉 = ρ(xn). (23)

(ii) Using the definition of ρ(xn) and Remark 2, we get that

Φ(xn) − Φ(xn+1) ≥ tn( f (xn) − f (yn)) + tn〈∇g(xn), xn − yn〉 − tn
p

‖xn − yn‖p

= tnρ(xn) − 1

pt p−1
n

‖xn − xn+1‖p. (24)

It follows from (23) and (24) that

Φ(xn+1) ≤ Φ(xn) − tn(1 − 1

p
)ρ(xn).

(iii) The conclusion follow using Lemma 2 and Proposition 4 (ii). ��

Proposition 5 Let {xn} and {yn} be sequences generated by Iterative Method 4.1.
Assume the sequence {xn} is bounded. Then,
(i) all weak accumulation points of {xn} belong to S.

(ii) if there exists {tk} ⊂ {tn} such that tk → t̄ > 0, then limn→∞ Φ(xn) = Φ∗.
(iii) if tn → 0 and f is uniformly continuous on any bounded subset of dom f , then

limn→∞ Φ(xn) = Φ∗.

Proof (i) Let x̂ ∈ S and {xk} ⊂ {xn} weakly converging to x̄ . Since

g(xn) − g(x̂) ≤ 〈∇g(xn), xn − x̂〉

and

Φ(xn) − Φ∗ = f (xn) − f (x̂) + g(xn) − g(x̂),

we have that

Φ(xn) − Φ∗ ≤ f (xn) − f (x̂) + 〈∇g(xn), xn − x̂〉
= ρ(xn) + f (yn) − f (x̂) + 〈∇g(xn), yn − x̂〉. (25)
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Then, by (22) and (25), we have

Φ(xn) − Φ∗

≤ ρ(xn) − 〈Jp( xn − xn+1

tn
) − ∇g(xn), x̂ − yn〉 + 〈∇g(xn), yn − x̂〉

= ρ(xn) − 〈Jp( xn − xn+1

tn
), x̂ − yn〉

≤ ρ(xn) + (
1

tn
)p−1‖xn − xn+1‖p−1‖x̂ − (

1

tn
xn+1 + (1 − 1

tn
)xn)‖. (26)

Now let us split our further analysis into two distinct cases.
Case 1Without loss of generality, we assume that tk → t̄ > 0.Then, by Proposition

4, we have limn→∞ ρ(xn) = 0 and limn→∞ ‖xn − xn+1‖ = 0. Then by (26), we have
limn→∞ Φ(xn) = Φ∗. Hence, the sequence {xk} is minimizing sequence, thus, due
to the weak lower semicontinuity of Φ, x̄ ∈ S.

Case 2 Suppose now that limk→+∞ tk = 0. Define t̂k = tk
θ

> tk > 0 and

{
yk = argminy∈X { 1p‖xk − y‖p + 〈∇g(xk), y〉 + f (y)},
x̂k+1 = (1 − t̂k)xk + t̂k yk,

(27)

It follows from the definition of Linesearch 2(xk, θ) that

Φ(xk) − Φ(x̂k+1) ≤ t̂k( f (xk) − f (yk)) + t̂k〈∇g(xk), xk − yk〉 − t̂k
p

‖xk − yk‖p.

This together with (6) and (27) gives us that

0 ≥ Φ(xk) − Φ(x̂k+1) − t̂k( f (xk) − f (yk)) − t̂k〈∇g(xk), xk − yk〉
+ t̂k

p
‖xk − yk‖p

= f (xk) − f (x̂k+1) + g(xk) − g(x̂k+1)

−t̂k( f (xk) − f (yk)) − t̂k〈∇g(xk), xk − yk〉 + t̂k
p

‖xk − yk‖p

≥ −t̂k〈∇g(xk), xk − yk〉 + 〈∇g(x̂k+1), xk − x̂k+1〉 + t̂k
p

‖xk − yk‖p

+ f (xk) − t̂k f (yk) − (1 − t̂k) f (xk) − t̂k( f (xk) − f (yk))

= t̂k〈∇g(x̂k+1) − ∇g(xk), xk − yk〉 + t̂k
p

‖xk − yk‖p.

We obtain from the latter that

t̂k
p

‖xk − yk‖p ≤ t̂k‖∇g(x̂k+1) − ∇g(xk)‖‖xk − yk‖,
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which yields

1

p
‖xk − yk‖p−1 ≤ ‖∇g(x̂k+1) − ∇g(xk)‖. (28)

On the other hand,

〈Jp(xk − yk) − ∇g(xk), y0 − yk〉 ≤ f (y0) − f (yk)

and

〈Jp(x0 − y0) − ∇g(x0), yk − y0〉 ≤ f (yk) − f (y0).

Adding the two inequalities, we get

〈Jp(xk − yk) − Jp(x0 − y0), y0 − yk〉 ≤ 〈∇g(x0) − ∇g(xk), yk − y0〉.

Then we have

‖xk − yk‖p ≤ 〈Jp(xk − yk), xk − y0〉 + 〈Jp(x0 − y0), y0 − yk〉
+〈∇g(x0) − ∇g(xk), yk − y0〉.

Hence

‖xk − yk‖p ≤ ‖xk − yk‖p−1‖y0 − xk‖ + ‖x0 − y0‖p−1‖y0 − yk‖
+‖∇g(x0) − ∇g(xk)‖‖yk − y0‖.

Due to Assumption 1, p > 1 and the boundedness of {xn}, the latter tells us that
{yk} is also bounded. This together with (27) and the fact limk→+∞ tk = 0 implies
limk→+∞ ‖x̂k+1 − xk‖ = 0. Since ∇g is uniformly continuous on bounded sets, we
get limk→+∞ ‖∇g(x̂k+1) − ∇g(xk)‖ = 0 and derive from (28) that

lim
k→+∞ ‖xk − yk‖ = 0. (29)

Since ∇g is uniformly continuous on bounded sets, (29) implies

lim
k→+∞ ‖∇g(xk) − ∇g(yk)‖ = 0. (30)

Since Jp(xk − yk) − ∇g(xk) + ∇g(yk) ∈ ∂ f (yk) + ∇g(yk) = ∂( f + g)(yk). By
passing to the limit over the subsequence {xk} in the above inclusion, we get from (29)
and (30) that 0 ∈ ∂( f + g)(x̄), which means x̄ ∈ S.

(ii) Suppose now that {tk} ⊂ {tn} and tk → t̄ > 0, Hence, by Proposition 4 and
(26), we have limk→∞ Φ(xk) = Φ∗. Furthermore, we have limn→∞ Φ(xn) = Φ∗.
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(iii) By (29), we have

lim
n→+∞ ‖xn − yn‖ = 0. (31)

Since f is uniformly contionuous on any bounded set and∇g is uniformly continuous
on bounded sets, (31) implies

lim
n→+∞ ρ(xn) = lim

n→+∞ f (xn) − f (yn) + 〈∇g(xn), xn − yn〉 = 0.

Hence, by Proposition 4(i) and (26), we have limn→∞ Φ(xn) = Φ∗. ��
Proposition 6 Let {xn}and {yn} be sequences generated by Iterative Method 4.1. Sup-
pose that the sequence {xn} is bounded and there exists t̄ > 0 such that tn ≥ t̄ for all
n ∈ N. Then, Φ(xn) − Φ∗ ≤ λn1−p for some λ > 0.

Proof By (26) and Proposition 4, we have

Φ(xn) − Φ∗

≤ ρ(xn) + (
1

tn
)p−1‖xn − xn+1‖p−1‖x̂ − (

1

tn
xn+1 + (1 − 1

tn
)xn)‖

≤ 1

tn

Φ(xn) − Φ(xn+1)

1 − 1
p

+ ‖ xn − xn+1

tn
‖p−1‖x̂ − (

1

tn
xn+1 + (1 − 1

tn
)xn)‖

≤ 1

tn

Φ(xn) − Φ(xn+1)

1 − 1
p

+
(

Φ(xn) − Φ(xn+1)

1 − 1
p

) p−1
p

t
− p−1

p
n ‖x̂ − (

1

tn
xn+1 + (1 − 1

tn
)xn)‖.

Since {xn} is bounded, there exist c1 ≥ 0 such that

t
− p−1

p
n ‖x̂ − (

1

tn
xn+1 + (1 − 1

tn
)xn)‖ ≤ c1.

Hence,

Φ(xn) − Φ∗ ≤ 1

tn

Φ(xn) − Φ(xn+1)

1 − 1
p

+
(

Φ(xn) − Φ(xn+1)

1 − 1
p

) p−1
p

c1. (32)

Since {Φ(xn) − Φ∗} is bounded by Proposition 4(iii), there exist c2 ≥ 0 such that

1

tn
(Φ(xn) − Φ(xn+1))

1
p + (1 − 1

p
)
1
p c1 ≤ c2. (33)
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Then, by (32) and (33), we have

(1 − 1

p
)(Φ(xn) − Φ∗)

≤ 1

tn
(Φ(xn) − Φ(xn+1)) + (Φ(xn) − Φ(xn+1))

p−1
p (1 − 1

p
)
1
p c1

= (Φ(xn) − Φ(xn+1))
p−1
p

(
1

tn
(Φ(xn) − Φ(xn+1))

1
p + (1 − 1

p
)
1
p c1

)

≤ c2(Φ(xn) − Φ(xn+1))
p−1
p . (34)

Using (34), we get that

p − 1

pc2
(Φ(xn) − Φ∗) ≤ (Φ(xn) − Φ(xn+1))

p−1
p

and so that,

(Φ(xn+1) − Φ∗) ≤ (Φ(xn) − Φ∗) − (
p − 1

pc2
)

p
p−1 (Φ(xn) − Φ∗)

p
p−1 . (35)

By the mean value theorem, we have

1

(Φ(xn+1) − Φ∗)q−1 − 1

(Φ(xn) − Φ∗)q−1

= (Φ(xn) − Φ∗)q−1 − (Φ(xn+1) − Φ∗)q−1

(Φ(xn+1) − Φ∗)q−1(Φ(xn) − Φ∗)q−1

= (q − 1)ξq−2[(Φ(xn) − Φ∗) − (Φ(xn+1) − Φ∗)]
(Φ(xn+1) − Φ∗)q−1(Φ(xn) − Φ∗)q−1

with Φ(xn+1) − Φ∗ ≤ ξ ≤ Φ(xn) − Φ∗ and 1
q + 1

p = 1. Thus,

ξq−2 ≥ (Φ(xn+1) − Φ∗)q−1(Φ(xn) − Φ∗)−1

and, by (35),

1

(Φ(xn+1) − Φ∗)q−1 − 1

(Φ(xn) − Φ∗)q−1

≥ (q − 1)c̄[(Φ(xn+1) − Φ∗)q−1(Φ(xn) − Φ∗)q−1]
(Φ(xn+1) − Φ∗)q−1(Φ(xn) − Φ∗)q−1

= (q − 1)c̄,
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where, c̄ =
(
p−1
pc2

) p
p−1

. Summing up then yields

1

(Φ(xn) − Φ∗)q−1 − 1

(Φ(x0) − Φ∗)q−1

=
n−1∑
i=0

1

(Φ(xi+1) − Φ∗)q−1 − 1

(Φ(xi ) − Φ∗)q−1

≥ n(q − 1)c̄.

and consequently,

(Φ(xn) − Φ∗)q−1 ≤ ((Φ(x0) − Φ∗)1−q + n(q − 1)c̄)−1.

Hence, there exists λ > 0, such that Φ(xn) − Φ∗ ≤ λn1−p. ��

Definition 3 [17] We say that the sequence of iterates generated by Iterative Method
4.1 satisfies the error bound property, if there exists κ > 0 such that

min
y∈S

‖xn − y‖ ≤ κ‖xn − yn‖. (36)

Proposition 7 Let {xn} and {yn} be sequences generated by Iterative Method 4.1.
Assume that the error bound property (36) holds for {xn} and the sequence {xn} is
bounded. If there exists t̄ > 0 such that tn ≥ t̄ for all n ∈ N, then the sequence
{Φ(xn)} converges Q−linearly, that is, there exists 0 < ε < 1 such that

Φ(xn+1) − Φ∗ ≤ ε(Φ(xn) − Φ∗).

Proof Since S is nonempty, closed and convex and X is reflexive, there exists x̂n ∈ S,

such that ‖xn − x̂n‖ = miny∈S ‖xn − y‖ and Φ(x̂n) = Φ∗. Since {xn} is bounded,
{x̂n} is also bounded. Since

g(xn) − g(x̂n) ≤ 〈∇g(xn), xn − x̂n〉

and

Φ(xn) − Φ∗ = f (xn) − f (x̂n) + g(xn) − g(x̂n),

we have that

Φ(xn) − Φ∗ ≤ f (xn) − f (x̂n) + 〈∇g(xn), xn − x̂n〉
= ρ(xn) + f (yn) − f (x̂n) + 〈∇g(xn), yn − x̂n〉. (37)
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Then, by (22) and (37), we have

Φ(xn) − Φ∗

≤ ρ(xn) − 〈Jp( xn − xn+1

tn
) − ∇g(xn), x̂n − yn〉 + 〈∇g(xn), yn − x̂n〉

= ρ(xn) − 〈Jp( xn − xn+1

tn
), x̂n − yn〉

≤ ρ(xn) + (
1

tn
)p−1‖xn − xn+1‖p−1‖x̂n − (

1

tn
xn+1 + (1 − 1

tn
)xn)‖. (38)

By (38), we have

Φ(xn) − Φ∗ ≤ ρ(xn) + (
1

tn
)p−1‖xn − xn+1‖p−1‖(x̂n − xn) − 1

tn
(xn+1 − xn)‖

≤ ρ(xn) + (
1

tn
)p−1‖xn − xn+1‖p−1(‖x̂n − xn‖ + 1

tn
‖xn+1 − xn‖).

Now we use the error bound condition miny∈S ‖xn − y‖ ≤ κ‖xn − yn‖ together with
Proposition 4 to obtain

Φ(xn) − Φ∗ ≤ p

tn(p − 1)
× (Φ(xn) − Φ(xn+1))

+(
1

tn
)p−1‖xn − xn+1‖p−1(κ‖xn − yn‖ + 1

tn
‖xn+1 − xn‖)

= p

tn(p − 1)
× (Φ(xn) − Φ(xn+1)) + 1 + κ

t pn
‖xn − xn+1‖p

≤ (2 + κ)p

tn(p − 1)
× (Φ(xn) − Φ(xn+1))

≤ (2 + κ)p

t̄(p − 1)
× (Φ(xn) − Φ(xn+1)). (39)

It follows from (39) that

Φ(xn+1) − Φ∗ ≤
(

(2 + κ)p

t̄(p − 1)
− 1

) (
(2 + κ)p

t̄(p − 1)

)−1

(Φ(xn) − Φ∗)

=
(
1 − t̄(p − 1)

(2 + κ)p

)
(Φ(xn) − Φ∗)

= ε(Φ(xn) − Φ∗),

where, 0 < ε =
(
1 − t̄(p−1)

(2+κ)p

)
< 1. Hence, the sequence {Φ(xn)} converges

Q−linearly. ��
Corollary 1 Let {xn} and {yn} be sequences generated by IterativeMethod 4.1. Assume
that the error bound property (36) holds for {xn} and the sequence {xn} is bounded.
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If f is totally convex and there exists t̄ > 0 such that tn ≥ t̄ for all n ∈ N, then {xn}
converges R−linearly to the unique minimizer x̄ .

Proof Consider the following Bregman-like distance to the solution x̄ of the problem
(1):

R(x) := f (x) − f (x̄) + 〈∇g(x̄), x − x̄〉

which is non-negative since −∇g(x̄) ∈ ∂ f (x̄). Note that if ∂ f (x̄) consists of one
point, R is indeed the Bregman distance. By optimality of x̄ and by Proposition 7, the
iterates xn satisfy

0 ≤ R(xn) = f (xn) − f (x̄) + 〈∇g(x̄), xn − x̄〉 ≤ Φ(xn) − Φ∗ → 0.

Hence, by Definition 2, xn → x̄ .
On the other hand, If f is totally convex, then S = {x̄} and

min
y∈S

‖xn − y‖ = ‖xn − x̄‖.

Using the error bound condition (36), we have

‖xn − x̄‖ ≤ κ‖xn − yn‖ = κ

tn
‖xn − xn+1‖.

Then, by Proposition 4 and Φ(xn) − Φ(x̄) ≥ Φ(xn) − Φ(xn+1), we have {xn} is
bounded and

Φ(xn)−Φ(x̄)≥ p−1

pt p−1
n

‖xn−xn+1‖p ≥ (p−1)tn
pκ p

‖xn− x̄‖p ≥ (p−1)t̄

pκ p
‖xn − x̄‖p

and consequently

(
Φ(xn) − Φ(x̄)

μ

) 1
p ≥ ‖xn − x̄‖, (40)

where, μ = (p−1)t̄
pκ p . Since the sequence {Φ(xn)} is converges Q−linearly by Propo-

sition 7, that is, Φ(xn+1) − Φ∗ ≤ ε(Φ(xn) − Φ∗), then we have

(
Φ(xn+1) − Φ(x̄)

μ

) 1
p ≤ ε

1
p

(
Φ(xn) − Φ(x̄)

μ

) 1
p

.

Hence, the sequence

{(
Φ(xn)−Φ(x̄)

μ

) 1
p
}
is also converges Q−linearly. Thus, by (40),

{xn} converges R−linearly to an optimal solution in S. ��
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5 Conclusion

In this work, we discuss the modified forward–backward splitting method involv-
ing new linesearches for solving minimization problems of two convex functions in
Banach space. Our algorithms do not require the Lipschitz constant of the gradient
of functions. We proved the weak convergence of the iterative sequence generated by
these methods, and further proved convergence with asymptotic rate 1

n to the optimal
value under the assumption of the boundedness of the iterative sequence.
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