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Abstract
Two-stage stochastic programming is a mathematical framework widely used in real-
life applications such as power system operation planning, supply chains, logistics,
inventory management, and financial planning. Since most of these problems cannot
be solved analytically, decision makers make use of numerical methods to obtain a
near-optimal solution. Some applications rely on the implementation of non-converged
and therefore sub-optimal solutions because of computational time or power limita-
tions. In this context, the existing partition-refinement methods provide an optimistic
solution whenever convergence is not attained. Optimistic solutions often generate
high disappointment levels because they consistently underestimate the actual costs in
the approximate objective function. To address this issue, we developed a conservative
convergent partition-refinement method for two-stage stochastic linear programming
problems with a convex recourse function of the uncertainty. Given a partition of the
uncertainty support, a conservative decision can be obtained by means of a distribu-
tionally robust problem whose complexity grows exponentially with the uncertainty
dimensionality. We prove the convergence of the method given a refining partition
sequence and propose algorithmic schemes to address the problem of dimension-
ality. For problems with low-dimensional uncertainty, we developed a deterministic
equivalent linear programming model; whereas, for medium-sized uncertainty dimen-
sionality, we propose a column and constraint generation algorithm. To handle high
dimensional uncertainty, we propose a simplex-based heuristic method whose com-
plexity grows linearly with the uncertainty dimension—size of the random vector. In
the presence ofmonotone recourse functions with regard to an uncertain parameter, we
prove convergence of the proposed simplex-based heuristic method. Computational
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experiments are presented for a farmer’s problem, an aircraft allocation problem, and
a Unit Commitment problem.

Keywords Two-stage stochastic programming · Exact bound partition methods ·
Conservative solution

Mathematics Subject Classification 90C15

1 Introduction

Two-stage stochastic programming is a mathematical framework to model decision
making under uncertainty. In this context, first-stage decisions are made under uncer-
tainty, while the second-stage (or recourse) decisions are intended to improve the
impact of the first-stage decisions after observing the uncertainty realization. This
framework is widely used in real-world applications covering the planning of power
system operations and supply chains, logistics, inventory, and financial planning, to
mention a few. Since there is no analytical solution to most two-stage stochastic opti-
mization problems, efficient numerical methods are of paramount importance.

One of the first numerical methods explored in the stochastic programming litera-
ture utilized bounds for the expected recourse function. Initiated by [15], this approach
considers minimization problems of which the recourse is a convex function of the
uncertainty. It relies on a partition of the uncertainty support, the law of total probabil-
ity, and Jensen’s and Edmundson–Madanski inequalities in order to obtain lower and
upper bounds. Partition refinement methods ensure improvements to the approxima-
tion error with a monotone sequence of limits (see [6,9–12]). It is worth mentioning
that this numerical approach appeared as first solution method to stochastic optimiza-
tion problems, since it is based on numerical integration techniques that are easy to
implement, that is why the referenced works are fairly old. With the advancement
of computers, this approach was replaced by sampling-based techniques, but in this
work we want to return to the partition-based method to highlight the importance of
obtaining a solution given by deterministic limits.

Starting from the law of total probability, previous works have provided an opti-
mistic solution (Solution that underestimates the actual cost) by applying Jensen’s
inequality to each partition cell to obtain the lower approximation problem in a com-
putationally tractable fashion. The optimal value of this proxy provides a lower bound
to theoriginal problembecause it replaces the expected recourse functionby aweighted
average recourse evaluation. A deterministic optimality gap is obtained by fixing the
current solution and computing an upper-bound that applies Edmundson-Madanski
inequality to each cell of the partition and averages its results with the associated
probability mass. Given a refining partition sequence, this method converges to the
true optimal in an optimistic manner, i.e., at each iteration, and the solution underes-
timates the actual recourse costs.

The available partition refinement methods in literature only provide optimistic
solutions when the method is not converged. However, some practical applications
depend on the implementation of a non-converged sub-optimal solution because of
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computational time limitations. In these cases, an optimistic solution might generate
significantly higher expected costs when compared to the obtained objective function.
In this context, a solution methodology that provides pre-convergence conservative
solutions is of significant importance to practical applications with high computational
burden and time limitations.

The objective of this study is to obtain a conservative convergent solution method
for two-stage stochastic linear optimization problems of which the recourse is a con-
vex function of the uncertainty. We formulated a distributionally robust optimization
model based on a generalization of Edmundson-Madanski inequality (see [6,13,14]),
and solved it to obtain a conservative solution and a tighter upper bound to the original
problem. The distributionally robust model minimizes the worst expected cost over
every extreme probability measure with known partition-adapted conditional expecta-
tions.Adeterministic optimality gapwas obtained by solving the lower-boundproblem
that applied Jensen’s inequality to each partition cell and computing the distance
between both limits. This technique was motivated by the idea that distributionally
robust solutions avoid out-of-sample disappointment [19].

Nevertheless, in the presence of high dimensional uncertainty vectors, the pro-
posed method is challenged because of the exponential growth of the number of
linear constraints and variables. To handle this, we propose different solution schemes
depending on the uncertainty dimensionality: (i) for problems with low-dimensional
uncertainty, we developed a deterministic equivalent linear programming model, (ii)
for medium-sized uncertainty dimensionality, we propose a column and constraint
generation algorithm [24], and (iii) to handle high dimensional uncertainty, we pro-
pose a simplex-based heuristic method whose complexity grows linearly with the
uncertainty dimension. For the latter, we prove convergence when the recourse func-
tion is monotone over the uncertainty. Therefore, the main contributions of the study
are the following:

– Raise awareness on the negative impact of optimistic solution methods to solve
two-stage stochastic optimization problems.

– Reformulation of the upper-bound, conservative, distributionally robust problem
into a linear programming model.

– Development of two acceleration procedures, i.e., (1) an exact decomposition
approach based on the column and constraint generation algorithm to solve
medium-scaled problems and (2) an approximative simplex-based partitioning
scheme to find robust solutions for large-scale instances.

– A new conservative solution framework for two-stage stochastic linear optimiza-
tion problems based on a deterministic partition refinement algorithm.

The remainder of this paper is organized as follows. Section 2 describes the theoreti-
cal andmethodological background on the existing partition-basedmethod and related
bounding optimization problems. In Sect. 3, we develop the deterministic equivalent
reformulation of the upper-bound problem and propose accelerating methods to han-
dle medium- and large-sized problems. Section 4 presents the proposed conservative
partition refining (CPR) method for two-stage stochastic optimization and proves the
convergence of the sequential algorithm. Section 5 presents the numerical results of
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the computational experiments showing the superior pre-convergence performance of
the proposed method. Finally, in Sect. 6, relevant conclusions are provided.

2 Existingmethods

In this section,we introduce the nomenclature and provide a short reviewof the existing
partition methods from which our contributions are derived.

2.1 Notation

We study two-stage stochastic linear programming problems of the form:

z∗ := Min
x∈X { f (x) := c�x + E[Q(x, ξ)]} (1)

where

Q(x, ξ) = Min
y≥0

q�y

s.t. Wy ≥ h(ξ) − T(ξ)x.
(2)

is known as the recourse function or second-stage problem. This model corresponds
to a linear optimization problem that minimizes the cost where x denotes the first-
stage decisions, y denotes the second-stage decisions and the expectation E[Q(x, ξ)]
represents the expected cost of the recourse. We assume that the random vector ξ has
known probability distribution with support in� ⊆ R

dξ . We denote the set of feasible
first-stage decisions by X ⊆ R

dx . Here, c ∈ R
dx , Q : X × co(�) −→ R, q ∈ R

dy ,
W ∈ R

my×dy , h(ξ) ∈ R
my , andT(ξ) ∈ R

my×dx , where co(�) denotes the convex hull
of the uncertainty support.

We assume that problem (1) has relatively complete recourse, i.e., problem (2) is
feasible for every x ∈ X , and every realization of the unknown data ξ ; the uncertainty
support � is compact and the expectation E[Q(x, ξ)] exists. We further assume that
Q(x, ·) is a convex function on co(�) for all x ∈ X . Particularly, this last assumption
holds when the unknown data is only in the components of h(ξ) andT(ξ), respectively.

The existing partition-based method [9,11,12,14,15,17] makes use of a partition of
the support of the uncertainty to generate a monotonic sequence of limits. These lim-
its are given by the optimal objective values of the upper- and lower-bound problems
obtained by the classical inequalities of Edmundson-Mandanski and Jensen, respec-
tively.

According to previous reported partition methods, we start from the partition of
the uncertainty support �. The set Pn = {�k : k = 1, . . . , n} of cells �k ⊆ �, is a
partition of the support � ⊂ R

dξ if:

1. P
(⋂

k∈K �k
) = 0, ∀K ⊆ {1, . . . , n},

2.
⋃n

k=1�
k = �.
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Since most real-life applications are based on bounded probability distributions for
the uncertainty, in this work, we assume rectangular support for the data-generating
probability distribution. Moreover, we assume rectangular partitions with cells of the

form�k = Śdξ

i=1[aki , bki ], because the partition refinement procedure for this partition
regards the method computational tractable.

We denote by pk = P(ξ ∈ �k) the probability mass, and ξ
k = E[ξ |ξ ∈ �k]

the conditional mean of the cell k, k = 1, . . . , n. It is worth mentioning that, for a
general probability distribution, the computation of the probability mass pk and the

conditional mean ξ
k
is not easy. In Sect. 5 we present a different methods to assess

this computation.
Finally, even though the disappointment concept has been widely studied by the

risk-averse theory and there exist several definitions under this concept, in this work,
we assume the following definition:

Definition 1 The disappointment is the difference between the out-of-sample cost and
the in-sample estimate (i.e., the optimal objective value).

2.2 Existing lower bound

According to [15], if we consider a partition of the uncertainty support �, by the
law of total probability, we have that the expectation in (1) can be expressed by
E[Q(x, ξ)] = ∑n

k=1 p
k
E[Q(x, ξ)|ξ ∈ �k]. Then (1) is equivalent to the following

linear programming problem:

Min
x∈X

{

f (x) := c�x +
n∑

k=1

pkE[Q(x, ξ)|ξ ∈ �k]
}

(3)

By Jensen’s inequality we have that

Q(x, ξ
k
) ≤ E[Q(x, ξ)|ξ ∈ �k], k = 1, . . . , n,

which gives the following lower-bound for the optimal objective value of (3):

zLn := Min
x∈X

{

f Ln (x) := c�x +
n∑

k=1

pkQ(x, ξ
k
)

}

≤ Min
x∈X

{

c�x +
n∑

k=1

pkE[Q(x, ξ)|ξ ∈ �k]
}

. (4)

Note that the lower-bound problem on the left side of Eq. (4) underestimates the
expected cost, because it only considers the finite set of conditional mean scenarios

{ξ k : k = 1, . . . , n} to approximate E[Q(x, ξ)].
We can explicitly write the lower-bound problem as the following deterministic-

equivalent linear program:
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Min
x,yk

c�x +
n∑

k=1

pk · q�yk

s.t. Wyk ≥ h(ξ
k
) − T(ξ

k
)x, k = 1, . . . , n,

yk ≥ 0, k = 1, . . . , n,

x ∈ X .

(5)

Note that the number of blocks of linear constraints for (5) is the same as the partition
size, meaning that the lower-bound problem does not demand a high computational
effort. When n is not sufficiently large, the optimal solution xLn of (5) represents an
optimistic decision because of the lower approximation from below to the conditional

expectationE[Q(x, ξ)|ξ ∈ �k] by Q(x, ξ
k
), k = 1, . . . , n, underestimating the actual

conditional expected cost.

2.3 Existing upper bound

To derive an upper bound for the expectation E[Q(x, ξ)], Edmundson-Madanski [18]
initially proposed an inequality based on a convex combination of the value of Q(x, ·)
at the extreme points of the convex hull of the support �. Therefore, if {e j : j =
1, . . . , 2dξ } is the set of extreme points of � = Śdξ

i=1[ai , bi ], since every point ξ ∈ �

can be expressed by a convex combination of the vertices of �, it is always possible
to find p j (ξ) ≥ 0, j = 1, . . . , 2dξ , such that

2dξ∑

j=1

p j (ξ) · e j = ξ ∀ξ ∈ � (6)

and

2dξ∑

j=1

p j (ξ) = 1 ∀ξ ∈ �. (7)

The weights p j (ξ), j = 1, . . . , 2dξ , can be interpreted as conditional probabilities,
i.e., p j (ξ) = P(e = e j | ξ), considering a random vector e with support in the set
of extreme points {e j : j = 1, . . . , 2dξ }. Given that (6) and (7) are true and Q(x, ·)
is a convex function for any given x, the following inequality holds for any set of
conditional probabilities {(p1(ξ), . . . , p2dξ (ξ))}ξ∈�:

E[Q(x, ξ)] =
∫

�

Q

⎛

⎝x,
2dξ∑

j=1

p j (ξ) · e j
⎞

⎠ dP(ξ)≤
2dξ∑

j=1

Q(x, e j )
∫

�

p j (ξ)dP(ξ).

(8)
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According to the above, we will consider the worst-case of the right-hand-side of the
inequality (8) because of through an infinite maximization problem over the set of
conditional probabilities that satisfies (6), we are able to derive an upper bound for (3)
by a finite tractable optimization problem, as it can be seen in the following.

Since (8) holds for any set of conditional probabilities {(p1(ξ), . . . , p2dξ (ξ))}ξ∈�

that satisfies (6) then,

E[Q(x, ξ)] ≤ Max
p j (ξ)

2dξ∑

j=1

Q(x, e j )
∫

�

p j (ξ)dP(ξ)

s.t.
2dξ∑

j=1

e j p j (ξ) = ξ ∀ξ ∈ �

2dξ∑

j=1

p j (ξ) = 1 ∀ξ ∈ �.

(9)

Note that (9) is a semi-infinite optimization problem that allows us to derive an
upper bound through a tractable finite relaxation. If we replace the two constraints in
(9) with their expected value, i.e.,

2dξ∑

j=1

e j

∫

�

p j (ξ)dP(ξ) = ξ

2dξ∑

j=1

∫

�

p j (ξ)dP(ξ) = 1,

and denote δ j = ∫
�

p j (ξ)dP(ξ), for j = 1, . . . , 2dξ ,we obtain an upper bound based
on the following tractable finite linear optimization problem:

Max
δ∈D(ξ)

E
δ [Q(x, e)] := Max

δ≥0

2dξ∑

j=1

Q(x, e j ) δ j

s.t.
2dξ∑

j=1

e j δ j = ξ ,

2dξ∑

j=1

δ j = 1, (10)

whereD(ξ) =
{
δ ∈ R

2dξ+ : ∑2dξ
j=1 e j δ j = ξ ,

∑2dξ
j=1 δ j = 1

}
. Thus, as per the above

developments, the following inequality holds:
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E[Q(x, ξ)] ≤ Max
δ∈D(ξ)

E
δ [Q(x, e)]. (11)

Existing partition-based methods used the derived the upper bound (11) for a first-
stage decision found by the lower bound problem (5). So, supposing that xLn is the
solution of (5), in [9,12,13] the following upper bound is proposed:

z∗ ≤ f Un (xLn ) := c�xLn +
n∑

k=1

pk Max
δ∈D(ξ

k
)

⎛

⎝
2dξ∑

j=1

δkj Q(xLn , ekj )

⎞

⎠ , (12)

where,

Q(xLn , ekj ) := Min
y≥0

q�y

s.t. Wy ≥ h(ekj ) − T(ekj )x
L
n ,

(13)

for all j = 1, . . . , 2dξ and k = 1, . . . , n.
The existing partition-based method is summarized in the following pseudo-

algorithm:

Algorithm 1 Existing partition-based methods

Input: P1 = {�}, ε > 0 stopping criteria.
Output: xLn the optimistic solution of the lower bound problem.
1: Solve (5) to determine the optimal solution xLn .
2: Evaluate xLn in the recourse problem (13) for j = 1, . . . , 2dξ , and k = 1, . . . , n, to get an upper bound

for the optimal objective value of (3), according to Eq. (12).

3: if f Un (xLn )−zLn
f Un (xLn )

≤ ε then

4: stop and return xLn as the optimal solution.
5: else
6: refine the partition Pn to Pn+1 and return to 1
7: end if

The existing partition-based methods are based on the lower bound problem, as it
underestimates the recourse cost by relying only on the partition-adapted conditional
means within the recourse function assessment. Therefore, pre-convergence solutions
of the lower-bound problem are optimistic and generate high disappointment levels
when they are evaluated for adverse scenarios of the uncertainty realization as illus-
trated in Sect. 5 of the computational experiments.

3 Proposed upper-bound problem reformulation and solution
methdods

Motivated by the concept explored in [19], i.e., conservative solutions obtained by
solving distributionally robust optimization problems have performance guarantees
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against out-of-sample disappointment. Our thrust is to obtain pre-convergence con-
servative solutions in a computationally efficient manner. For that, we develop in this
section a deterministic equivalent reformulation of the upper-bound (distributionally
robust) problem that is computationally tractable for low-dimensional uncertainty.
We also propose a column-constraint generation algorithm for medium-sized uncer-
tainty dimensionality and, to handle high dimensional uncertainty, we propose a
simplex-based heuristic method whose complexity grows linearly with the uncer-
tainty dimension. In the presence of monotone recourse functions with regard to an
uncertain parameter, we prove convergence of the proposed simplex-based heuristic
method. The assumption of monotonicity of the resource function is reasonable in
light of the fact that most real-world applications belong to this kind of problem.

3.1 Deterministic equivalent model for upper-bound problem

Following the upper approximation of the expected recourse function (11), we define
the upper-bound problem

zUn := Min
x∈X

{

f Un (x) := c�x +
n∑

k=1

pk Max
δ∈D(ξ

k
)

E
δ [Q(x, ek)]

}

, (14)

where ek is the random vector whose support is the set of vertex of the hypercube �k

and D(ξ
k
) is the ambiguity set generated by the conditional mean ξ

k
of the cell �k .

The solutions obtained from the upper-bound problem can be seen as robust or
conservative solutions. Note that problem (14) is a distributionally robust optimization
problem, where the conditional-probability distribution within each cell is selected to
represent the worst-case distribution preserving the conditional-average information
of the cell [5]. Since the upper-bound problem (14) overestimates the actual cost (11),
the upper-bound solution has a mathematical certificate against disappointment. This
is specially useful when non-converged solutions are actually implemented owing to
time or computational-power limitations.

However, solving the upper-bound problem to obtain the conservative solution xUn
requires significant computational effort. The number of variables of the inner problem
grows exponentially with the uncertainty dimension. In this work, we propose a new
framework to obtain a conservative solution by solving the upper-bound problem. To
the best of our knowledge, no existing partition-based method solves the upper bound
problem.

For a given cell�k of the rectangular partition, the upper-bound for the conditional-
expected recourse cost (10) can be recast according to its dual formulation as follows:

Max
δ∈D(ξ

k
)

E
δ [Q(x, ek)] = Min

π, θ
π + θ�ξ

k

s.t. π + θ�ekj ≥ Q(x, ekj ), j = 1, . . . , 2dξ .

(15)
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where πk ∈ R and θk ∈ R
dξ be the dual variables associated with the first and second

linear constraints of (10), respectively.
Replacing the worst-case conditional-expected recourse cost of (14) with its dual

formulation (15), the upper-bound problem (14) can be recast as the following linear
optimization problem:

Min
πk , θk , x

c�x +
n∑

k=1

pk(πk + [θk]�ξ
k
)

s.t. πk + [θk]�ekj ≥ Q(x, ekj ), j = 1, . . . , 2dξ , k = 1, . . . , n

x ∈ X .

(16)

Since the recourse function is a minimization problem, we are able to obtain the
deterministic equivalent

Min
πk , θk , x, y

c�x +
n∑

k=1

pk(πk + [θk]�ξ
k
) (17a)

s.t. πk + [θk]�ξ
k ≥ q�y

ξ
k , ∀k = 1, . . . , n (17b)

Wy
ξ
k ≥ h(ξ

k
) − T(ξ

k
)x, ∀k = 1, . . . , n (17c)

πk + [θk]�ekj ≥ q�ykj , ∀ j ∈ J k, ∀k = 1, . . . , n (17d)

Wykj ≥ h(ekj ) − T(ekj )x, ∀ j ∈ J k, ∀k = 1, . . . , n (17e)

x ∈ X . (17f)

which is an equivalent formulation of the original problem (16)whenever J k comprises
all vertices of cell �k . This equivalent formulation consists of replacing the recourse
function by the second-stage objective function, including all second stage decisions
as variables and adding all second stage feasibility constraints. Indeed, if the left-hand-
side (LHS) of the first block of constraints is greater than or equal to the second stage
cost of a feasible second-stage solution, then the LHS is greater than or equal to the
minimum second stage cost given by the recourse function.

Note for instance that (17) is a linear programming problem whenever X is a poly-
hedral set and can be efficiently solved whenever for problems with low dimension
uncertainty vector. However, problem (17) is in general an intractable problem for
medium- and large-scale instances as it relies on an exponential set of constraints. To
handle this challenge, we present two acceleration procedures: (1) an exact decompo-
sition approach based on the column and constraint generation algorithm [24] to solve
medium-dimensional problems and (2) an heuristic procedure for high-dimensional
uncertainty based on a simplex-based heuristic method using a circumscribed simplex
for each partition cell. For the latter, we prove convergence whenever the recourse
function over the uncertainty dimension is monotone.
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3.2 Column-constraint generation algorithm to handlemedium-sized uncertainty
dimensionality

For problems with medium-sized uncertainty dimension, we adapted the column and
constraint generation framework to iteratively identify a subset of constraints that
ensures feasibility to the original problem. The thrust of this algorithm is to obtain an
equivalent formulation of (16) with significantly fewer constraints and variables.

According to [24], the column and constraint generation procedure is implemented
in a master-oracle scheme. In our context, the master problem is a relaxation of an
equivalent formulation of the original problem (16). Given the solution of the master
(relaxed) problem, the oracle finds the vertex that generates the worst infeasibility and
adds the associated block of linear constraints and decision variables to the master
problem. This iterative procedure stops whenever the oracle asserts that the master
solution is feasible for the original problem.

For the initial iteration � = 0 of the column-constraint algorithm, we start with
an empty set J k = ∅ of constraints, i.e., the initial master problem is a relaxation
of (17). For initialization purposes, we also add a block of constraints and variables

(17b)–(17c) associated with the conditional expectation ξ
k
adapted to cell �k . This

additional constraint does not affect the original feasible set since it can be represented
as an weighted average of all constraints associated to each vertex.

For a given iteration �, with an updated set J k , we solve (17) and obtain a candidate
solution (π∗

� , θ∗
�, x

∗
�). Then, we solve the oracle problem

ORACLE : ϑ∗ = Max
j

{Q(x∗
� , e

k
j ) − π∗

� − [θ∗
�]�ekj }, (18)

to find the highest constraint violation given the current solution. To efficiently solve
the oracle problem, we replace the recourse function by its dual representation and
combine them in a single maximization problem

Max
j,λ≥0

λ�(h(ekj ) − T(ekj )x
∗) − π∗ − [θ∗]�ekj

s.t. W�λ ≤ q.

(19)

Following [23], we avoid solving (19) by enumeration of vertex {ekj : j = 1, . . . , dξ }
of the cell �k by introducing binary variables to represent each vertex and transform
(19) into a MILP equivalent formulation presented in details in Appendix A. The
algorithm stops whenever the oracle optimal value is non-positive, i.e., the current
solution (π∗

�+1, θ
∗
�+1, x

∗
�+1) is feasible for the original problem. If the oracle optimal

value is positive, then update the set J k including the oracle solution i∗ and repeat the
process solving again the master problem.

We summarize the proposed column and constraint generation algorithm in the
following pseudo-algorithm:.
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Algorithm 2 Column and Constraint Generation framework

Input: ξ
k
, � = 0, set Jk := ∅ of the constraints generated by the vertex of the cell �k .

Output: xUn the conservative solution of the upper bound problem.
1: Initialization. Solve the problem (17) to derive an optimal solution. (π∗

0 , θ∗
0, x

∗
0) with Jk := ∅.

2: Maximize infeasibility. Find j∗ as the optimal solution of (18).
3: if ϑ∗ ≤ 0 then
4: return x∗

�
= xUn as the optimal solution.

5: else
6: Update � = � + 1. Do Jk ∪ { j∗} and go to the next step
7: end if
8: Update (π∗

�+1, θ
∗
�+1, x

∗
�+1) as the optimal solution of the master problem (17) and go to 2.

Fig. 1 The blue region in the figure corresponds to the original support [a1, b1]×[a2, b2], and the simplex,
represented in green, is its extension. The vertex in black denotes the selected ξ̂ of the realization of the
uncertainty for the recourse and the point highlighted at the middle indicates the mean. a ξ̂ = (b1, b2); b
ξ̂ = (a1, a2)

3.3 Simplex-based heuristic method to handle high-dimensional uncertainty

As the master problem of the column-constraint generation algorithm has exponential
size with the uncertainty dimensionality, there are some instances of high dimensional
uncertainty that reaches the tractability limit of this accelerating method. For these
cases, we developed an heuristic method to obtain an upper bound and corresponding
conservative solution.

To handle high dimensional uncertainty,we propose a heuristic solutionmethod that
extends the original box uncertainty support to a circumscribed simplex polyhedral
where the number of vertexes depends linearly on the uncertainty dimension. Under
the extended support, we reformulate (15) to obtain an upper-bound problem whose
complexity grows linearly with the uncertainty dimension.

The proposed extension is the minimum volume simplex that contains the original

cell (see Fig. 1) and one selected vertex ξ̂
k
coinciding with the cell’s vertexes. This

simplex has the property that the length of the edges that contain the original vertex
ξ̂ is equal to the sum of the length of the projection of the original support along to
each dimension, respectively.
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For example in Fig. 1, it is represented the extension of the support [a1, b1] ×
[a2, b2] by the simplex represented in green. We considered two possibilities

{(a1, a2), (b1, b2)} for the original vertex ξ̂
k
, indicated by the black point, that corre-

sponds to the extreme events of the realization of the uncertainty. In both cases, the
length of the edges of the simplex that contain the vertex ξ̂ ∈ {(a1, a2), (b1, b2)} is
equal to (b1 − a1) + (b2 − a2), the sum of dimensions. We use this property as a
simple rule to create the simplex. Figure 2 (b1) and (b2) illustrate how the chosen cell
(highlighted in blue) in the refinement procedure is extended to the green simplex for
two different partition sizes to visualize the extension procedure.

The proposed simplex-based heuristicmethod solves the sequential partition refine-
ment problem by considering the extension of each cell of the partition. Based on the
extension of cell �k , problem (15) can be rewritten as follows:

Max
δ∈R(ξ

k
)

E
δ [Q(x, vk)] := Min

π, θ
π + θ�ξ

k

s.t. π + θ�vkj ≥ Q(x, vkj ), j = 1, . . . , (dξ + 1),

(20)

where R(ξ
k
) =

{
δkj ∈ R

dξ +1 : ∑dξ +1
j=1 δkjv

k
j = ξ

k
,
∑dξ +1

j=1 δkj = 1
}
, vk is a random

vector with support in the set {vkj : j = 1, . . . , dξ + 1} of vertexes of the simplex that

contains the cell �k and vk1 := ξ̂
k
is the original vertex of the hypercube �k . Note that

the vertex vkj , j = 2, . . . , (dξ + 1), differs from ξ̂
k
in just one component, according

to the rule to create the simplex that contains the cell �k . That said, we propose the
simplex-based heuristic problem

z̃Un := Min
πk , θk , x

c�x +
n∑

k=1

pk(πk + [θk]�ξ
k
)

s.t. πk + [θk]�vkj ≥ Q(x, vkj ), j = 1, . . . , (dξ + 1), k = 1, . . . , n

x ∈ X .

(21)

Note that the number of blocks of linear constraints of the problem (21) is n·(dξ +1),
i.e., it depends linearly on the uncertainty dimension. With this alternative upper-
bound problem we can solve the sequential partition refinement problem described in
Algorithm 3 solving (21) instead (16).

In particular, by assuming monotonicity of the recourse function Q(x, ·) over the
uncertainty vector ξ ∈ �, and that the selected original vertex ξ̂

k
of the hypercube �k

is the worst-case of the recourse, i.e., ξ̂
k ∈ argmaxξ∈�k Q(x, ξ) for any x ∈ X , the

convergence of the partition refinement problem by using the simplex-based heuristic
method is guaranteed.
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Fig. 2 (a) Extension of original support [a1, b1]× [a2, b2] for newsvendor problem for two items; (b1) and
(b2) The extension of the chosen cell (highlighted in blue) in the refinement procedure is the same as that
of original support for different partition sizes

Proposition 1 Let Q(x, ξi ) be amonotonic function of ξi , for all i = 1, . . . , dξ . Assum-

ing that, for any x, ξ̂
k ∈ argmaxξ∈�k Q(x, ξ) generates the worst-case recourse cost

given the cell �k . Then, the sequences {z̃Un }∞n=1 and {x̃Un }∞n=1 converge to the optimal
objective value and optimal solution of (1), respectively, where x̃Un is the optimal
solution of (21).

The proof of Proposition1 is presented in the Appendix B.
Note that a reformulation similar to (17) can be obtained by just considering J k

as the number of vertexes of the circumscribed simplex. For a polyhedral set X , this
reformulation is a linear programming problemwhose complexity grows linearly with
the uncertainty vector dimension.

4 Proposed conservative partition refining (CPR) method for
two-stage stochastic programming

In this section, we present a new conservative solution framework for two-stage
stochastic linear optimization problems that solves the upper-bound problem. The
aim is to obtain a conservative solution that avoids disappointment, i.e., the objec-
tive function cost estimate is the upper limit for the actual expected cost. We propose
a tractable reformulation, namely the deterministic equivalent model, for the upper-
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bound problem and proof convergence of the proposed methodology. We developed
a simple and efficient partition refinement algorithm based on the structure of the
optimality gap of each iteration.

We start from a sequential procedure to split the uncertainty support to obtain a
refined partition. For iteration n and partitionPn , we solve the upper-bound problem
(16) and obtain the conservative solution xUn . Then, we solve the lower-bound problem
for the same partition Pn and compute the optimality GAP—the difference of the
optimal values of the upper- and lower-bound problems. The proposed CPR method
is outlined in the following pseudo-algorithm:

Algorithm 3 The CPR method
Input: P1 = {�}, ε > 0 stopping criteria.
Output: xUn the conservative solution of the upper bound problem.
1: Solve (16) to determine the optimal solution xUn and the optimal objective value zUn of the upper bound

problem for the partition Pn .
2: Solve (5) to determine the optimal objective value zLn of the lower bound problem for the partitionPn .

3: if zUn −zLn
zUn

≤ ε then

4: stop and return xUn as the optimal solution.
5: else
6: refine the partition Pn to Pn+1 and return to 1
7: end if

The convergence of the CPR method is ensured by the Theorem 1, whose proof
is presented in the Appendix C. It states that the sequence of optimal solutions and
objective values of the lower- and upper-bound problems converge to the optimal
solution x∗ and the optimal objective value z∗ of the two-stage stochastic optimization
problem (1), respectively. Note that the proof of the convergence does not depend on
the refinement-partition procedure.

Theorem 1

1.1 The optimal objective value sequence {zUn }∞n=1 corresponds to conservative solu-
tions given by the upper bound problem, for a family of partitions {Pn}∞n=1 such
that Pn+1 refines Pn, is non-increasing.

1.2 The optimal objective value sequence {zLn }∞n=1 corresponds to optimistic solutions
given by the lower bound problem, for a family of partitions {Pn}∞n=1 such that
Pn+1 refines Pn, is non-decreasing.

1.3 We have that the sequences {zUn }∞n=1 and {zLn }∞n=1 are convergent, i.e., zLn −→
z∗ ←− zUn , as n −→ ∞. Also the sequence {xUn }∞n=1 and {x Ln }∞n=1 converge to
x∗ ∈ Argminx∈X f (x).

It is worth mentioning that the upper bound sequence obtained by computing the
objective function of the upper-bound problem at the optimistic solution defines a
non-increasing sequence. This fact ensures the convergence of the existing partition-
based method. However, the optimistic solution is sub-optimal for the upper-bound
problem, so the existing partition-based method derives an upper bound less tight.
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Next, we propose a simple and efficient partition refinement algorithm that defines
the sequential upper- and lower-bounds and, consequently, generates the sequence of
conservative solutions {xUn }∞n=1.

4.1 Solution algorithmwith worst-case partition refinement (SAWPR)

Any partition-based method is supported on the refinement procedure of the partition
to improve the upper and lower approximations. Next, we detail the three basic steps
of the proposed partition refining procedure as (i) selection of the cell �k∗ to be split,
(ii) selection of the uncertainty direction i∗ ∈ {1, . . . , dξ } to refine the partition, and
(iii) selection of the cutting point.

In the first step of the partition refinement procedure, we aim to select the cell
with the highest contribution to the current optimality gap, which is composed of
the difference of upper and lower approximations of the expected recourse function.
Given that the partition influences the gap through the expected recourse function, we
select the cell with the maximum contribution to the difference of upper and lower
approximations of the expected recourse function. Let us define the selected cell as

k∗ ∈ argmax
k

{

pk
(

Max
ξ∈D(ξ

k
)

E
δ [Q(xUn , ek)] − Q(xLn , ξ

k
)

)}

. (22)

The second step of the partition refinement procedure is the selection of the uncer-
tainty direction. Most existing partition-based methods consider the direction with the
highest metric of non-linearity of Q(x, ·) as the optimal direction to split the optimal
cell to refine the partition. This is motivated by the fact the lower and upper approxima-
tions coincide for an affine function. Initially, [5] proposed to use dual (subgradient)
information at the endpoints of the cell, while [12] compares the difference between
the upper and lower approximations. However, the use of dual information increases
the computational burden of the sequential partition refinement problem.

In this work, we selected the uncertainty direction by solving an optimization prob-
lem that resembles the robust optimizationmodel with an uncertainty budget proposed
by [4]. For the selected cell k∗, we formulated an adversary problem in (23) that aimed
to find the uncertainty realization with the highest cost for the optimistic solution given
by the lower-bound problem. The intent was to select the dimension where the con-
ditional mean was less representative of the entire conditional distribution adapted to
that cell. We imposed a unitary budget constraint, i.e., only one component of the ran-
dom vector is allowed to change around its nominal value (conditional mean). Hence,

we selected the uncertainty direction i∗ such that ξ̂i∗ �= ξ
k
i∗ , where

ξ̂ ∈ argmax
ξ , z

Q(xLn , ξ)

s.t. ξ
k
i − zi (ξ

k
i − aki ) ≤ ξi ∀i,

ξi ≤ ξ
k
i + zi (b

k
i − ξ

k
i ) ∀i,
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Fig. 3 Ambiguity set representing the feasible region of the problem (23) for the case dξ = 3

dξ∑

i=1

zi ≤ 1,

0 ≤ zi ≤ 1 ∀i . (23)

Since (23) is a maximization problem with a convex objective function and the fea-
sible set is a polyhedron, there is a vertex that is optimal. By construction, the number
of vertices of the feasible polyhedral is 2 dξ , i.e., grows linearly on the uncertainty
dimension. Thus, to efficiently solve (23) it suffices to enumerate the vertices and cast
the one with the highest recourse cost.

Note also that the vertices are intuitive and easily identifiable since they are defined

as the conditional mean ξ
k
projected on the faces of the hypercube �k . To illustrate

this concept, let us consider � = Ś3
i=1[aki , bki ] (see Fig. 3) and a given optimistic

solution xLn . A unitary uncertainty budget leads to a “diamond” shaped polyhedral
inscribed in the hypercube �k . In other words, the vertices of the feasible set differ

from the center (conditional mean ξ
k
) in just one component i , which can assume any

extreme value {aki , bki }. Therefore, the number of vertexes is 2 dξ .
The third and last step of the partition refinement procedure is the selection of the

cutting point. For simplicity and computational efficiency, we assumed that the cutting
point is the component of the conditional mean ξ i∗ along to the uncertainty direction
i∗ the same as [5,16].

Finally, we summarize the proposed partition refinement procedure, namely, solu-
tion algorithm with worst-case partition refinement (SAWPR) as follows:

In Fig. 4 we present the refinement procedure for the farmer’s problem instance
for three types of crops as an illustrative example of the SAWPR algorithm. Note that
the cells of the partition are clustered around the region of the uncertainty support
corresponding to scenarios of less land productivity which represents in particular, the
worst-case for this instance.
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Algorithm 4 SAWPR
Input: x∗ optimal solution of (14)
Output: �k∗

and �n+1

1: Determine k∗ the optimal cell to be split as the cell with the largest error contribution given by (22).

2: Find i∗ as the component ξ̂i∗ of the optimal solution ξ̂ of (23) such that ξ̂i∗ �= ξ
k
i∗ .

3: �k∗ ⇐� [ak∗
i∗ , ξ

k∗
i∗ ] × Ś

{1,2,...,dξ }\{i∗}
[ak∗
t , bk

∗
t ]

4: �n+1 ⇐� [ξk∗
i∗ , bk

∗
i∗ ] × Ś

{1,2,...,dξ }\{i∗}
[ak∗
t , bk

∗
t ]

5 Empirical study

In this section, we present an empirical study to test the proposed CPR method. As
we mentioned above (see Sect. 2.1), the partition refinement method depends on the

computation of the probability mass pk and the conditional mean ξ
k
of the cell k,

k = 1, . . . , n. For a general probability distribution, this computation is not easy.
We develop or empirical study method based on the uniform probability distribution
since in this case, we have an analytic solution for the conditional probability and
expectation. However, to cover a more general class of distributions we provide a
high-level guideline on how to deal with distributions without analytic solutions for
the conditional probability and expectations.

5.1 Implementation remark

We argue that it is possible to efficiently compute the probability mass pk and the

conditional expectation ξ
k
of the cell k = 1, . . . , N , according to the following cases:

– Independent random variables: Suppose that the coordinates of the random vec-
tor ξ are continuous independent random variables. Let ϕ the probability density
function of the random vector ξ . Then, by independence, ϕ can be written as the
product of the marginals ϕi of the coordinates ξi , i = 1, . . . , dξ . Thereby,

pk = P(�k) =
∫

�k
ϕ(ξ)dξ =

∫ b1

a1
ϕ(ξ1)dξ1 · · ·

∫ bdξ

adξ

ϕdξ (ξdξ )dξdξ ,

and

ξ
k = E[ξ | ξ ∈ �k] =

∫

�

ξϕ(ξ | ξ ∈ �k)dξ

=
∫

�k
ξ

[
ϕ(ξ)

pk

]
dξ = 1

pk

∫ b1

a1
ξ1ϕ(ξ1)dξ1 · · ·

∫ bdξ

adξ

ξdξ ϕdξ (ξdξ )dξdξ ,
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Fig. 4 Partition of the support � = Ś3
i=1[aki , bki ] with: a 4 cells, b 20 cells, c 100 cells, d 300 cells, e 500

cells, and f 900 cells. The shaded region shows the chosen cell and the red edges show the direction chosen
to refine the partition

i.e., the calculation of the probability mass pk and the conditional expectation ξ
k

derives in the computation of sequence univariate numerical integrals, which is
computationally tractable (see [20,22]).

– Linearly dependent random variables: Suppose that ξ can be expressed as ξ =
Lζ , where L ∈ R

dξ ×dξ is a non-singular matrix and ζ ∈ R
dξ is an independent

random vector. Then, we can calculate the probability mass pk and the conditional

mean ξ
k
as in the previous case. To see that, let us denote by �k = [ak,bk]

the hypercube for the cell k, k = 1, . . . , n, where ak = [ak1, . . . , akdξ
] and bk =

[bk1, . . . , bkdξ
]. Then,

pk = P(�k)= P(ak ≤ξ ≤ bk)= P(ak ≤Lζ ≤bk)= P(L−1ak ≤ζ ≤ L−1bk)

= P(ζ ∈ ˜�k),
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where �̃k is the hypercube defined by �̃k = [L−1ak,L−1bk], and

ξ
k = E[ξ | ξ ∈ �k] = E[Lζ |Lζ ∈ �k] = LE[ζ | ζ ∈ �̃k].

Therefore, the computation of the conditional probability P(�̃k) and the condi-
tional expectation E[ζ | ζ ∈ �̃k] reduces to the independent case. As example,
suppose that ξ is a multivariate normal variable. Let 
 ∈ R

dξ ×dξ the covariance
matrix of ξ , and 
 = LL� its Cholesky decomposition. Then, there exists an
independent random vector ζ such that ξ = Lζ .

– Generically dependent random variables case: In this case, we can assess the

computation of the probability mass pk and the conditional mean ξ
k
by the impor-

tance sampling method (see [2]) via numerical simulation. Let us denote by

U (ξ ; [ak,bk]) =
{∏dξ

i=1
1

bki −aki
, ξ ∈ [ak,bk],

0, otherwise,

the probability density function of the multivariate uniform distribution with sup-
port �k = [ak,bk]. Thereby, we can consider the change of probability measure

pk =
∫

�k
ϕ(ξ)dξ =

∫

�k

[
ϕ(ξ)

U (ξ ; [ak,bk])
]
U (ξ ; [ak,bk])dξ ,

and

ξ
k =

∫

�

ξϕ(ξ | ξ ∈ �k)dξ =
∫

�k
ξ

[
ϕ(ξ)

pk

]
dξ

=
∫

�k
ξ

[
ϕ(ξ)

pkU (ξ ; [ak,bk])
]
U (ξ ; [ak,bk])dξ .

Therefore, according to the central limit theorem,

1

S

S∑

s=1

[
ϕ(ξ̂ s)

U (ξ̂ s; [ak,bk])

]
P−→ pk,

and

1

S

S∑

s=1

ξ̂ s

[
ϕ(ξ̂ s)

pkU (ξ̂ s; [ak,bk])

]
P−→ ξ

k
,

where ξ̂ s,∀s = 1, . . . , S are independent random samples of the uniform distribu-
tion with density defined by U (ξ ; [ak,bk]). Based on standard statistical results,
for a given error precision and confidence level, one can define a sample size S
and compute the above estimates to be used in our algorithms as proxies for the

conditional probability pk and expectation ξ
k
.
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5.2 Computational experiments

We test the CPR method based on a study case for each uncertainty dimensionality
category: low, medium, and high. We assessed the aircraft allocation problem [7]
(see Appendix D) by the deterministic equivalent reformulation of the upper-bound
problem. Formedium-sized uncertainty dimensionality, we assessed an instance of the
farmer’s problem [5] (seeAppendixE)with eight cultivated crops. For high uncertainty
dimensionality, we assessed an instance of the farmer’s problemwith twenty cultivated
crops and an instance of the Stochastic Unit Commitment (SUC) problem for a small
single-bus system with five generators over a 24-hour time span (see Appendix F).
The medium-sized uncertainty instance (8-crops) was assessed by the column and
constraint generation method whereas the high uncertainty dimensionality instances
(20-crops and SUC) were assessed by the proposed simplex-based heuristic method
of the extension of the uncertainty support. This empirical study was made to evidence
the disappointment generated by both conservative and optimistic solutions to raise
awareness on the negative impact of optimistic solution methods to solve two-stage
stochastic optimization problems, it does not intend to compare the proposed approach
with other solution methodologies.

For the first application, different types of aircraft must be allocated to a certain
route for the transportation of passengers. The number of allocated aircraft is the first-
stage decision, and the recourse of the problem is defined by the number of bumped
passengers when demand for seats outstrips capacity. The right-hand side uncertainty
corresponds to the unknown demand of passengers modeled by a uniform probability
distribution. For this problem, the dimension of the uncertainty is 5, the number of
first-stage variables is 21, and the number of second stage-variables is 10 for each
uncertainty realization.

Regarding the second application, the farmer problem is an example of a produc-
tion model under uncertainty where the first-stage decisions correspond to the land
allocation destined to rise different types of crops, and the recourse consists in trading
the cultivated products in the local market to satisfy a given demand. In this problem,
we assume a uniform probability distribution to model the uncertainty in the land
productivity for growing each crop. The number of first-stage variables is equal to
the uncertainty dimension, since they correspond to the land allocation to cultivate
each type of crop while the number of second-stage variables for each uncertainty
realization is twice the quantity of cultivated products because they correspond to the
sold and buy quantities of each crop in the local market.

To generate different instances of the farmer problem, we varied the uncertainty
dimension considering eight and 20 types of crops to create a computational experi-
ment for each of the following situations:

– It is impossible to solve in practical time the deterministic equivalent linear model
for the enumerative case considering the 2dξ vertexes of the hypercubes of the
rectangular partition, but it is possible to handle the medium-sized uncertainty
dimensionality with the proposed column and constraint generation algorithm.
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– It is impossible to obtain a conservative solution solving the re-formulated upper-
bound problem using the column and constraint generation algorithm, and it is
necessary to appeal to a heuristic solution method.

For both applications, the refinement algorithm and the algorithm for the sequen-
tial partition-based method is implemented in JuMP [8], a modeling language for
mathematical optimization embedded in the Julia programming language and Gurobi
was used as the linear optimization solver to run the computational experiments on a
Intel Core i7, 4.0-GHz processor with 32 GB of RAM. Moreover, we have considered
a uniform probability distribution to alleviate the computational burden of the CPR

method in the computation of the probability mass pk and the conditional mean ξ
k
of

the cell k, k = 1, . . . , N . For a general probability distribution, this computation can
be assessed via numerical simulation (see 2.1).

5.3 Results

In general, the optimal solutions of the upper-bound problem of both the CPR method
solved by the column and constraint generation algorithm and the simplex-based
heuristic method of the extension of the uncertainty support represents a conservative
decision policy. Indeed, these solutions are obtained from the approximation of the
conditional expectation E[Q(x, ξ)|ξ ∈ ξ k] by the worst distributionally expectation

Max
δ∈D(ξ

k
)

E
δ [Q(x, ek)]

and

Max
δ∈R(ξ

k
)

E
δ [Q(x, vk)],

considering the marginal distribution of the random vectors ek and vk with support
in the set {ekj : j = 1, . . . , 2dξ } and {vkj : j = 1, . . . , dξ + 1}, respectively, for all
k = 1, . . . , n.

As mentioned above, the existing partition-based methods do not solve the upper-
bound problem, instead, it determines the optimistic solution xLn given by the
lower-bound problem. Nevertheless, depending on the recourse cost, sometimes it
is necessary to obtain a conservative solution because the optimistic solution gener-
ates a significant disappointment. To study the disappointment of a given conservative
and optimistic solution in an out-of-sample analysis, we performed aMonte Carlo sim-
ulation with a number N of scenarios to estimate the actual cost by the sample-average
cost [3].

For the aircraft allocation problem,we consider two instances: (a) low recourse cost;
(b) high recourse cost. For the low recourse cost—low cost for the second-stage vari-
ables, we consider a negligible cost for unattended demand. For the high recourse cost,
we consider a significantly high deficit cost associated with unattended demand. Given
these two instances, we depict in Fig. 5 the disappointment by confronting the out-of-
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Fig. 5 Disappointment in an out-of-sample analysis for the aircraft allocation problem: a low recourse cost;
b high recourse cost

sample cost against the cost estimate given by objective value of the upper (conserva-
tive) and lower (optimistic) bound problems. For didactic purposes, the results associ-
ated with the optimistic solution are presented in red while the results for the conser-
vative solution are presented in blue. The horizontal axis of the figure reports the com-
putational time to obtain the conservative and the optimistic solution, given a partition
size. The cost estimated by the optimal value of the upper- and lower-bound problem
(optimal objective value) is represented by the dashed line. The solid line corresponds
to the out-of-sample cost evaluation and the shaded area corresponds to the associated
95% confidence interval. It is worth clarifying that the computational time reported in
the horizontal axis does not include the time to compute the out-of-sample cost.
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Fig. 6 Disappointment in an out-of-sample analysis of the conservative solution and optimistic solution of
the farmer’s problem with eight crops

For the low recourse cost instance, Fig. 5a, we observe that both (conservative and
optimistic) solutions have similar out-of-sample performances. However, for the high
recourse cost instance, Fig. 5b, the conservative solution out-performs the optimistic
one for any partition size. Note also that, for both instances, the optimistic solution
leads to significant disappointment—the out-of-sample cost evaluation is significantly
higher than the cost estimated by the optimal value of the lower bound problem. On
the other hand, the conservative solution has a mathematical guarantee against dis-
appointment, which is corroborated by this empirical study—there is no statistically
significant disappointment. This means that optimistic solution methods might not be
suitable for applications with high recourse cost due to poor out-of-sample perfor-
mance and potentially high disappointment levels.

In Fig. 6, we present the numerical results for the farmer’s problemwith eight crops
considering a high recourse cost instance. The out-of-sample evaluation of the conser-
vative solution shows a very similar behavior when compared to the optimal objective
value of the upper-bound problem. Conversely, the out-of-sample cost evaluation for
the optimistic solution is significantly higher than the optimal objective value, i.e., it
shows a high disappointment level. Moreover, the conservative solution significantly
out-performs the optimistic one in an out-of-sample analysis. It is important to note
that the above mentioned effects are amplified whenever the algorithm is far from
converging.

This result alerts us to use of the optimistic solution for two-stage stochastic lin-
ear programming problems when the recourse cost is significantly high. If the method
stops before convergence—due to time or computational-power limitations—the opti-
mistic solution is not reliable given its poor out-of-sample performance and high
disappointment level. On the other hand, the conservative decision is robust even for
non-converged solutions.

Finally, Fig. 7a presents the numerical results for the farmer’s problem with 20-
crops, and Fig. 7b reports the result for the instance of the SUC problem, both
obtained by the simplex-based heuristic method for highly asymmetric recourse cost,

123



On a conservative partition refinement (CPR) method for... 2631

Fig. 7 Upper bound and lower bound obtained by the simplex-based heuristic method of the extension of
the uncertainty support for a a farmer’s problem with 20-crops; b the sstochastic unit commitment problem
for a single-bus system over a 24-hour time span

which means that the corrective actions are much more expensive in one direction—
unattended demand is more expensive than over-production (farmer’s problem) or
over-generation (SUC problem). As in the upper-bound problem (16), solved by the
column and constraint generation algorithm, the solution given by the simplex-based
heuristic method (21) also avoids disappointments and significantly outperforms the
optimistic solution. As before, the non-converged optimistic solution presented a sig-
nificant disappointment and poor out-of-sample performance.

Table 1 displays the uncertainty dimension dξ , the size (# variables, # constraints)
of the upper-bound problem and the computational time to solve the CPR method by
applying the corresponding numerical scheme to solve each instance.
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Table 1 Computational time of the proposed algorithmic schemes for each instance

Instance dξ Size of the UB problem Method Time
(CPUs)

Aircraft allocation problem
(low cost)

5 (4064, 26496) Equivalent deterministic 1380

Aircraft allocation problem
(high cost)

5 (4064, 26496) Equivalent deterministic 1363

Farmer’s problem 8-crops 8 (6144, 2304) Column–Constraint algorithm 32,541

Farmer’s problem 20-crops 20 (62914560, 22020096) Simplex-based method 22,278

SUC 24 (8.05 × 109, 1.77 × 1010) Simplex-based method 32,796

6 Conclusions

Wedeveloped a conservative convergent solutionmethod for a two-stage stochastic lin-
ear optimization problem with a convex recourse function of uncertainty based on the
distributionally robust optimization model that generalizes the Edmundson-Madanski
inequality. Considering that the complexity grows exponentially over an uncertainty
dimension, for computational tractability, we reformulated the upper-bound problem
and proposed algorithmic schemes: (i) for problems with low-dimensional uncer-
tainty, we developed a deterministic equivalent linear programming model, (ii) for
medium-sized uncertainty dimensionality, we proposed a column and constraint gen-
eration algorithm, and (iii) to handle high dimensional uncertainty, we proposed a
simplex-based heuristic method whose complexity grew linearly with the uncertainty
dimension.

An out-of-sample computational experiments showed that ourmethod avoids disap-
pointment in comparison to the non-converged sub-optimal optimistic solution given
by the lower-bound problem based on Jensen’s inequality when the cost of recourse
was high. This raises awareness regarding the use of the optimistic solution provided
by the partition-based method to solve two-stage stochastic optimization problems
when the recourse cost is significantly high. Many practical applications that exhibit
this type of recourse cost and depend on the implementation of a non-converged
sub-optimal solution because of computational time limitations will benefit from the
developed framework to obtain a conservative solution.

7 Appendix

A Oracle MIP problem

Let τ ∈ {0, 1}my and κ ∈ {0, 1}my×dx be a binary vector and a binary matrix, respec-
tively. We define h(ekj ) := [(1 − τr )âkr + τr b̂kr ], T(ekj ) := [(1 − κr ,s)ãkr ,s + κr ,s b̃kr ,s]
and W := [Wr ,t ] with r = 1, . . . ,my , s = 1, . . . , dx and t = 1, . . . , dy .
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We write explicitly (19) as follows:

Max
λ,α ∈ R

my ,

β ∈ R
my×mx ,

τ , κ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

my∑

r=1

[λr τr︸︷︷︸
αr

b̂kr + (λr − λr τr︸︷︷︸
αr

)âkr ] −

⎛

⎜
⎜
⎝

my∑

r=1

dx∑

s=1

λrκr,s
︸ ︷︷ ︸

βr ,s

b̃kr,s x
∗
s +

my∑

r=1

dx∑

s=1

(λr − λrκr,s
︸ ︷︷ ︸

βr ,s

)ãkr,s x
∗
s

⎞

⎟
⎟
⎠

− π∗ −
my∑

r=1

θ∗
r ((1 − τr )â

k
r + τr b̂

k
r ) −

my∑

r=1

dx∑

s=1

θ∗
s+(r−1)mx

((1 − κr,s )ã
k
r,s + κr,s b̃

k
r,s )

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

s.t.

my∑

r=1

λrWr,t ≤ qt , ∀t = 1, . . . , dy

λr − (1 − τr )M ≤ αr ≤ λr + (1 − τr )M, ∀r = 1, . . . ,my

− τr M ≤ αr ≤ τr M, ∀r = 1, . . . ,my

λr − (1 − κr,s )M ≤ βr,s ≤ λr + (1 − κr,s )M, ∀r = 1, . . . ,my , ∀s = 1, . . . ,mx

− κr,s M ≤ βr,s ≤ κr,s M, ∀r = 1, . . . ,my , ∀s = 1, . . . , dx

τr , κr,s ∈ {0, 1}, ∀r = 1, . . . ,my , ∀s = 1, . . . , dx .

(24)

where M ∈ R is sufficiently large and the products αr = λrτr and βr ,s = λrκr ,s are
linearized.

B Proof of the Proposition 1

Proof of the Proposition 1 By duality we have that

Max
δ∈R(ξ

k
)

E
δ [Q(x, vk)] = Max

δk≥0

⎧
⎨

⎩

dξ +1∑

j=1

δkj Q(x, vkj ) :
dξ +1∑

j=1

δkjv
k
j = ξ

k
,

dξ +1∑

j=1

δkj = 1

⎫
⎬

⎭
.

Since the recourse function Q(x, ξi ) is monotonic for all i = 1, . . . , dξ we have that

Q(x, vkj ) ≤ Q(x, ξ̂
k
), ∀ j = 1, . . . , (dξ + 1),

sincevkj only differs from ξ̂
k
in just one component. So,

∑dξ +1
j=1 δkj Q(x, vkj ) ≤ Q(x, ξ̂

k
)

for all x ∈ X . By other hand, by the existence of E[Q(x, ξ)], it holds that
n∑

k=1

pkQ(x, ξ̂
k
) −→ E[Q(x, ξ)] as n −→ ∞,

therefore

n∑

k=1

pk
dξ +1∑

j=1

δkj Q(x, vkj ) −→ E[Q(x, ξ)] as n −→ ∞, ∀x ∈ X .
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Since f̃n(x) := c�x + ∑n
k=1 p

k ∑dξ +1
j=1 δkj Q(x, vkj ) is a sequence of decreasing and

continuous functions pointwise converging to f (x) = c�x + E[Q(x, ξ)], then f̃n(x)
epi-converge to f (x). Therefore, by epi-convergence, {z̃Un }∞n=1 and {x̃Un }∞n=1 converge
to the optimal value and optimal solution of (1), respectively. ��

C Proof of the Theorem 1

If { fn}∞n=1 is a sequence of functions pointwise converging to f , i.e., if f (x) =
limn−→∞ f (x) for all x ∈ X , then fn epi-converges to f , if the sequence { fn}∞n=1 is
monotone increasing or monotone decreasing [6] and f is continuous.

Epi-convergence is a kind of convergence very useful for approximateminimization
problems in the following sense:
Suppose a sequence of function { fn}∞n=1 epi-converges to f . Let z∗ := Minx∈X f (x),
z∗n := Minx∈X fn(x), and x∗ ∈ Argminx∈X f (x), x∗

n ∈ Argminx∈X fn(x) the cor-
responding minimizers, respectively. Then, under some assumptions, we can ensure
that

lim
n−→∞ z∗n = z∗, and lim

n−→∞ x∗
n = x∗.

Before proving the Theorem 1, we will need the following lemma to complete the
proof.

Lemma 1 let G = {(ξ , η) ∈ R
dξ +1 : ξ ∈ �, η = Q(x, ξ)} be the graph of the

function Q(x, ·) and let co(G) be its convex hull. Then

sup{η ∈ R : (ξ , η) ∈ co(G)} = Max
δ∈D(ξ)

E
δ[Q(x, e)] (25)

Proof of Lemma 1 It is clear that

Max
δ∈D(ξ)

E
δ [Q(x, e)] ≤ sup{η ∈ R : (ξ , η) ∈ co(G)}.

By another hand, let (ξ , η) ∈ co(G). Then there exist S, ξ s ∈ �, and probabilities
P(ξ = ξ s) ≥ 0, s = 1, . . . , S (parameters of the convex combination), such that∑S

s=1 P(ξ = ξ s)ξ s = ξ ,
∑S

s=1 P(ξ = ξ s)Q(x, ξ s) = η. Now for every s, there
exist conditional probabilities P(e = e j |ξ = ξ s) ≥ 0, j = 1, . . . , 2dξ such that
∑2dξ

j=1 P(e = e j |ξ = ξ s)e j = ξ s , i.e., ξ̂ = ∑
s
∑

j P(ξ = ξ s)P(e = e j |ξ = ξ s)e j .
Since Q(x, ·) is convex
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η =
S∑

s=1

P(ξ = ξ s)Q(x, ξ s)

=
∑

s

P(ξ = ξ s)Q

⎛

⎝
∑

j

P(e = e j |ξ = ξ s)e j

⎞

⎠

≤
∑

s

∑

j

P(ξ = ξ s)P(e = e j |ξ = ξ s)Q(x, e j ).

Setting δ j = ∑
s P(ξ = ξ s)P(e = e j |ξ = ξ s) yields ξ = ∑

j δ je j ,
∑

j δ j = 1,
δ j ≥ 0, and

η ≤
∑

j

δ j Q(x, e j ) ≤ Max
δ∈D(ξ)

E
δ [Q(x, e)].

Therefore

sup{η ∈ R : (ξ , η) ∈ co(G)} ≤ Max
δ∈D(ξ)

E
δ [Q(x, e)].

��
By making use of the properties of epi-convergent functions and the lemma above, we
will prove the Theorem 1.

Proof of Theorem 1

1.1 Let �′ ⊆ �, let G ′ be the graph of the function Q(x, ξ) with ξ ∈ �′ and let
ξ

′ = E[ξ |ξ ∈ �′] be the conditional mean, then

sup{η : (ξ , η) ∈ co(G))} ≥ sup{η : (ξ
′
, η) ∈ co(G ′))}

which implies

Max
δ∈D(ξ)

E
δ[Q(x, e)] ≥ Max

δ∈D(ξ
′
)

E
δ[Q(x, e′)],

where e′ is the random variable with support on the vertex of the cell �′.
Suppose thatPn+1 refinesPn , then there exist�k ∈ Pn such that�k = �k′∪�k′′

with �k′
, �k′′ ∈ Pn+1.

Let ek , ek
′
, and ek

′′
be the random variables with support in the set of vertex of the

cells �k , �k′
and �k′′

, respectively, and let pk
′ = P(ξ ∈ �k′

) and pk
′′ = P(ξ ∈

�k′′
). By the above we have that

pk
′
(

Max
δ∈D(ξ

k
)

E
δ [Q(x, ek)]

)

≥ pk
′
⎛

⎝ Max
δ∈D(ξ

k′
)

E
δ [Q(x, ek

′
)]
⎞

⎠ ,
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and

pk
′′
(

Max
δ∈D(ξ

k
)

E
δ [Q(x, ek)]

)

≥ pk
′′
⎛

⎝ Max
δ∈D(ξ

k′′
)

E
δ [Q(x, ek

′′
)]
⎞

⎠ ,

then,

(pk
′ + pk

′′
)

︸ ︷︷ ︸
pk

(

Max
δ∈D(ξ

k
)

E
δ [Q(x, ek)]

)

≥ pk
′
⎛

⎝ Max
δ∈D(ξ

k′
)

E
δ [Q(x, ek

′
)]
⎞

⎠

+pk
′′
⎛

⎝ Max
δ∈D(ξ

k′′
)

E
δ [Q(x, ek

′′
)]
⎞

⎠ .

Since the other cells inPn and Pn+1 are the same, it follows that

n∑

k=1

pk
(

Max
δ∈D(ξ

k
)

E
δ [Q(x, ek)]

)

≥
n+1∑

k=1

pk
(

Max
δ∈D(ξ

k
)

E
δ [Q(x, ek)]

)

,

which implies f Un (x) ≥ f Un+1(x) for all x ∈ X , therefore

zUn = Min
x∈X f Un (x) ≥ Min

x∈X f Un+1(x) = zUn+1.

1.2 It is true that

ξ
k = pk

′
ξ
k′ + pk

′′
ξ
k′′

pk

By convexity it holds that

Q(x,ξ
k
) ≤ pk

′

pk
Q(x, ξ

k′
) + pk

′′

pk
Q(x, ξ

k′′
).

Since the others cells inPn and Pn+1 are the same, it follows that

n∑

k=1

pkQ(x,ξ
k
) ≤

n+1∑

k=1

pkQ(x,ξ
k
)

which implies f Ln (x) ≤ f Ln+1(x) for all x ∈ X , therefore

zLn = Min
x∈X f Ln (x) ≤ Min

x∈X f Ln+1(x) = zLn+1.
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1.3 We have that

Max
δ≥0

⎧
⎨

⎩

∑

j

δ j Q(x, ekj )
∣∣∣
∑

j

δ j = 1,
∑

j

δ je j = ξ
k

⎫
⎬

⎭

≤ Max
δ≥0

⎧
⎨

⎩

∑

j

δ j Q(x, ekj )
∣∣∣
∑

j

δ j = 1

⎫
⎬

⎭
.

Let Mk := Max
ξ∈�k

Q(x, ξ) = Max
δ≥0

{∑
j δ j Q(x, ekj )

∣∣∣
∑

j δ j = 1
}
. By convexity

Maxξ∈�k Q(x, ξ) = Q(x, ekj ) for some j .
By the existence of E[Q(x, ξ)], it holds that (see [1])

n∑

k=1

pkMk −→ E[Q(x, ξ)] as n −→ ∞,

therefore

n∑

k=1

pk Max
δ∈D(ξ

k
)

E
δ [Q(x, ek)] −→ E[Q(x, ξ)] as n −→ ∞,

which implies f Un (x) −→ f (x) as n −→ ∞ for all x ∈ X . Since the sequence
{ f Un }∞n=1 is non-increasing and the objective function f is continuous, we have
that f Un epi-converges to f . So, if x∗ = lim

n−→∞ xUn then x∗ ∈ Argminx∈X f (x).

Therefore

lim
n−→∞ zUn = lim

n−→∞ f Un (xUn ) = f (x∗) = z∗.

On another hand, we have that

mk := Min
ξ∈�k

Q(x, ξ) ≤ Q(x, ξ
k
) ≤ E[Q(x, ξ) | ξ ∈ �k].

The left-hand side inequality is valid by definition of mk , and the right-hand side
inequality is Jensen’s inequality. Thus, we have the following valid inequalities:

n∑

k=1

pkmk ≤
n∑

k=1

pkQ(x, ξ
k
) ≤

n∑

k=1

pkE[Q(x, ξ) | ξ ∈ �k] = E[Q(x, ξ)].
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The right-hand side equality is the law of total probability. By the existence of
E[Q(x, ξ)], it holds that (see [1])

n∑

k=1

pkmk −→ E[Q(x, ξ)] as n −→ ∞

so,

n∑

k=1

pkQ(x, ξ
k
) −→ E[Q(x, ξ)] as n −→ ∞,

which implies f Ln (x) −→ f (x) for all x ∈ X . Since the sequence { f Ln }∞n=1 is
no-decreasing and the objective function f is continuous, we have that f Ln epi-
converges to f . So, if x∗ = lim

n−→∞ xLn then x∗ ∈ Argminx∈X f (x). Therefore

lim
n−→∞ f Ln (xLn ) = f (x∗) = z∗.

��

D The aircraft allocation problem

The aircraft allocation problem was one of the first stochastic linear programs ever
formulated by Dantzig [7]. In this problem aircraft of different types are allocated on
routes in order to minimize the operating costs. Besides the operating cost, there are
costs associated with bumping passengers due to insufficient capacity tomeet demand.

Let

I = set of available aircrafts,
R = set of routes,
R(i) = subset of routes serviced by aircraft of type i ,
bi = number of aircraft available of type i ,
cir = cost of operating an aircraft of type i along route r ,
tir = passenger capacity of aircraft i on route r ,
ξr = passenger demand on route r ,
qr = revenue lost per bumped passenger on route r ,
xir = number of aircraft of type i assigned to route r ,
yr = number of bumped passengers on route r ,
zr = number of empty seats on route r .

we can set up the aircraft allocation problem with the following model:

Min
x

∑

i∈I

∑

r∈R(i)

cir · xir + E[Q(x, ξ)]

s.t.
∑

r∈R(i)

xir ≤ bi , ∀i ∈ I ,
(26)
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where

Q(x, ξ ) = Min
y,z

∑

r∈R

qr · yr

s.t.
∑

i∈I , r∈R(i)

tir · xir + yr − zr = ξr , ∀r ∈ R,

xir ≥ 0, ∀i ∈ I , r ∈ R(i), yr ≥ 0 ∀r ∈ R.

(27)

The input data to execute this computational experiment was taken from the following
site: www.cs.wisc.edu/~swright/stochastic/sampling/
Low recourse cost:

q = (11, 13, 0, 13, 8, 7, 0, 7, 0, 12)�.

High recourse cost:

q = (301, 349, 239, 700, 254, 493, 348, 70, 474, 361)�.

E The farmer’s problem

One farmer specializes in raising N types of crops. He has L (km2) of land and he
must decide how much land will be allocated to devote each crop. The fixed cost to
rise the i-th type of crop is ci per ton (T ), for i = 1, . . . , N . By another hand, he
must attend some restrictions related to his plantation; he must have at least hi (T )

of the i-th type of crop, for i = 1, . . . , N . Those quantities can be obtained by own
plantation or buying them in a local market. The purchase price for the i-th product
is si per ton (T ), for i = 1, . . . , N . Additionally, every excess of the i-th type of crop
can be sold at the selling price of ri per ton (T ), for i = 1, . . . , N .

Let

ξi = productivity land for rising the i-th type of crop,
xi = acres of land devoted to rise the i-th type of crop,
wi = tons of the i-th type of crop sold,
yi = tons of the i-th type of crop purchased

Since the farmer wants to minimize the cost, the two-stage stochastic linear optimiza-
tion problem is:

Min
x≥0

N∑

i=1

ci · xi + E[Q(x, ξ)]

s.t.
N∑

i=1

xi ≤ L,

(28)
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where

Q(x, ξ) = Min
y,w

N∑

i=1

si · yi −
N∑

i=1

ri · wi

s.t. ξi · xi + yi − wi ≥ hi , ∀i = 1, . . . , N

y ≥ 0,w ≥ 0.

(29)

To simplify the problem, we assume that the productivity land for raising each crop is
represented by independent random variables with uniform distribution. The data of
the two instances evaluated of the farmer’s problem is reported below:

Instance with 8-crops:

Crop Plantation cost Purchase price Selling price

i = 1 92 667 28
i = 2 80 905 35
i = 3 92 1024 41
i = 4 88 660 42
i = 5 91 974 25
i = 6 80 1041 35
i = 7 92 978 40
i = 8 93 997 45

Uncertainty ai bi

i = 1 2.296 8.575
i = 2 1.981 6.820
i = 3 1.079 7.730
i = 4 2.470 6.232
i = 5 1.305 6.390
i = 6 0.900 6.445
i = 7 2.043 5.430
i = 8 0.409 4.214

Total land (L) : 3500
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Instance with 20-crops:

Crop Plantation cost Purchase price Selling price

i = 1 81 853 137
i = 2 86 570 64
i = 3 85 817 135
i = 4 83 983 58
i = 5 81 1001 70
i = 6 93 547 131
i = 7 91 728 106
i = 8 85 966 135
i = 9 89 875 158
i = 10 94 913 87
i = 11 82 1010 118
i = 12 95 844 140
i = 13 92 698 133
i = 14 94 834 109
i = 15 92 724 107
i = 16 93 702 150
i = 17 84 980 95
i = 18 94 771 66
i = 19 85 752 77
i = 20 81 907 151

Uncertainty ai bi

i = 1 0.963 4.05
i = 2 0.844 2.72
i = 3 2.070 4.32
i = 4 2.640 4.60
i = 5 1.730 1.48
i = 6 2.400 4.99
i = 7 2.410 5.33
i = 8 1.980 4.03
i = 9 1.180 4.79
i = 10 2.060 3.27
i = 11 2.900 4.34
i = 12 1.100 4.39
i = 13 2.690 3.43
i = 14 1.260 6.12
i = 15 2.750 3.91
i = 16 1.150 5.36
i = 17 1.920 4.41
i = 18 1.760 5.68
i = 19 0.547 4.71
i = 20 0.508 3.91

Total land (L) : 5200
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F The Stochastic unit commitment (SUC) problem

We use a classic and simple formulation of a data-driven two-stage stochastic single-
bus unit commitment problem [21]. The first stage comprises the commitment
decisions while the second stage accounts for the dispatch decisions. We develop
the problem by minimizing the expected total generation cost, and the uncertainty on
the right-hand-side of the problem in the net electricity load parameter (load subtracted
by uncertain renewable injections).

We summarize the notations by sets, parameters, first-stage variables and second-
stage variables listed as follows:

Description of the sets:

I = Set of electricity generators,
T = Set of time of periods.

Description of the parameters:

Cu
i = Fixed cost of unit i ∈ I,

CSU
i = Start-up cost of unit i ∈ I,

CSD
i = Shut-down cost of unit i ∈ I,

RU
i = Ramp-up limit of unit i ∈ I,

RD
i = Ramp-down limit of unit i ∈ I,

Pi= Maximum power generation of unit i ∈ I,
Pi= Minimum power generation of unit i ∈ I,
ξ̂ (t)= The electricity load in time t ∈ T .

Description of the first-stage variables:

ui,t = Binary commit variable: 1 if the thermal generator i is on in time t ; 0 other
wise,
vi,t = Start-up variable for unit i ∈ I in time t ∈ T ,
wi,t = Shut-down variable for unit i ∈ I in time t ∈ T .

Description of the second-stage variables:

pi,t = Power generation of unit i ∈ I in time t ∈ T .

Let us denote by x = [ui,t , vi,t , wi,t ]i∈I,t∈T the first-stage variable. Based on this
notation, the two-stage stochastic linear optimization problem is:

Min
ui,t ,vi,t ,wi,t

∑

i∈I

∑

t∈T

[
Cu
i ui,t + CSU

i vi,t + CSD
i wi,t

]
+ E[Q(x, ξ)] (30a)

s.t. vi,t − wi,t = ui,t − ui,t−1, ∀i ∈ I, ∀t ∈ T , (30b)

vi,t ≤ ui,t , ∀i ∈ I, ∀t ∈ T , (30c)

wi,t ≤ 1 − ui,t , ∀i ∈ I, ∀t ∈ T , (30d)

where

Q(x, ξ) = min
pi,t

C P
i pi,t (31a)
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s.t .
∑

i∈I
pi,t = ξt , ∀t ∈ T , (31b)

pi,t − pi, t − 1 ≤ RU
i ui,t−1 + Pivi,t , ∀i ∈ I, ∀t ∈ T , (31c)

pi,t−1 − pi, t ≤ RD
i ui,t + Piwi,t , ∀i ∈ I, ∀t ∈ T , (31d)

Piui,t ≤ pi,t ≤ Piui,t , ∀i ∈ I, ∀t ∈ T , (31e)

0 ≤ vi,t ≤ 1, ∀i ∈ I, ∀t ∈ T , (31f)

0 ≤ wi,t ≤ 1, ∀i ∈ I, ∀t ∈ T , (31g)

ui,t ∈ {0, 1}, ∀i ∈ I, ∀t ∈ T . (31h)

In the above formulation, the constraints (30b)–(30d) are the start-up and shut-down
operational constraints for each thermal unit. Constraint (31b) ensures load balance.
Constraints (31c)–(31d) are the the ramping up and ramping down constraints, respec-
tively. Constraint (31e) is the minimum and maximum power generation of the unit
i ∈ I in time t ∈ T . Constrains (31f)–(31g) are box constraints. Finally, constraint
(31h) establishes the integrability of the binary variable [[u]i,t ]i∈I,t∈T .
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