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Abstract
This work studies batch scheduling problems in which non-increasing time slot costs
are taken into consideration on a single machine. In these problems, each batch occu-
pies some time slots, and the cost yielded by batch setup and job processing in a batch
is dependent on the time slots. The objective is to minimize the sum of the total time
slot cost and one of the traditional performancemeasures, including the total flow time,
maximum lateness/tardiness, and weighted number of tardy jobs. For these objectives,
it is necessary to determine not only the optimal job sequence and batch partition but
also the optimal time slot allocation for the batches. For each problem, we find the
structured properties of the optimal schedule and then propose an algorithm based
on dynamic programming. All the presented algorithms are of polynomial time if the
input size of the time slot costs is O(K ).

Keywords Polynomial-time algorithm · Time slot cost · Batch · Scheduling

1 Introduction

This paper investigates batch schedulingwith non-increasing time slot costs on a single
machine. The problem arises from the continuous casting stage in steel production,
in which molten steel is turned into slabs on a continuous caster [13]. Before the
continuous casting stage, molten steel is smelted in converters. The molten steel in
the same converter is called a charge, which can be regarded as a job. These charges
are refined and then processed on a continuous caster. The continuous caster needs to
replace a tundish before the processing of a cast. A cast refers to a sequence of charges
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that are processed consecutively into slabs. A cast can be regarded as a batch, and the
time spent replacing the tundish can be regarded as the setup time before a batch. The
production scheduling on the continuous caster is a serial batch scheduling. It is well
known that steel production is energy intensive. When making optimal production
scheduling in the current situation of rising energy prices, decision-makers should
consider not only improving production efficiency but also saving energy or reducing
energy costs. In steel plants, power supply companies supply electricity with time-
of-use electricity prices, i.e., the electricity price varies for different time slots. There
is a situation that often occurs; that is, during a production planning period (usually
less than one day), the electricity price changes, but it does not increase over time.
Thus, if the steel plant postpones the production tasks in the high price period to the
low price period, the electricity costs can be significantly reduced. Considering the
changes in electricity prices over time, finding the optimal batch scheduling that can
improve production efficiency and reduce electricity costs in the continuous casting
stage is the motivation for our study.

From the above practical scenario, the production planning period can be partitioned
into multiple time slots with unit length. Because the power of the caster is fixed
during the process of changing the tundish and producing the slab, the electricity cost
generated by the operation of the machine in any time slot can be obtained according
to the corresponding electricity price, and the electricity cost corresponding to the
time slot is referred to as the TSC (time slot cost). To improve production efficiency
and reduce electricity costs, we need to determine not only the optimal job sequence
and batch partition but also the time slot allocation for the batches.

The problem herein is related to batch scheduling and TSC. A brief review of
the scheduling studies related to the two subjects is presented as follows. Potts and
Kovalyov [11] andAllahverdi et al. [1] provided extensive surveys of batch scheduling
with various problems and models. Coffman et al. [4] considered the total flow time
objective function and obtained the optimal scheduling by adopting their O(n) time
algorithm topartition theSPT (shortest processing timefirst) job sequence into batches.
For the maximum lateness minimization problem, Webster and Baker [16] provided
an O(n2) time algorithm to partition the EDD (earliest due date first) job sequence
into batches to obtain an optimal schedule. Hochbaum and Landy [6] proposed a
pseudopolynomial time algorithm for minimizing the weighted number of tardy jobs,
and they indicated that the early jobs in the optimal schedule were sequenced in
accordance with the EDD rule, followed by all of the tardy jobs. For more or recent
studies related to batch scheduling, readers can refer to the literature [5, 7–10, 12, 13,
17].

Wan and Qi [14] first introduced the TSC into the scheduling model with individual
processing. In their model, the planning horizon is partitioned into multiple time slots
with unit length, and the operational costs vary over the time slots. With this consider-
ation, the objective is to minimize the total TSC plus one of those traditional measures
of scheduling performance, i.e., the total flow time, maximum lateness/tardiness, and
weighted number of tardy jobs. In the case that the TSCs vary arbitrarilywith time, they
showed that all of the problems were strongly NP-hard. They provided polynomial-
time algorithms under the condition that the TSCs are non-increasing. After that, some
researchers followed their study. The problem of minimizing the total TSC plus the
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makespan was researched by Zhong and Liu [19]. Similarly, the general problem was
determined to be strongly NP-hard. They provided an analysis of the special problem
with non-increasing TSCs. The preemptive scheduling problems were investigated
by Chen et al. [2]. They studied two problems: one was to minimize the makespan
plus the total TSC on unrelated machines, and the other was to minimize the total
weighted completion time plus the total TSC. Zhao et al. [18] followed the work on
the weighted completion time; they solved the problems with the TSCs decreasing
in three patterns, including decreasing convex, decreasing concave, and decreasing
linear, and they proved that the problem with the TSCs decreasing in an arbitrary
way was strongly NP-hard. Chen et al. [3] investigated the problem with outsourcing
and variable TSCs on a single machine and two open-shop machines, respectively.
Wang [15] considered machine calibration, which is necessary for running a job, in
the scheduling problem with TSCs.

All the above scheduling studies that considered TSCs focused on individual pro-
cessing, but there is no work involving batch scheduling. Therefore, to solve the
problem derived from the continuous casting stage of steel production, we investigated
batch scheduling problems with TSCs. For each problem, we determined the struc-
tured properties of the optimal schedule and proposed algorithms based on dynamic
programming.

The remaining parts are arranged as below. The notations and detailed descrip-
tions of the problems are provided in Sect. 2. Sections 3, 4, and 5 investigate the
batch scheduling problems of minimizing the total TSC plus a traditional performance
measure. More specifically, Sect. 3 discusses the total flow time, Sect. 4 focuses on
maximum lateness/tardiness, and Sect. 5 considers the weighted number of tardy jobs.
A brief conclusion is provided in Sect. 6.

2 Problem description

At time zero, n independent jobs J1, J2, . . . , Jn are available, and they will be pro-
cessed non-preemptively in batches B1, B2, . . . Bm on a single machine. For job J j ,
let p j , w j , d j , and C j denote the processing time, weight, due date, and completion
time, respectively. s is used to denote the setup time, which is needed before each batch
processing. p j , d j , and s are integer numbers. Under the batch availability assumption,
C j is defined as the time when the processing of the last job in the batch that includes
J j is completed. The lateness and the tardiness can be determined as L j = C j − d j

and Tj = max{0, C j − d j }, respectively. If C j > d j , letUj = 1 represent that job J j
is tardy. Otherwise, let Uj = 0 represent that job J j is on-time.

All jobs should be scheduled within a planning horizon containing K time slots,
in which each time slot has a unit length. To guarantee feasibility, it is assumed that
s + ∑n

j=1 p j ≤ K . Because each time slot has a unit length, for the kth time slot, the
starting time can be denoted as k − 1, and the ending time can be denoted as k. πk

is used to represent the cost yielded by using the kth time slot, and πJ j is the total

TSC of job J j . It then follows that πJ j = ∑k+p j
r=k+1 πr if the processing of J j starts at

time k. Letting πBi denote the total TSC of batch Bi and πsi denote the TSC of the
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setup time si = s for Bi ; πBi = πsi + ∑
J j∈Bi πJ j . This study focuses on the batch

scheduling problem with non-increasing TSCs, i.e., π1 ≥ π2 ≥ · · · ≥ πK . Thus, if
the scheduler delays the processing of some jobs, the total TSC can be reduced.

In scheduling problems, the total flow time (expressed as
∑n

j=1 C j ) represents the
total inventory or holding costs, the maximum lateness and tardiness (expressed as
Lmax = max j {L j } and Tmax = max j {Tj }, respectively) indicate the worst violation
of the due dates, and the weighted number of tardy jobs (expressed as

∑n
j=1 w jU j )

represents the total tardiness costs. These traditional performance measures reflect
production efficiency or service level, and they are most commonly used as the objec-
tive function in various scheduling problems [4–6, 10, 14]. The time slots occupied
by different schedules are probably different, as is the total TSC yielded by different
schedules if the TSCs vary over time. In this case, it is necessary to consider the total
TSC as a part of the total cost. Therefore, we study the following problems, of which
the objectives are to minimize the sum of one of the above traditional performance
measures and the total TSC.

P1: 1|batch, non-inc-slotcost|∑n
j=1 C j + ∑m

i=1 πBi .
P2: 1|batch, non-inc-slotcost|Lmax + ∑m

i=1 πBi and 1|batch,
non-inc-slotcost|Tmax + ∑m

i=1 πBi .
P3: 1|batch, non-inc-slotcost|∑n

j=1 w jU j + ∑m
i=1 πBi .

In the triplet notations of the problems, non-inc-slotcost represents the non-
increasing TSCs. For each problem, the joint decisions on the job sequence, the batch
partition B = (B1, B2, . . . Bm), and the time slot allocation for the batches need to
be determined to minimize the objective function.

3 1|batch, non-inc-slotcost|
∑n

j=1 Cj +
∑m

i=1 �Bi

The objective of the problem discussed in this section is to minimize the sum of the
total TSC and total flow time.We first propose some properties of an optimal schedule.

Lemma 1. For problem 1|batch, non-inc-slotcost|∑n
j=1 C j + ∑m

i=1 πBi , there is an
optimal schedule where any batch Bi has no idle time.

Proof Suppose that S is an optimal schedule where batch Bi has � units of idle time
before processing job J j . In batch Bi , we can postpone the setup and processing
operations prior to job J j by � units of time. In this new schedule S′, the total flow
time is not changed under the assumption of batch availability. Additionally, the total
TSC does not increase because the TSCs are non-increasing. Hence, S′ is also optimal.
To summarize the above analysis, we can obtain an optimal schedule where any batch
Bi has no idle time by repeating this procedure a finite number of times. �
Remark 1. The property described in Lemma 1 is also valid for the optimal schedules
of P2 and P3.

Lemma 2. For problem 1|batch, non-inc-slotcost|∑n
j=1 C j + ∑m

i=1 πBi , an optimal
job sequence can be obtained by sequencing the jobs in accordance with the SPT rule.

Proof Within each batch, the job sequence is immaterial under the assumption of batch
availability. Suppose that S is an optimal schedule in which the jobs are sequenced in
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Fig. 1 Interchange of job Jir and job J j1

SPT order in each batch, batch Bi = (Ji1 , Ji2 , . . . , Jir ) precedes batch Bj = (J j1 , J j2 ,
. . . , J jt ) with pir > p j1 , and they are adjacent. The length of the idle time between
Bi and Bj is denoted as �, and � ≥ 0.

Now, we interchange job Jir and job J j1 . Let the processing of J j1 start immediately
after job Jir−1 , and Jir be completed at the starting timeof job J j2 . Let S

′ denote this new
schedule. This operation does not affect other batches except Bi and Bj . In schedules
S and S′, let Ci and C ′

i denote the completion times of batch Bi , respectively, and let
S j and S′

j denote the starting times of batch Bj , respectively (see Fig. 1). C ′
i < Ci ,

and the idle time has moved forward. S′ and S have different objective values. The
difference is

Z(S′) − Z(S) = r(C ′
i − Ci ) +

S j∑

k=Ci

πk −
S′
j∑

k=C ′
i

πk < 0.

It is shown that the better schedule is S′ rather than S, which contradicts the opti-
mality of S.

Considering a given optimal schedule, we can reorder the jobs within each batch in
SPT order. Then, for two arbitrary adjacent batches Bi = (Ji1 , Ji2 , . . . , Jir ) and Bj =
(J j1 , J j2 , . . . , J jt ) (batch Bi precedes batch Bj ), we have pir ≤ p j1 . Consequently,
we obtain an optimal SPT job sequence. �

According to Lemma 2, we first reorder the jobs in SPT order. Based on dynamic
programming, we propose an algorithm to decide on the optimal partition of the SPT
sequence into batches and the optimal time slot allocation for the batches.

Let F( j , k) be the minimum total cost of the partial schedule including jobs J1,
J2, . . . , J j when the last job J j is completed no later than time k. There are two cases
for this partial schedule.

Case 1: J j is completed at time k. In this case, let H( j , k) denote the value of
F( j , k). Assume that Jh is the first job in the last batch in the partial schedule. Then,
jobs Jh , Jh+1, . . . , J j constitute the last batch and start their processing after a setup
time s. According to Lemma 1, there exists no idle time in the last batch. For this
batch, its starting time is k − s − ∑ j

r=h pr , and the total cost is ( j − h + 1)k +
∑k

l=k−s−∑ j
r=h pr+1

πl . Then H( j , k) can be recursively calculated by

123



1822 J. Ren

H( j , k)= min
1≤h≤ j

⎧
⎪⎨

⎪⎩
( j − h + 1)k +

k∑

l=k−s−∑ j
r=h pr+1

πl + F(h − 1, k − s −
∑ j

r=h
pr )

⎫
⎪⎬

⎪⎭
. (1)

Case 2: Job J j is completed no later than time k − 1.
Based on these two cases, the recursion of the dynamic programming can be given

as

F( j , k) = min{H( j , k), F( j , k − 1)} (2)

with the boundary conditions

F( j , k) = +∞, if k < s +
j∑

r=1

pr . (3)

The initial conditions are F(0, k) = 0, for k = 1, 2, . . . , K .
The total cost of the optimal schedule is obtained by F∗ = F(n, K ). Retracing the

solution backwards from the end, we can determine the optimal batch partition and
time slot allocation.

Theorem 1 Problem 1|batch, non-inc-slotcost|∑n
j=1 C j + ∑m

i=1 πBi can be solved

in O(K 2) or O(nK ) time.

Proof The principle of dynamic programming and Lemmas 1–2 guarantee the cor-
rectness of the above algorithm. In the following, we analyze the time complexity.
O(n log n) time is required by reordering the jobs in SPT order before implementing
dynamic programming. The recursion in Eq. (2) takes O(nK ) time because there are
O(nK ) states.

If the TSCs are input as K discrete values corresponding to the K time slots, the
input size is O(K ). Then, preparing the values of

∑b
l=a πl(1 ≤ a ≤ b ≤ K ) before

performing the recursion takes O(K 2) time. In this case, the overall time complexity
can be determined as O(K 2) due to n ≤ K , and thus, the algorithm is of polynomial
time.

If each TSC is provided as a function of time k with a closed form, the input size
is O(1). Then, obtaining each

∑b
l=a πl value takes a constant time and requires no

preparation. In this case, the overall time complexity can be determined as O(nK ),
indicating that the algorithm is of pseudopolynomial time. �

Numerical example 1. Consider a four-job problem where the setup time is s = 1,
the processing times are p j = (3, 2, 1, 1), the weights are w j= (10, 15, 3, 8), the
due dates are d j = (5, 6, 8, 11), the number of time slots is K = 11, and the TSCs
are πk = (15, 10, 4, 3, 3, 2, 2, 1, 1, 1, 1).

Reorder the jobs in SPT order as J4, J3, J2, J1. Applying the above dynamic
programming, the optimal batch partition and time slot allocation are obtained as
{s, J4, J3}(3−5), {s, J2, J1}(6−11), {s, J4, J3}(3−5) represents the first batch, which
occupies the 3rd to 5th time slots. {s, J2, J1}(6−11) represents the second batch, which
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occupies the 6th to 11th time slots. The total cost is F∗ = F(4, 11) = 50. This
solution shows that the first two time slots remain idle because their costs are much
higher than those of the others. Without considering TSCs, by using the algorithm
in paper [4], the optimal schedule is obtained as { s, J4, J3} (1−3),{ s, J2} (4−6),{ s,
J1} (7−10). The total flow time is 22, and the total TSC is 42, so the total cost is 64.
Comparing the optimal schedules in the two cases, we find that they have different
batch partitions, and the optimal schedule considering TSCs can significantly reduce
the total cost.

4 1|batch, non-inc-slotcost|Lmax + ∑m
i=1 �Bi and 1|batch,

non-inc-slotcost|Tmax + ∑m
i=1 �Bi

The objective of the problem discussed in this section is to minimize the sum of the
total TSC and maximum lateness (or the maximum tardiness). We aim to present a
unified algorithm to solve the two problems. Before that, we introduce the property
of an optimal schedule as below.

Lemma 3. For problems 1|batch, non-inc-slotcost|Lmax + ∑m
i=1 πBi and 1|batch,

non-inc-slotcost|Tmax + ∑m
i=1 πBi , an optimal job sequence can be determined by

sequencing the jobs in accordance with the EDD rule.

Proof These twoproblems are similar; hence,weonly consider the problemcontaining
Lmax.Asmentioned above, the job sequence is immaterial in eachbatch.Assuming that
S is an optimal schedule in which the jobs are sequenced in EDD order in each batch,
batch Bi = (Ji1 , Ji2 , . . . , Jir ) precedes batch Bj = (J j1 , J j2 , . . . , J jt )with dir > d j1 ,
and they are adjacent. Let L(Bi ) = max{Li1 , Li2 , . . . , Lir } and L(Bj ) = max{L j1 ,
L j2 , . . . , L jt }. The jobs have identical completion times in each batch, so L(Bi ) = Li1
and L(Bj ) = L j1 . According to the number of jobs in Bi , there are two cases.

Case 1: r = 1,meaning that there is only one job Ji1 in batch Bi .We have Li1 < L j1
because Ci1 < C j1 and di1 > d j1 , then L(Bi ) < L(Bj ). Without changing the time
when batch Bj is completed, we move job Ji1 and insert it in an appropriate position
after job J j1 in batch Bj so that the job sequence still keeps EDD order in batch Bj

(see Fig. 2 (a)). Then, the batch Bi is eliminated. This operation reduces the total TSC
but does not change L(Bj ). The total cost is therefore reduced.

Case 2: r > 1, meaning that batch Bi contains more than one job. Similar to Case
1, remove job Jir from batch Bi and insert it in an appropriate position after job J j1 in
batch Bj so that the job sequence still keeps the EDD order in batch Bj (see Fig. 2b).
This new schedule is denoted by S′. Let �, Ci , C ′

i ,S j , and S′
j be defined the same as

those in the proof of Lemma 2. After this operation, the total TSC has not increased,
and the completion time of batch Bi has been reduced, meaning that L(Bi ) has been
reduced. L(Bj ) in S′ and S have identical values because the completion time of batch
Bj is not changed, and dir > d j1 . Hence, schedule S

′ is also optimal.
Wecanobtain anoptimal job sequence in accordancewith theEDDrule by repeating

the procedure in Case 1 or 2 a finite number of times. �
Now, the jobs are assumed to have been arranged according to the EDD rule as

d1 ≤ d2 ≤ · · · ≤ dn . For problem 1|batch, non-inc-slotcost|Lmax + ∑m
i=1 πBi , a
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Fig. 2 Inserting job Jir into batch B j : a Case 1 and b Case 2

dynamic programming algorithm is presented first to minimize the total TSC under
constraint Lmax ≤ 0. F(i , j , k) denotes theminimum total TSC of the partial schedule
including jobs J1, J2, . . . , J j , where the last batch is composed of jobs Ji , Ji+1, . . . ,
J j , and where job J j is completed no later than time k. Note that max{Li , Li+1, . . . ,
L j } = Li , and batch Ji , Ji+1, . . . , J j should be processed as late as possible under
constraint Lmax ≤ 0. F(i , j , k) can then be recursively calculated by

F(i , j , k) =

⎧
⎪⎨

⎪⎩

F(i , j , k − 1) if k > di
k∑

l=k−s−∑ j
r=i pr+1

πl + min
1≤t≤i−1

F(t , i − 1, k − s − ∑ j
r=i pr ) if k ≤ di

(4)

with the boundary condition

F(i , j , k) = +∞ if

⎧
⎪⎨

⎪⎩

i = 1 and k < s +
∑ j

r=1
pr

i > 1 and k < 2s +
∑ j

r=1
pr

. (5)
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The initial conditions are

F(1, j , k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F(1, j , k − 1) if k > d1 and k > s +
∑ j

r=1
pr

k∑

l=k−s−∑ j
r=1 pr+1

πl if s +
∑ j

r=1
pr ≤ k ≤ d1

+∞ otherwise

. (6)

Under the constraint Lmax ≤ 0, let F(0) denote the minimum total TSC, and then

F(0) = min
1≤i≤n

F(i , n, K ). (7)

The problem is infeasible if we get F(0) = +∞. Because recursion Eq. (4) has
O(n2K ) states, performing the above dynamic programming takes O(n2K ) time.

Next, the problem of minimizing the total TSC is taken into consideration under the
constraint Lmax ≤ t . This problem is a generalization of the one under the constraint
Lmax ≤ 0. For each job, a new due date is introduced and expressed as d ′

j = d j + t .
Then, the constraint Lmax ≤ t is converted to Lmax ≤ 0, and the problem under
Lmax ≤ t is equivalent to that under Lmax ≤ 0. Therefore, for any given t , we can
solve the problem under Lmax ≤ t by using the dynamic programming algorithm
presented above.

Let F(t) represent the minimum total TSC for the total TSCminimization problem
under the constraint Lmax ≤ t . If this problem has an optimal schedule St , then F(t)
is equal to a finite value, and there are two cases:

Case 1: Lmax = t , namely, the maximum lateness in schedule St is equal to t. For
problem 1|batch, non-inc-slotcost|Lmax + ∑m

i=1 πBi , schedule St is feasible, and the
objective value is t + F(t).

Case 2: Lmax = t̃ < t , namely, themaximum lateness in schedule St is less than t. St
is also optimal for the total TSCminimization problem under the constraint Lmax ≤ t̃ ;
then, F(t) = F(t̃). For problem 1|batch, non-inc-slotcost|Lmax + ∑m

i=1 πBi , the
objective value of St is t̃ + F(t̃).

Based on the two cases, the optimal objective value of 1|batch, non-inc-slotcost|
Lmax + ∑m

i=1 πBi must be in the set {t + F(t)|t = t0, t0 + 1, . . . , K − d1}, in which
t0 is the minimum value of t satisfying that the total TSC minimization problem has
a feasible schedule under the constraint Lmax ≤ t0. Therefore, we can use the above
algorithmbased on dynamic programming to obtain all the F(t) values by enumerating
the t values for t = t0, t0 + 1, . . . , K − d1. The optimal objective value is

F∗
L = min

t
{t + F(t)|t = t0, t0 + 1, . . . , K − d1}. (8)

Note that t0 may be less than 0 because Lmax may be negative but Tmax is
non-negative. Thus, the optimal objective value of 1|batch, non-inc-slotcost|Tmax +∑m

i=1 πBi is
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F∗
T = min

t
{t + F(t)|t = 0, 1, . . . , K − d1} (9)

Theorem 2. The problems 1|batch, non-inc-slotcost|Lmax + ∑m
i=1 πBi and 1|batch,

non-inc-slotcost| Tmax + ∑m
i=1 πBi can be solved in O(n2K 2) time.

Proof The algorithms for the problems have been given above. Next, we analyze its
time complexity. First, we need to spend O(n log n) time reordering the jobs in EDD
order. For 1 ≤ a ≤ b ≤ K , preparing the

∑b
l=a πl values will take O(K 2) time,

if necessary. For a given t , we use dynamic programming to obtain F(t) in time
O(n2K ). Then, after enumerating the different values of t in O(K ) iterations, we can
solve the two problems using Eqs. (8) and (9), respectively. Therefore, the overall time
complexity can be determined as O(n2K 2). �

Similar to the algorithm for 1|batch, non-inc-slotcost|∑n
j=1 C j + ∑m

i=1 πBi , the
above algorithm is of polynomial time when the TSCs are input as K discrete values.
It is a pseudopolynomial time algorithm when each TSC is provided as a function of
time k.

Numerical example 2. Considering the four-job problem in Sect. 3, the jobs
have been sequenced in EDD and it can be deduced that K − d1 = 11 − 5 = 6.
Applying the above algorithm, we obtain F(6) = 14, F(5) = 17, F(4) = 18,
F(3) = 18, F(2) = 27, F(1) = 28, F(0) = +∞. Therefore, F∗

T = F∗
L =

{t + F(t)|, t = 0, 1, . . . , 6} = 6 + F(6) = 20, the maximum lateness and tardi-
ness problems have identical optimal solutions. Retracing the solution backwards
from the end, we obtain the optimal solution in which there is only one batch as
{s, J1, J2, J3, J4}(4−11), and the first three time slots are idle.

5 1|batch, non-inc-slotcost|
n∑

j=1
wjUj +

∑m
i=1 �Bi

The objective of the problem discussed in this section is to minimize the sum of the
total TSC and the weighted number of tardy jobs. The property of an optimal schedule
is introduced below.

Lemma 4. For problem 1|batch, non-inc-slotcost|
n∑

j=1
w jU j + ∑m

i=1 πBi , an optimal

sequence of on-time jobs can be determined by sequencing the on-time jobs in accor-
dance with the EDD rule.

The proof is omitted because it is similar to that for Lemma 3.
In terms of tardy jobs, there are two general scenarios. In the first scenario, cus-

tomers allow some jobs to be rejected or outsourced to another manufacturer, so the
manufacturer will reject processing the tardy jobs to save costs. The weight w j repre-
sents the penalty cost or outsourcing cost caused by job J j being rejected. The tardy
jobs do not yield any TSC. In the second scenario, the customer requires that all the
jobs must be processed by the manufacturer and cannot be rejected or outsourced. In
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this case, the weight w j represents the tardiness cost of job J j . Because the tardi-
ness costs are fixed, the tardy jobs can be backlogged and processed at the end of the
schedule to economize the total TSC.

We consider these two scenarios in the following section. According to Lemma 4,
all jobs are assumed to have been arranged according to the EDD rule as d1 ≤ d2 ≤
· · · ≤ dn .

5.1 Tardy jobs are rejected

For i ≥ 1, F(i , j , k) denotes the minimum total cost of jobs J1, J2, ..., J j , where Ji
is the first on-time job in the last batch of the partial sequence J1, J2, . . . , J j , and the
last on-time job in Ji , Ji+1, . . . , J j is completed no later than time k. Two cases are
presented as follows.

Case 1: The last on-time job in Ji , Ji+1, . . . , J j is completed at time k. The value
of F(i , j , k) is denoted as f 1(i , j , k) if J j ( j ≥ i) is an on-time job. If J j ( j > i) is
a tardy job, the value of F(i , j , k) is denoted as f 2(i , j , k).

Case 2: The last on-time job in Ji , Ji+1, . . . , J j is completed no later than time
k − 1.

According to the above definition, we have

F(i , j , k) =
{
min{F(i , j , k − 1), f 1(i , j , k), f 2(i , j , k)} for i , k ≥ 1;
+∞ for i ≥ 1 and k = 0.

(10)

For i = 0 and an arbitrary value of k, F(i , j , k) represents the summation of the
tardy penalties when the jobs J1, J2, ..., J j are all tardy and rejected, i.e.,

F(0, j , k) =
j∑

r=1

wr . (11)

Dynamic programming recursions are proposed for calculating f 1(i , j , k) and
f 2(i , j , k). For f 1(i , j , k), k ≤ di is a necessary condition for Ji to be an on-time
job under batch availability. Note that J j is an on-time job. If i < j , the last on-time
job before job J j is completed at time k − p j . If i = j , a setup time s is required
before processing J j , and all the on-time jobs before the current batch are completed
no later than k − s − p j . Therefore, we have

f 1(i , j , k) =
⎧
⎨

⎩

∑k
l=k−p j+1 πl + min{ f 1(i , j − 1, k − p j ), f 2(i , j − 1, k − p j )} if k ≤ di and i < j

∑k
l=k−s−p j+1 πl + min

0≤r≤i−1
F(r , i − 1, k − s − p j ) if k ≤ di and i = j

(12)

with the boundary conditions f 1(i , j , k) = +∞ , if k > di or k < s + p j .
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For f 2(i , j , k), job J j incurs a tardy penalty. We have

f 2(i , j , k) = w j + min{ f 1(i , j − 1, k), f 2(i , j − 1, k)} if k ≤ di and i < j
(13)

with the boundary conditions f 2(i , j , k) = +∞ if k > di , i = j , or k < s + pi .
The initial conditions are

f 1(1, 1, k) =
{∑k

l=k−s−p1 πl if k ≤ d1
+∞ if k > d1

(14)

and f 2(1, 1, k) = +∞.
The optimal objective value can be calculated by F∗ = min

0≤i≤n
F(i , n, K ). The

above recursion equations have O(n2K ) states, so dynamic programming can be
implemented in O(n2K ) time.

Theorem 3. Problem 1|batch, non-inc-slotcost|∑n
j=1 w jU j + ∑m

i=1 πBi can be

solved in O(max(n2K , K 2)) or O(n2K ) time in the case that tardy jobs are rejected.

Proof The correctness of the above algorithm is obvious, so we only analyze the time
complexity. O(n log n) time is required by reordering the jobs in EDD order. If the
TSCs are input as K discrete values, preparing the

∑b
l=a πl values will take O(K 2)

time for 1 ≤ a ≤ b ≤ K . Then, we have to implement dynamic programming in
O(n2K ) time. Therefore, the overall complexity can be determined as O(max(n2K ,
K 2)), indicating that the algorithm is of polynomial time.

If each TSC is provided as a function of time k, then obtaining each
∑b

l=a πl value
takes a constant time and requires no preparation. In this case, the algorithm is of
pseudopolynomial time, and its overall complexity can be determined as O(n2K ). �

Numerical example 3. Consider the four-job problem in Sect. 3. Applying the
above algorithm, the total cost is obtained as F∗ = F(4, 4, 11) = 23. Retracing the
solution backwards from the end, we obtain the optimal batch partition and time slot
allocation as {s, J2}(4−6), {s, J3}(7−8), and {s, J4}(10−11). This solution shows that
job J1 is a rejected job, and the first three time slots and the 9th time slot are idle.

5.2 Tardy jobs are backlogged

Now, the tardy jobs are considered to be backlogged, and their processing needs to be
completed by time K . In a schedule, let T denote the ending time of the last job. Then,
we give the property of an optimal schedule.

Lemma 5 All of the jobs whose due dates are not less than T (d j ≥ T ) and all of the
tardy jobs constitute the last batch in an optimal schedule.

Proof All the jobs whose due dates are not less than T are on-time jobs without a
tardiness penalty. Therefore, they can be processed as late as possible to reduce the
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total TSC. For the same purpose, all tardy jobs can also be processed as late as possible
due to their fixed tardiness penalties. Furthermore, the two types of jobs should be
combined to constitute the last batch to reduce the number of setups. Therefore, the
lemma is valid. �

For all tardy jobs, let t ′ represent their total processing time. Now, we focus on
the problem with the given t ′ and T . Let c(0 ≤ c ≤ n) represent the number of
jobs satisfying d j ≥ T . These on-time jobs are Jn−c+1, Jn−c+2, . . . , Jn in the EDD
job sequence. According to Lemma 5, Jn−c+1, Jn−c+2, . . . , Jn and all the tardy
jobs constitute the last batch, and the total processing time is P=t ′ + ∑n

j=n−c+1 p j .

Considering the setup time s, the total TSC of the last batch is
∑T

l=T−s−P+1 πl .
The on-time jobs in the partial sequence J1, J2, . . . , Jn−c are completed no later
than T ′ = T − s − P . In this case, we consider the remaining problem of how to
determine the tardy jobs, the partition of the on-time jobs in sequence J1, J2, . . . ,
Jn−c into batches, and the time slot allocation for batches. It is similar to the problem
in Sect. 5.1. Thus, we now modify the dynamic programming in Sect. 5.1 to handle
the remaining problem as follows.

Considering the partial sequence J1, J2, . . . , J j , ( j ≤ n − c), for i ≥ 1, F(i , j ,
k, t , T ) represents the minimum total cost of J1, J2, . . . , J j excluding the total TSC
of all tardy jobs, where

1. the last batch in the partial sequence is formed by all on-time jobs in Ji , Ji+1, . . . ,
J j ,

2. job Ji is the first on-time job in the last batch in J1, J2, . . . , J j ,
3. the last on-time job in Ji , Ji+1, . . . , J j is completed no later than time k,
4. the total processing time of all tardy jobs in sequence J1, J2, . . . , J j is t ,
5. the last batch of the entire sequence J1, J2, . . . , Jn is completed at time T .

There exist two cases:
Case 1: The last on-time job in Ji , Ji+1, . . . , J j is completed at time k. The value

of F(i , j , k, t , T ) is denoted as f 1(i , j , k, t , T ) if J j ( j ≥ i) is an on-time job and
f 2(i , j , k, t , T ) if J j ( j > i) is a tardy job.
Case 2: The last on-time job in Ji , Ji+1, . . . , J j is completed no later than time

k − 1.
By definition, we have.

F(i , j , k, t , T ) =
{
min{F(i , j , k − 1, t , T ), f 1(i , j , k, t , T ), f 2(i , j , k, t , T )} for i , k ≥ 1

+∞ for i ≥ 1 and k = 0
. (15)

In addition, we consider the case in which all jobs of J1, J2, . . . , J j are tardy,
i.e., they are all processed in the last batch of the entire schedule. Setting i = 0; if
t = ∑ j

r=1 pr , let F(i , j , k, t , T ) represent the sum of the tardiness penalties of J1,
J2, . . . , J j . Then, we have

F(0, j , k, t , T ) =
⎧
⎨

⎩

∑ j

r=1
wr if t =

∑ j

r=1
pr

+∞ otherwise
. (16)
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Dynamic programming recursions are proposed for calculating f 1(i , j , k, t , T )

and f 2(i , j , k, t , T ) as below. For f 1(i , j , k, t , T ), we have

f 1(i , j , k, t , T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k∑

l=k−p j+1
πl + min{ f 1(i , j − 1, k − p j , t , T ), f 2(i , j − 1, k − p j , t , T )} if k ≤ di and i < j

k∑

l=k−s−p j+1
πl + min

0≤r≤i−1
F(r , i − 1, k − s − p j , t , T ) if k ≤ di and i = j

(17)

with the boundary conditions

f 1(i , j , k, t , T ) = +∞ if

⎧
⎪⎨

⎪⎩

k > di
k < s + p j

t < 0

. (18)

For f 2(i , j , k, t , T ), job J j incurs a tardiness penalty. It yields

f 2(i , j , k, t , T ) = w j

+ min{ f 1(i , j − 1, k, t − p j , T ), f 2(i , j − 1, k, t − p j , T )} if k ≤ di and i < j
(19)

with the boundary conditions

f 2(i , j , k, t , T ) = +∞ if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k > di
k < s + pi
t < p j

i = j

. (20)

The initial conditions are

f 1(1, 1, k, t , T ) =
{∑k

l=k−s−p1 πl if s + p1 ≤ k ≤ d1 and t = 0
+∞ otherwise

. (21)

and f 2(1, 1, k, t , T ) = +∞.
Given the value of t ′ and T , the minimum total cost of jobs J1, J2, . . . , Jn−c

excluding the total TSC of all the tardy jobs is determined by

min
0≤i≤n−c

F(i , n − c, T ′, t ′, T ). (22)

Adding the total TSC (i.e.
∑T

l=T−s−P+1 πl ) consumed by the last batch of the entire
schedule to the above formula, we can obtain the total cost of the entire schedule as

min
0≤i≤n−c

F(i , n − c, T ′, t ′, T ) +
T∑

l=T−s−P+1

πl . (23)
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Under the assumption that the last job is completed at time T , by enumerating
different values of t ′ (0 ≤ t ′ ≤ ∑n−c

r=1 pr ) in O(K ) iterations, the problem can be
solved by

F(T ) = min
0≤t ′≤∑n−c

r=1 pr
{ min
0≤i≤n−c

F(i , n − c, T ′, t ′, T ) +
T∑

l=T−s−P+1

πl} (24)

If F(T ) = +∞, it shows that the problem is infeasible for time T .
Based on the above discussions, the problem 1|batch,

non−inc−slot cos t |∑n
j=1 w jU j + ∑m

i=1 πBi in the case that tardy jobs are
backlogged can be solved by enumerating different values of T in O(K ) iterations.
Specifically, it can be solved by

F∗ = min{F(T )|s +
n∑

r=1

pr ≤ T ≤ K } (25)

To obtain the optimal solution, performing the above dynamic programming
requires O(n2K 3) time. Therefore, the following theorem is obtained, of which the
proof is omitted because it is similar to that of Theorem 3.

Theorem 4. Problem 1|batch, non−inc−slot cos t |
n∑

j=1
w jU j + ∑m

i=1 πBi can be

solved in O(n2K 3) time for the case in which tardy jobs are backlogged.

Numerical example 4. For the four-job problem in Sect. 3, 8 ≤ T ≤ 11. Applying
the above algorithm, we obtain F(8) = 65, F(9) = 51, F(10) = 37 and F(11) = 28.
By Eq. (25), the total cost is obtained as F∗ = min{F(T )|8 ≤ T ≤ 11} = F(11) =
28. Retracing the solution backwards from the end, we obtain the optimal batch parti-
tion and time slot allocation as {s, J2, J3}(3−6), {s, J1, J4}(7−11). This solution shows
that the first two time slots are idle.

6 Conclusions

Single machine batch scheduling problems with non-increasing TSCs arise from the
continuous casting stage of steel production considering the time-of-use electricity
prices. In this real production, one charge of molten steel is regarded as a job, a cast
is regarded as a batch, and the time required to replace the tundish is regarded as the
setup time. In a production planning periodwhere electricity prices are non-increasing,
all the TSCs can be obtained according to the machine power and electricity prices.
To improve production efficiency and reduce electricity costs, the objectives are to
minimize the sum of the total TSC and one traditional measure (such as the total flow
time, maximum lateness or tardiness, and weighted number of tardy jobs). For the first
two traditional measures, we first determine the optimal job sequence, and then the
corresponding dynamic programming is proposed for determining the batch partition
and the time slot allocation. For the weighted number of tardy jobs, two cases are taken
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into account, i.e., tardy jobs are rejected or backlogged. To minimize the objectives
of these two cases, we first determine the optimal sequence of the on-time jobs and
then give the corresponding dynamic programming for determining the tardy jobs,
the batch partition of the on-time job, and the time slot allocation. All the algorithms
presented in this paper are of polynomial time in the case that the TSC’s input size is
O(K ).

For future research, the batch scheduling problem with non-increasing TSCs can
be extended to the case with release times because the jobs arrive dynamically in
many real productions. In addition, problems with parallel machine environments
or flowshop environments are also worth studying, as they often appear in modern
industrial manufacturing systems.
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