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Abstract
A proximal bundle algorithm is proposed for solving unconstrained nonsmooth non-
convex optimization problems. At each iteration, using already generated information,
the algorithm defines a convex model of the augmented objective function. Then by
solving a quadratic subproblem a new candidate iterate is obtained and the algorithm
is repeated. The novelty in our approach is that the objective function can be any
arbitrary locally Lipschitz function without any additional assumptions. The global
convergence, starting from any point, is also studied. At the end, some encouraging
numerical results with a MATLAB implementation are reported.

Keywords Proximal bundle method · Nonsmooth optimization · Nonconvex
optimization · Global convergence

1 Introduction

Consider the following unconstrained optimization problem

min f (x),

x ∈ R
n, (1)

where Rn denotes the n-dimensional Euclidean space and f : Rn → R is a locally
Lipschitz function, but possibly nonsmooth and nonconvex.
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Several numericalmethods have been proposed for solving nonsmooth optimization
problems. These methods include subgradient algorithms [1,3,23,24], bundle methods
[5,8,9,11,12,20], gradient sampling algorithms [4,19], the trust region algorithm [10]
and the conjugate gradient method [16].

Bundle methods were first introduced by Lemaréchal [20] and have been devel-
oped over the years for various problems. Proximal bundle methods are currently
considered among the most efficient methods for nonsmooth problems, see for convex
problems [21] and the nonconvex case [18]. Recently the proximal bundle algorithm
is developed in [8] for the problem (1) with lower−C2 and in [9] with lower−C1

objective functions. Moreover this method is generalized for the problem (1) with
lower−C1 and upper−C1 objective functions in [6] and with DC objective functions
in [17]. In addition, this method is extended for constrained optimization problems
in [5] with lower−C1 or upper−C1 functions and in [11,12] with regular functions.
More recently, the proximal bundle algorithm is studied for nonsmooth multiobjective
problems in [13,14]

In this paper, we study the redistributed proximal bundlemethod of [8,9] to the class
of all locally Lipschitz functions, which is less restrictive than lower−C2, lower−C1

and upper−C1 assumptions. We strengthen the existing convergence results for this
algorithm and introduce a slightly revised version for which convergence results
are established for locally Lipschitz objective function without requiring any addi-
tional assumptions. To handle nonconvexity, the augmented objective function and its
corresponding piecewise linear approximation are used. Iterates of the proximal bun-
dle algorithm are generated by solving a quadratic programming subproblem. Each
quadratic programming is defined by means of the piecewise linear model of the aug-
mented objective function, stabilized by a quadratic term centered at the best point
obtained so far (which is referred to the latest serious step). The quadratic term is added
to guarantee the existence and uniqueness of the minimum point and also to keep the
approximation local enough. At the end by minimizing the obtained model a trial iter-
ate and new bundle elements are obtained. Different from [8,9,12], we do not require
any lower-C2, lower-C1 or regularity assumption and the augmented function can be
convex or nonconvex. Moreover unlike [8,9], we employ the upper envelope model of
[5,11,12] and by utilizing it we connect the convex model with the original nonconvex
problem to analyze the global convergence. This modification and also employing
different techniques in the convergence theory enable us to drive convergence results
with weaker assumptions than [8,9]. We prove that if the algorithm stops with a finite
number of iterations, then the latest serious iterate is a stationary point. On the other
hand, if the algorithm generates a sequence of iterates, then two cases may happen. (I)
If we have a finite number of serious iterates with infinite number of null iterates, then
the latest serious iterate is a stationary point. (II) If we obtain an infinite number of
serious iterates, then every accumulation point of this sequence is a stationary point.
At the end, the algorithm is implemented in the MATLAB environment and applied
on some nonsmooth test problems. Numerical results illustrate the efficiency of the
proximal bundle algorithm in the practical computation.

Throughout the paper, we use the following notation and definitions. We denote
by 〈u, v〉 := ∑n

i=1 uivi the inner product of two vectors u, v ∈ R
n and by ‖ · ‖ the
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A proximal bundle method for nonsmooth nonconvex functions 1497

standard Euclidean norm. For x ∈ R
n and ε > 0, Bε(x) (B̄ε(x)) is an open (closed)

ball of the radius ε centered at x .
The function f : Rn → R is convex if f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y),

for all x, y ∈ R
n and λ ∈ [0, 1]. The subdifferential of a convex function f at x is

given by ∂c f (x) := {ξ ∈ R
n| f (y) ≥ f (x) + 〈ξ, y − x〉, ∀y ∈ R

n}. For any ε ≥ 0,
the ε−subdifferential [21] of a convex function f at x is defined as

∂ε f (x) := {ξ ∈ R
n| f (y) ≥ f (x) + 〈ξ, y − x〉 − ε, ∀y ∈ R

n}. (2)

A function f : Rn → R is said to be locally Lipschitz of rank L > 0 at x ∈ R
n

if for some ε > 0 we have | f (y) − f (z)| ≤ L‖y − z‖ for all y, z ∈ Bε(x). The
Clarke subdifferential (generalized gradient) of f at x is defined as ∂ f (x) := {ξ ∈
R
n| 〈ξ, d〉 ≤ f ◦(x; d), ∀d ∈ R

n} and it coincides with the convex subdifferential
for every convex function, where f ◦(x; d) is a Clarke directional derivative. Each
element ξ ∈ ∂ f (x) is called a subgradient of f at x . It is well-known that ∂ f (x) is a
nonempty convex compact set in R

n . Also the Clarke subdifferential ∂ f (x) is upper
semicontinuous at every x ∈ R

n .
This paper is organized as follows. The new algorithm and its convergence analysis

are described in Sect. 2. The corresponding encouraging computational results are
reported in Sect. 3.

2 The proximal bundle algorithm

Suppose that xl is the latest serious iterate, l and k are the serious iteration counter
and the iteration counter, respectively. We use the notationsLk and {y j } j∈Lk to denote
the index set and the set of bundle points, respectively. Assume that the latest serious
iterate will be one of the bundle points: xl ∈ {y j } j∈Lk . As usual in the bundle methods,
generated information is used to obtain a piecewise linear model and also a new iterate.
Here f is locally Lipschitz, therefore it is possibly nonconvex. Motivated by the
presented method in [8,9,11,12] for nonconvex cases, we use the augmented function
as follows fηk (·, xl) := f (·) + ηk

2 ‖ · −xl‖2, where ηk ∈ R is a positive parameter,
that is adjusted dynamically.

The piecewise linear model for the augmented function fηk is formed at the kth
iteration as follows:

Mk(y, xl) := f (xl) + max
j∈Lk

{−clj + 〈ξ lj , y − xl〉}, (3)

where ξ j ∈ ∂ f (y j ), elj := f (xl) − f (y j ) − 〈ξ j , xl − y j 〉, clj := elj + ηkblj ,

ξ lj := ξ j + ηkdlj , dlj := y j − xl and blj := ‖y j−xl‖2
2 , the index set at the

kth iteration is Lk ⊆ {1, 2, . . . , k} and the bundle of information is defined as

Bk ⊆ ⋃
j∈Lk

{(
ξ j , elj , b

l
j , d

l
j

)}
. Our aim is to keep clj , j ∈ Lk nonnegative, for
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this purpose in our setting we take

ηk ≥ max{ max
j∈Lk ,y j �=xl

−2elj
‖y j − xl‖2 , ω} + ω, (4)

where ω > 0 is a positive constant. The parameter ηk is chosen motivated by [8,9,12].
By using (4), for all j ∈ Lk such that y j �= xl , we have clj = elj + ηk

2 ‖y j − xl‖2 ≥
ω
2 ‖y j − xl‖2 ≥ 0. On the other hand, if y j = xl we deduce clj = 0. Therefore

clj ≥ 0 for all j ∈ Lk . This term implies that the augmented linearization errors, i.e.,

clj = elj + ηkblj remain positive for all j ∈ Lk and y j �= xl , and in addition we have

clj = elj + ηkb
l
j ≥ ω

2
‖y j − xl‖2. (5)

The relation (5) is the main key in the proof of parts (ii) and (iv) of Lemma 1. Taking
the maximum of the term in (4) with ω yields positivity of ηk , and adding the positive
parameter ω makes ηk satisfy (5).

Since the latest serious iterate is one of the bundle points, it follows that there
exists j(l) ∈ Lk such that xl = y j(l). So we get Mk(xl , xl) = f (xl) +
max j∈Lk {−clj } = f (xl). In addition by (3) and Mk(xl , xl) = f (xl) we obtain

Mk(y, xl) ≥ Mk(xl , xl) + 〈ξ lj , y − xl〉 − clj , for all y ∈ R
n and j ∈ Lk . Using

the definition of the ε−subdifferential in (2) we conclude

ξ lj ∈ ∂clj
Mk(xl , xl), ∀ j ∈ Lk . (6)

To generate the next iterate yk+1, our bundle method chooses a proximal parameter
μk > 0 and solves the following quadratic program

min
y∈Rn

Mk(y, xl) + μk

2
‖y − xl‖2. (7)

Clearly yk+1 is unique, since the objective function is strictly convex. Set dk+1 :=
yk+1 − xl and vk+1 := Mk(yk+1, xl) − f (xl). If yk+1 = xl , then vk+1 = 0 and
the algorithm stops. Therefore we assume yk+1 �= xl . By uniqueness of yk+1 as the
solution of the problem (7), we get Mk(yk+1, xl) + μk

2 ‖yk+1 − xl‖2 < Mk(xl , xl) +
μk
2 ‖0‖2 = Mk(xl , xl) = f (xl). On the other hand, using μk

2 ‖yk+1 − xl‖2 ≥ 0, we
have Mk(yk+1, xl) < f (xl) and vk+1 < 0.

The problem (7) can be rewritten in the following smooth form

min v + μk

2
‖y − xl‖2

〈ξ lj , y − xl〉 − clj ≤ v, ∀ j ∈ Lk,

y ∈ R
n, v ∈ R. (8)
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The quadratic dual problem of the problem (8) is formulated as follows:

min
1

2μk
‖

∑

j∈Lk

λ jξ
l
j‖2 +

∑

j∈Lk

λ j c
l
j

∑

j∈Lk

λ j = 1, λ j ≥ 0, ∀ j ∈ Lk . (9)

If λ j for all j ∈ Lk solve the problem (9), then a unique solution of the problem (8)
(using the relationship between the primal and dual solutions) is obtained in the form

dk+1 = − 1

μk

∑

j∈Lk

λ jξ
l
j , and vk+1 = −

( 1

μk
‖

∑

j∈Lk

λ jξ
l
j‖2 +

∑

j∈Lk

λ j c
l
j

)
, (10)

where yk+1 = dk+1 + xl .
Now the new trial iterate is computed (i.e., yk+1), we first check whether it provides

sufficient decrease of the objective function as compared to the latest serious iterate.
If the descent is sufficient, then the corresponding point is declared as a new serious
iterate (a so-called serious iteration). More precisely, when yk+1 satisfies the sufficient
descent test

f (yk+1) ≤ f (xl) + mLvk+1, (11)

wheremL ∈ (0, 1), then we have a new serious iterate and set xl+1 = yk+1. Therefore
the model Mk(·, xl) should be updated and any element in Bk that is depended on l
should be redefined. Motivated by the formulae (12) in [8], we update the elements in
Bk according to the following relations:

el+1
j = elj + f (xl+1) − f (xl) − 〈ξ j , xl+1 − xl〉, (12a)

bl+1
j = blj + 1

2
‖xl+1 − xl‖2 − 〈dlj , xl+1 − xl〉, (12b)

dl+1
j = dlj − (xl+1 − xl). (12c)

If (11) does not hold, then yk+1 is a null iterate and the latest serious iterate
xl remains unchanged (a so-called null iteration). In this case the model will be
improved by adding new information to the bundle. For this purpose we update
the index set and the bundle, that is Lk+1 = Lk

⋃{k + 1} and also Bk+1 =
Bk

⋃{(ξk+1, elk+1, b
l
k+1, d

l
k+1)}. After that a new iterate yk+2 can be calculated and

the algorithm is repeated.We perform null steps until (11) is satisfied and the sufficient
descent is reached.

Now we are in position to state the proximal bundle algorithm to solve the
problem (1).
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Algorithm 1 : The proximal bundle algorithm
1: Initialization: Choose the parametermL ∈ (0, 1) and the stopping tolerance tol ≥ 0. Choose a starting

point y1 ∈ R
n , set x1 := y1, and compute f (y1) and ξ1 ∈ ∂ f (y1). Set k := 1, l := 1, L1 := {1},

B1 = {(ξ1, e11, d11 , b11)}.
2: New point generation and stopping test: Select ηk > 0 as in (4) and using (3) formulate Mk (y, xl ).

Select a proximal parameter μk > 0 and by solving the subproblem (7) obtain yk+1. Compute vk+1, if
−vk+1 ≤ tol, stop.

3: Descent condition and improving the bundle: Compute f (yk+1). If (11) satisfies, then yk+1 is
a serious iterate. Otherwise, yk+1 is a null iterate. Set Lk+1 = Lk ∪ {k + 1} and Bk+1 = Bk ∪
{(ξk+1, e

l
k+1, d

l
k+1, b

l
k+1)}.

4: Updating the bundle: If yk+1 is a serious iterate, then set xl+1 = yk+1, f (xl+1) = f (yk+1) and
l = l + 1. Update the bundle elements Bk according to (12a)–(12c).

5: Loop: Set k = k + 1 and go to Step 2.

Remark 1 In the sequel, we suppose that {ηk}k is bounded. Using (4), we deduce that
ηk ≥ 2ω for all k, therefore we assume that there exists η̄ such that 2ω ≤ ηk ≤ η̄ for
all k. Since the value of η̄ is not needed in the performance and the analysis of the
algorithm, this assumption is not restrictive on the implementation of the algorithm.
The boundedness of {ηk}k has been considered in [9] with lower−C1 functions and
in [11,12] with regular functions. However we consider this assumption with locally
Lipschitz functions.

For the analytical purpose, motivated by [5,11,12,22], we define the upper envelope
model associated with the cutting plane. Assume that B̄R(x) is a fixed closed ball
large enough such that it contains all possible trial steps y+. Set B(x) := {y+| y+ ∈
B̄R(x), y+ is a trial point}. The upper envelope model M↑(·, x) : Rn → R is defined,
for the objective function f corresponding with a given point x ∈ R

n , as

M↑(y, x) := f (x) + sup
2ω≤η≤η̄, y+∈B(x), ξ∈∂ f (y+)

{my+,ξ,η(y, x)},

where 2ω ≤ η ≤ η̄ with η̄ defined in Remark 1. The planemy+,ξ,η(y, x) is the cutting
plane at the serious iterate x and the trial step y+ which is defined bymy+,ξ,η(y, x) :=
−ω

2 ‖y+ −x‖2+〈ξ +η(y+ −x), y−x〉. The boundedness of B̄R(x) and the definition
of η imply thatM↑(·, x) is defined everywhere. Some beneficial properties of the upper
envelope model M↑(·, x) are stated in Lemma 1. These results can be found in [5,
Lemma 6.1], however the definition of the upper envelope model M↑(·, x) and its
cutting planes are different from [5]. The proof of these results follows immediately
from [12, Lemma 5] with slight modifications.

Lemma 1 Suppose that f : Rn → R is a locally Lipschitz function, then the following
hold:

(i) M↑(·, x) is a convex function.
(ii) Mk(·, x) ≤ M↑(·, x), ∀k.
(iii) M↑(x, x) = f (x).
(iv) ∂cM↑(x, x) ⊆ ∂ f (x).
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A proximal bundle method for nonsmooth nonconvex functions 1501

Nowwe examine the convergence properties of Algorithm 1.We consider different
cases that may happen during the implementation of it and in each case we state the
results.

Theorem 1 Assume that f is a locally Lipschitz function, tol = 0 and μk > 0, for all
k. If Algorithm 1 stops with a finite number of iterations, then the latest serious iterate
xl is a stationary point for the problem (1).

Proof According to the assumption, Algorithm 1 stops with a finite number of iter-
ations. This can happen at Step 2 with −vk+1 ≤ 0 and since −vk+1 ≥ 0 we obtain
−vk+1 = 0. By definition −vk+1 = 1

μk
‖∑

j∈Lk
λ jξ

l
j‖2 + ∑

j∈Lk
λ j clj and using

μk > 0, we deduce

‖
∑

j∈Lk

λ jξ
l
j‖2 = 0, and

∑

j∈Lk

λ j c
l
j = 0. (13)

By (6) we have ξ lj ∈ ∂clj
Mk(xl , xl), and consequently Mk(y, xl) ≥ Mk(xl , xl) +

〈ξ lj , y − xl〉 − clj , for all y ∈ R
n . Taking into account that λ j ≥ 0 and

∑
j∈Lk

λ j =
1, we get Mk(y, xl) ≥ Mk(xl , xl) + 〈∑ j∈Lk

λ jξ
l
j , y − xl〉 − ∑

j∈Lk
λ j clj . By

Mk(xl , xl) = f (xl) and Lemma 1 (ii)–(iii), We conclude that M↑(y, xl) ≥
M↑(xl , xl) + 〈∑ j∈Lk

λ jξ
l
j , y − xl〉 − ∑

j∈Lk
λ j clj . Using (13) and Lemma 1 (i),

(iv), we get 0 ∈ ∂cM↑(xl , xl) and also 0 ∈ ∂ f (xl). Consequently xl , i.e., the latest
serious iterate is a stationary point and the proof is completed. ��

From now on, we assume that Algorithm 1 does not stop and generates an infi-
nite sequence of iterates. We consider different cases that may happen during the
performance of Algorithm 1 with infinite cycles.

Theorem 2 Assume that f is a locally Lipschitz function, {ηk}k is bounded above and
μk ≤ μk+1 ≤ μ̄ for all k. If Algorithm 1 is performed infinitely with a finite number
of serious iterations, then the latest serious iterate xl is a stationary point for the
problem (1).

Proof Assume that Algorithm 1 produced a finite number of serious iterates that fol-
lows with infinite number of null iterates. Suppose that yk+1 is the optimal solution
of the problem (8) and dk+1 = yk+1 − xl . In this process the latest serious point xl

is constant and we demonstrate that it is a stationary point. First, we show that the
sequence {Mk(yk+1, xl) + μk

2 ‖dk+1‖2}k is bounded above and nondecreasing.
Since the problem (7) is strictly convex, it follows that its solution (i.e., yk+1) is

unique. Thus Mk(yk+1, xl)+ μk
2 ‖dk+1‖2 < Mk(y, xl)+ μk

2 ‖y− xl‖2, for all y ∈ R
n .

Now set y = xl , then Mk(yk+1, xl) + μk
2 ‖dk+1‖2 < Mk(xl , xl) = f (xl). Therefore

the sequence {Mk(yk+1, xl)+ μk
2 ‖dk+1‖2}k is bounded from above by f (xl). It is good

to note that xl is constant here. Next let us prove that this sequence is nondecreasing
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1502 N. Hoseini Monjezi, S. Nobakhtian

Mk+1(yk+2, x
l) + μk+1

2
‖dk+2‖2

≥ Mk+1(yk+2, x
l) + μk

2
‖dk+2‖2

≥ f (xl) − clj + 〈ξ lj , yk+2 − xl〉 + μk

2
‖dk+2‖2

= f (xl) − clj + 〈ξ lj , dk+2 − dk+1〉 + 〈ξ lj , dk+1〉 + μk

2
‖dk+2 − dk+1 + dk+1‖2

= f (xl) − clj + 〈ξ lj , dk+2 − dk+1〉 + 〈ξ lj , dk+1〉
+ μk

2
‖dk+2 − dk+1‖2 + μk

2
‖dk+1‖2 + μk〈dk+2 − dk+1, dk+1〉,

where the first inequality follows from μk ≤ μk+1, the second inequality holds by
the definition of Mk+1(·, xl) and the other relations are obvious. The above relation
is satisfied for all j ∈ Lk+1 and also Lk+1 = Lk

⋃{k + 1}. For all j ∈ Lk , multi-
plying each relation with corresponding λ j , summing up and by using the fact that∑

j∈Lk
λ j = 1, we arrive at

Mk+1(yk+2, x
l) + μk+1

2
‖dk+2‖2 ≥ f (xl) −

∑

j∈Lk

λ j c
l
j + 〈

∑

j∈Lk

λ jξ
l
j , dk+2 − dk+1〉

+ 〈
∑

j∈Lk

λ jξ
l
j , dk+1〉 + μk

2
‖dk+2 − dk+1‖2 + μk

2
‖dk+1‖2 + μk〈dk+2 − dk+1, dk+1〉.

Since dk+1 = − 1
μk

∑
j∈Lk

λ jξ
l
j , we have

Mk+1(yk+2, x
l) + μk+1

2
‖dk+2‖2

≥ f (xl) −
∑

j∈Lk

λ j c
l
j + μk

2
‖dk+1‖2 + 〈

∑

j∈Lk

λ jξ
l
j ,−

1

μk

∑

j∈Lk

λ jξ
l
j 〉

+ μk

2
‖dk+2 − dk+1‖2

= f (xl) − ( ∑

j∈L,k

λ j c
l
j + 1

μk
‖

∑

j∈Lk

λ jξ
l
j‖2

) + μk

2
‖dk+1‖2 + μk

2
‖dk+2 − dk+1‖2

= f (xl) + vk+1 + μk

2
‖dk+1‖2 + μk

2
‖dk+2 − dk+1‖2

= Mk(yk+1, x
l) + μk

2
‖dk+1‖2 + μk

2
‖dk+2 − dk+1‖2

≥ Mk(yk+1, x
l) + μk

2
‖dk+1‖2.

Therefore the sequence {Mk(yk+1, xl) + μk
2 ‖dk+1‖2}k is nondecreasing and by its

boundedness, we deduce this sequence is convergent. Passing to the limit in the above
inequality when k → ∞ we have limk→∞ μk

2 ‖dk+1 − dk‖2 ≤ 0. By assumption
that μk ≤ μk+1 ≤ μ̄, we obtain μk ≥ μk∗ that is {μk}k is bounded below by
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A proximal bundle method for nonsmooth nonconvex functions 1503

μk∗ . This implies that dk+1 − dk → 0, as k → ∞ and thus {dk}k is bounded.
Using the definition of Mk+1(yk+2, xl), for all j ∈ Lk+1 we have Mk+1(yk+2, xl) ≥
f (xl) − clj + 〈ξ lj , yk+2 − xl〉. Set j = k + 1 in this relation, we obtain

Mk+1(yk+2, x
l) ≥ f (xl) − clk+1 + 〈ξ lk+1, dk+2〉

= f (yk+1) + 〈ξk+1, x
l − yk+1〉 − ηk+1

2
‖yk+1 − xl‖2 + 〈ξ lk+1, dk+2〉

= f (yk+1) − 〈ξk+1, dk+1〉 − ηk+1

2
‖dk+1‖2 + 〈ξ lk+1, dk+2〉

≥ f (yk+1) − 〈ξk+1, dk+1〉 − ηk+1‖dk+1‖2 + 〈ξ lk+1, dk+2〉
= f (yk+1) − 〈ξk+1, dk+1〉 − ηk+1〈yk+1 − xl , dk+1〉 + 〈ξ lk+1, dk+2〉
= f (yk+1) − 〈ξk+1 + ηk+1(yk+1 − xl), dk+1〉 + 〈ξ lk+1, dk+2〉
= f (yk+1) + 〈ξ lk+1, dk+2 − dk+1〉
> f (xl) + mLvk+1 + 〈ξ lk+1, dk+2 − dk+1〉.

By the definition of vk+1 we have vk+2 = Mk+1(yk+2, xl) − f (xl) and get

0 ≤ −vk+2 = f (xl) − Mk+1(yk+2, x
l) < −mLvk+1 − 〈ξ lk+1, dk+2 − dk+1〉.

Since dk+2 − dk+1 → 0, as k → ∞, mL ∈ (0, 1) and {ξ lk+1}k is bounded (since
{dlk+1}k and {ηk}k are bounded and f is locally Lipschitz), it follows that−vk+1 → 0.
By the definition of vk+1 in (10) and clj ≥ 0 for all j ∈ Lk and also μk ≤ μ̄ we get

∑

j∈Lk

λ jξ
l
j → 0, and

∑

j∈Lk

λ j c
l
j → 0, k → ∞. (14)

Using (6) and by the definition of the ε−subdifferential we deduce Mk(y, xl) ≥
f (xl) + 〈ξ lj , y − xl〉 − clj . By multiplying λ j ≥ 0 in this relation, summing up and

using the fact that
∑

j∈Lk
λ j = 1 we obtain Mk(y, xl) ≥ f (xl) + 〈∑ j∈Lk

λ jξ
l
j , y −

xl〉 − ∑
j∈Lk

λ j clj . From Lemma 1 (ii)–(iii), we get M↑(y, xl) ≥ M↑(xl , xl) +
〈∑ j∈Lk

λ jξ
l
j , y − xl〉 − ∑

j∈Lk
λ j clj . Taking the limit as k → ∞ and by (14), we

deduce M↑(y, xl) ≥ M↑(xl , xl) + 〈0, y − xl〉. Hence by Lemma 1 (i) and (iv) we
obtain that 0 ∈ ∂cM↑(xl , xl) and so 0 ∈ ∂ f (xl). ��
Theorem 3 Assume that f is locally Lipschitz and there exists μ̄ > 0 such thatμk ≤ μ̄

for all k. In addition suppose that the level set A(x1) := {x ∈ R
n, f (x) ≤ f (x1)} is

bounded. Then every accumulation point of the serious iterate sequence is stationary
for the problem (1).

Proof By assumption there exists a sequence {xl}l . The method is descent type thus
we have {xl}l ⊆ A(x1). Since f is locally Lipschitz and A(x1) is bounded, the
sequence { f (xl)}l is bounded below. On the other hand, for each l we have f (xl+1) ≤
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f (xl) + mLvk+1(l). Since f is bounded below we deduce vk+1(l) → 0, as l → ∞.
Using μk ≤ μ̄ we deduce

∑

j∈Lk

λ jξ
l
j → 0, and

∑

j∈Lk

λ j c
l
j → 0, l → ∞. (15)

On the other hand, by assumption we have A(x1) is bounded. Therefore the
sequence {xl}l is bounded and it has a convergent subsequence {xl}l∈A ⊆ {xl}l thus
there exists x∗ ∈ R

n such that xl →l∈A x∗. By (6) we have ξ lj ∈ ∂clj
Mk(xl , xl)

and consequently Mk(y, xl) ≥ Mk(xl , xl) − 〈ξ lj , x − xl〉 − clj for all y ∈ R
n . By

Lemma 1 (ii)–(iii), λ j ≥ 0 and
∑

j∈Lk
λ j = 1 we have M↑(y, xl) ≥ M↑(xl , xl) +

〈∑ j∈Lk
λi, jξ

l
j , y− xl〉−∑

j∈Lk
λ j clj . Passing to the limit in the above relation when

l ∈ A and l → ∞ and using (15), we obtain M↑(y, x∗) ≥ M↑(x∗, x∗)+〈0, y − x∗〉.
By Lemma 1 (i) and (iv), we deduce 0 ∈ f (x∗) and thus x∗ is a stationary point. ��

3 Numerical experiments

In this section, we report the results of numerical experiments for the proposed algo-
rithm and compare it with two existing algorithms in the literature. They are SolvOpt
(Solver for local nonlinear optimization problems) [24] and HANSO 2.2 (Hybrid
Algorithm for Nonsmooth Optimization, Version 2.2) [4,15]. All codes are written
in MATLAB R2016a and run on a PC Intel Core I5 with CPU 2.5 GHZ and 4GB of
RAM. The number of function evaluations and subgradient evaluations are considered
as a measure of efficiency. For SolvOpt and HANSO 2.2, the parameters are set to the
default values suggested by the respective codes and the stopping parameter is consid-
ered tol := 10−8. We set the parameters of Algorithm 1 as tol := 10−8, mL := 10−2

and ω := 1.2. The proximal parameter is considered one in all iterations, i.e., μk := 1
for all k. The size of the bundle needs to be limited, we choose Lmax := n + 50 as the
maximal size for the bundle, where n is the dimension of each problem. The index set
Lk and the bundle of information Bk are updated as in Step 3 if |Lk | < Lmax, and if
|Lk | = Lmax, then the set Lk+1 = Lk ∪ {k + 1} \ {k − Lmax} is used and accordingly
the bundle is updated. The quadratic programming solver is quadprog.m, which is
available in the MATLAB optimization toolbox. In our results, to select ηk we use the
relation (4) with equality.

To measure the efficiency of the considered algorithms two classes of test problems
of [2] are used. The first class includes the problems 1–10 (denoted by P1–P10) and
21–30 (called by P11–P20) with constant number of variables and the second class
can be formulated with any number of variables.

We first applied the algorithms for solving problems P1-P20 by applying the given
starting points from [2]. Results are presented inTable 1. In this table,we state the value
of the objective function at the final point by ffinal, the number of function evaluations
and the number of subgradient evaluations by n f and nξ , respectively. The numerical
experiments demonstrate that Algorithm 1 has an acceptable behaviour for nonsmooth
problems, since it uses the least number of function evaluations for 17 problems and
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Table 1 Results of P1–P20 with given starting points

No. Problem n Algorithm 1 HANSO 2.2 SolvOpt

n f , nξ ffinal n f , nξ ffinal n f nξ ffinal

P1 CB2 2 48 1.9522 128 1.9522 99 32 1.9522

P1 CB2 2 47 1.9522 108 1.9522 92 31 1.9522

P2 CB3 2 20 2 192 2.0000 81 30 2.0000

P3 DEM 2 36 − 3.0000 92 − 2.9998 250 92 − 3.0000

P4 QL 2 24 7.2000 131 7.2000 85 27 7.2000

P5 LQ 2 17 − 1.4142 156 − 1.4142 59 14 − 1.4142

P6 Miffilin 1 2 128 − 1.0000 32 4.0000 55 34 − 0.8286

P7 Wolfe 2 69 − 8.0000 96 − 8.0000 120 34 − 8

P8 Rosen-Suzuki 4 96 − 44.0000 140 − 44.0000 147 55 − 44.0000

P9 Davidon 4 69 115.7064 356 115.7064 211 75 115.7064

P10 Shor 5 92 22.6002 410 22.6002 118 46 22.6002

P11 Crescent 2 15 0.0002 175 0.0000 261 50 0.0000

P12 Miffilin 2 2 28 − 1.0000 247 − 1.0000 85 27 − 1.0000

P13 WF 2 73 0.0000 91 0.0000 172 33 0.0000

P14 Spiral 2 615 0.0769 96 0.0774 291 128 0.0743

P15 EVD 52 3 53 3.5997 131 3.5997 144 46 3.5997

P16 PBC 3 3 7 0 17 0 55 4 0

P17 Brad 3 87 0.0508 468 0.0508 118 37 0.0508

P18 Kowalik-Osborne 4 615 0.0081 860 0.0081 248 79 0.0081

P19 Polak 6 4 102 − 43.9897 50 − 41.9430 674 225 − 38.6919

P20 OTE5 4 61 0.0074 2622 0.0029 2445 662 0.0027

Average 115.1 329.9 290.5 88.05

HANSO 2.2 needs the least number of function evaluations for 3 problems. On the
other hand, SolvOpt uses the least number of subgradient evaluations for 12 problems
and Algorithm 1 needs the least number of subgradient evaluations for 6 problems.
For more details and comparison average values of evaluations see Table 1.

At the next step, we use 20 random generated starting points (by using randn.m
function in MATLAB) for each problem and the starting points are the same for all
algorithms. To compare the performance of the algorithms, we apply the indicators:
nb− the number of successful runs considering the best known solution. We say that
an algorithm finds a solution to a problem with a tolerance ε > 0, if | ffinal − f ∗|/(1+
| f ∗|) ≤ ε, where f ∗ is the optimal value. In our experiments ε = 5 × 10−4. Results
of these numerical experiments are presented in Table 2. We present the number nb
for each problem as well as the average of the objective function values (denoted by
fave), the average number of the objective function evaluations and the subgradient
evaluations (denoted by navef and naveξ , respectively) over 20 runs for each problem and
each solver. We observe that Algorithm 1 solves successfully 355 examples, where
HANSO 2.2 and SolvOpt solve 318 and 344 examples, respectively.
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Table 2 Average results of P1–P20 with 20 random starting points

No. Algorithm 1 HANSO 2.2 SolvOpt

nb navef , naveξ fave nb navef , naveξ fave nb navef naveξ fave

P1 20 50.4 1.9522 20 109.5 1.9522 20 90.25 29.55 1.9522

P2 20 33.8 2 20 193.95 2.0000 20 94.8 31.55 2.0000

P3 20 35.55 − 2.9995 13 115.05 − 2.9216 20 187.9 54.2 − 3.0000

P4 20 40.05 7.2000 20 120.9 7.2000 20 105.3 32.65 7.2000

P5 20 29.6 − 1.4142 20 170.65 − 1.4142 20 90.85 29.55 − 1.4142

P6 18 107.45 − 0.9963 14 103.35 v0.8540 11 222.15 97.8 − 0.8595

P7 20 70.6 − 8.0000 20 182.1 − 8.0000 20 95.65 29.25 − 8.0000

P8 20 102.1 − 44.0000 20 131.95 − 44.0000 20 135.85 48.35 − 44.0000

P9 20 87.9 115.7064 20 488.45 115.7064 20 255.4 84.6 115.7064

P10 20 140.15 22.6002 20 404.5 22.6002 20 158.4 55.85 22.6002

P11 10 29.65 0.0062 20 170.5 0.0000 20 219.15 42.8 0.0000

P12 20 29.3 − 1.0000 20 278.95 − 1.0000 20 85.8 26.45 − 1.0000

P13 10 37.25 4.0328 10 3.0250 0.0000 6 92.55 25.45 4.2350

P14 18 295.95 0.0077 1 39.25 0.3380 14 402.75 117.55 0.0517

P15 20 56.55 3.5997 20 128.15 3.5997 20 120.2 39.4 3.5997

P16 20 6.25 0 20 4.55 0 20 29.65 11.3 0

P17 20 98.9 0.0508 18 857.65 0.0620 18 132.8 41.65 0.1263

P18 19 917.2 0.0085 9 1990.1 0.0175 15 578.85 159.4 0.0105

P19 0 98.31 − 43.3210 0 83 − 36.7891 0 246.5 132 − 42.9768

P20 20 455.05 0.0027 13 1508 0.0183 20 2307.7 626.25 0.0027

Sum 355 318 344

At the third step, we consider the generalization of MAXQ, GMXHIB and Chained
crescent I [2]. These problems can be formulated with any number of variables. We
have used here n = 5, 10, 50, 100, 200 and apply 4 different starting points. The
starting points are the same for all test problems and three algorithms. The results are
summarized in Table 3 and show that values of ffinal obtained by Algorithm 1 are
quite correct for all problems whereas HANSO 2.2 and SolvOpt can not calculate any
descent directions for MAXQwith x1 = [1, 1, . . . , 1] and x1 = [−1.5, 2, . . .] and for
n = 5, 10, 50, 100, 200 and n = 50, 100, 200 respectively. To compare better, check
the results in Table 3.

In addition, in order to obtain better comparison of the considered algorithms, we
analyze the results using the performance profile. More details regarding the definition
of the performance profile can be found in [7]. Here we use the number of function
evaluations and the number of subgradient evaluations as efficiencymeasures to define
the performance profile. In the performance profiles, the value of ρs(τ ) at log(τ ) = 0
indicates the ratio of the test problems for which the solver s is the best – that is,
the solver s uses the least number of function evaluations or the least number of
subgradient evaluations. The value of ρs(τ ) at the rightmost abscissa gives the ratio
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Table 3 Results of large scale problems with various starting points and dimensions

n Starting point Algorithm 1 HANSO 2.2 SolvOpt

n f , nξ ffinal n f , nξ ffinal n f nξ ffinal

MaxQ

5 [1, 1, . . . , 1] 66 0.0000 32 1 467 95 0.0000

10 118 0.0000 32 1 579 135 0.0000

50 567 0.0000 32 1 18 18 1

100 1180 0.0000 32 1 18 18 1

200 2145 0.0000 32 1 18 18 1

5 [1, 2, . . . , 5] 43 0.0000 242 0.0000 315 74 0.0000

10 121 0.0000 787 0.0000 680 157 0.0000

50 536 0.0000 2137 0.0000 3556 761 0.0000

100 1362 0.0000 2117 0.0000 8126 1706 0.0000

200 2378 0.0000 2220 0.0000 18624 3802 0.0000

5 [−1.5, 2, . . .] 70 0.0000 32 4 362 76 0.0000

10 114 0.0000 32 4 511 125 0.0000

50 886 0.0000 32 4 16 16 4

100 1065 0.0000 32 4 16 16 4

200 3728 0.0000 32 4 16 16 4

5 [1, 2, 3,−4,−5] 43 0.0000 242 0.0000 315 74 0.0000

10 121 0.0000 787 0.0000 680 157 0.0000

50 536 0.0000 2137 0.0000 3556 761 0.0000

100 1362 0.0000 2117 0.0000 8126 1706 0.0000

200 2378 0.0000 2220 0.0000 18624 3802 0.0000

GMXHIB

5 [1, 1, . . . , 1] 111 0.0000 1647 0.0000 527 128 0.0000

10 333 0.0000 622 0.0000 667 169 0.0000

50 566 0.0000 1411 0.0000 915 243 0.0000

100 1551 0.0000 1235 0.0000 995 279 0.0000

200 4555 0.0000 2057 0.0000 1056 293 0.0000

5 [1, 2, . . . , 5] 653 0.0000 1697 0.0000 495 123 0.0000

10 1165 0.0000 1509 0.0000 847 214 0.0000

50 4871 0.0000 1806 0.0000 983 272 0.0000

100 7321 0.0001 2666 0.0000 1112 286 0.0000

200 8364 0.0000 2610 0.0000 1068 301 0.0000

5 [−1.5, 2, . . .] 451 0.0000 873 0.0000 613 142 0.0000

10 2732 0.0000 977 0.0000 722 184 0.0000

50 858 0.0000 2867 0.0000 989 277 0.0000

100 1597 0.0000 2815 0.0000 876 253 0.0000

200 661 0.0000 2661 0.0000 1021 294 0.0000

5 [1, 2, 3,−4,−5] 1429 0.0000 1955 0.0000 510 124 0.0000
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Table 3 continued

n Starting point Algorithm 1 HANSO 2.2 SolvOpt

n f , nξ ffinal n f , nξ ffinal n f nξ ffinal

10 1560 0.0000 2236 0.0000 910 223 0.0000

50 5873 0.0000 2930 0.0000 1011 271 0.0000

100 7321 0.0001 2862 0.0000 970 287 0.0002

200 8364 0.0000 2610 0.0000 1068 301 0.0000

Chained crescent I

5 [1, 1, . . . , 1] 125 0.0002 154 0.0000 450 106 0.0000

10 524 0.0002 168 0.0000 557 132 0.0000

50 826 0.0000 151 0.0000 2385 614 0.0000

100 1318 0.0001 151 0.0000 4642 1251 0.0000

200 1419 0.0002 159 0.0000 9389 2773 0.0000

5 [1, 2, . . . , 5] 108 0.0000 166 0.0000 396 96 0.0000

10 152 0.0003 193 0.0000 456 107 0.0000

50 345 0.0001 164 0.0000 1653 394 0.0000

100 840 0.0000 164 -0.0000 3882 1023 0.0000

200 1067 0.0002 167 -0.0000 6238 1719 0.0000

5 [−1.5, 2, . . .] 257 0.0001 168 0.0000 345 77 0.0000

10 334 0.0000 157 0.0000 541 134 0.0000

50 527 0.0002 168 0.0000 1467 335 0.0000

100 643 0.0002 153 0.0000 1380 325 0.0000

200 850 0.0000 144 0.0000 1096 270 0.0000

5 [1, 2, 3, −4,−5] 343 0.0000 145 0.0000 391 89 0.0000

10 435 0.0001 156 0.0000 552 132 0.0000

50 649 0.0005 177 0.0000 983 212 0.0000

100 1024 0.0001 157 0.0000 3462 868 0.0000

200 2144 0.0002 174 0.0000 6388 1734 0.0000

of the test problems that the solver s can solve – that is, the robustness of the solver s.
In addition, the higher curve shows that its corresponding solver is better.

The results corresponding P1–P20 with the given starting points in [2] are reported
in Figs. 1, 2 and 3 part (a). In part (b), the results of P1–P20 with 20 random starting
points and the results of MAXQ, GMXHIB and Chained crescent I with dimensions
n = 5, 10 are stated. In addition the results ofMAXQ,GMXHIB andChained crescent
I with the dimensions n = 50, 100, 200 are reported in part (c) of figures.

From Figure 1, we deduce that Algorithm 1 is more efficient in comparison with
HANSO 2.2 with the number of function and subgradient evaluations for the small
problems with given and random starting points, since it is superior to HANSO 2.2
in Figure 1(a),(b). Algorithm 1 can solve more than 94% of the small problems with
various starting point where HANSO 2.2 solves nearly 85%. For most of the small
test problems, Algorithm 1 is better than HANSO 2.2, i.e., it uses the least number
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(a) (b) (c)

Fig. 1 Comparison between Algorithm 1 and HANSO 2.2, Number of function and subgradient evaluations

(a) (b) (c)

Fig. 2 Comparison between Algorithm 1 and SolvOpt, Number of function evaluations

of function and subgradient evaluations. For big problems whose results are stated in
Figure 1 (c), for 60% of problems HANSO 2.2 is better than Algorithm 1 and for 40%
of problems Algorithm 1 is better than HANSO 2.2. Moreover Algorithm 1 can solve
100% of problems successfully, where HANSO 2.2 could solve 83% of problems.

From Figure 2, it is easy to understand that from the aspect of the number of the
function evaluations Algorithm 1 is better than SolvOpt for all considered problems.

From Figure 3(a),(b), we deduce that for small test problems with the given and
random starting points SolvOpt ismore efficient thanAlgorithm1 if the number of sub-
gradient evaluations is considered as a measure of efficiency. For big problems, Figure
3(c), SolvOpt is better than Algorithm 1 for nearly 55% of problems, while Algorithm
1 is better than SolvOpt for 45% of problems. On the other hand, SolvOpt can solve
nearly 83% of problems successfully, while Algorithm 1 solves 100% of problems.
However, we can say that the performances of these two solvers are comparable.

Overall, our results show that, in general, the proposed method is efficient andmore
robust than other methods used in the numerical experiments.

At the end, we are interested in exploring the assumption that the parameter ηk
remains bounded. In [9] the authors report that ηk was less than 2n + 2 when solving
73 of the 75 exact unconstrained optimization problems; for one test problem ηk was
between 2n + 2 and 25n and for the remaining one ηk exceeded 25n. In [12], the
authors stated that ηk = 2ω for 85 problems, ηk is bounded by 2n for 55 problems
and it is between 2n and 25n for 10 problems. In our results we note that ηk = 2ω for
315 examples, ηk is bounded by 2n for 127 cases and it is between 2n and 25n for 36
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(a) (b) (c)

Fig. 3 Comparison between Algorithm 1 and SolvOpt, Number of subgradient evaluations

examples and for 3 cases ηk is bounded by 31n. Altogether, the numerical experiments
support that the boundedness assumption on the sequence {ηk} is quite suitable.
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