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Abstract
This paper is devoted to the investigation of a class of uncertain multiobjective frac-
tional semi-infinite optimization problems (UMFP, for brevity). We first obtain, by
combining robust optimization and scalarization methodologies, necessary and suf-
ficient optimality conditions for robust approximate weakly efficient solutions of
(UMFP). Then, we introduce a Mixed type approximate dual problem for (UMFP)
and investigate their robust approximate duality relationships. Moreover, we obtain
some robust approximate weak saddle point theorems for an uncertain multiobjective
Lagrangian function related to (UMFP).

Keywords Robust optimization · Approximate efficient solutions · Multiobjective
semi-infinite optimization

1 Introduction

Fractional optimization is an important model of nonlinear optimization problems,
where the objective function is a ratio of two functions. It is an active research topic
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over the last several decades due to a wide range of applications in different fields
of engineering and economics. There are many papers devoted to the investigation of
fractional optimization problems from several different perspectives; see, e.g., [1–14]
and the references therein.

As we know, many optimization problems that arise in applications involve uncer-
tainties due to measurement and/or manufacturing errors, imprecise information,
fluctuations or disturbances. Consequently, a great deal of attention has been focused
on optimization problems with uncertain data. Robust optimization [15,16] is one of
the most effective methods to solve optimization problems with uncertain data. The
aim of robust optimization is to find the worst-case solution, which is immunized
against the data uncertainty, to the optimization problem. Recently, many researchers
have been attracted to work on the theory and applications of uncertain optimization
problem in terms of robust optimization methodology, see [17–29] and the references
therein. It appears that there are few papers devoting to the investigation of uncertain
fractional optimization problems via robust optimization. More precisely, results on
optimality conditions and duality theorems of robust approximate optimal solutions
for an uncertain fractional optimization problem are considered in [19]. Robust strong
duality for an uncertain fractional optimization problem and its uncertain Wolfe dual
optimization problem is obtained in [20] in the framework of robust optimization.
Some characterizations of robust optimal solution sets for a class of fractional opti-
mization problems with uncertainty appearing in both the objective and constraints
are obtained in [23]. Optimality conditions and duality theorems for an uncertain min-
imax convex-concave fractional programming problem are established in [25] under
a robust type subdifferential constraint qualification condition. Some new results of
robust approximate optimal solutions for fractional semi-infinite optimization prob-
lemswith uncertain data are obtained in [26] under a robust type constraint qualification
condition.

These papers mentioned above are mainly devoted to the investigation of single-
objective fractional optimization problems with uncertain data. However, many
practical optimization models have various goals due to many decision makers, and
they have different optimization criteria. Therefore, it is necessary and interesting to
deal with multiobjective fractional optimization problems. In the last few decades,
multiobjective fractional optimization problems have been studied by many schol-
ars without taking into account data uncertainty. For example, Long et al. [6,7]
obtained optimality conditions, duality and saddle-point results for nondifferentiable
multiobjective fractional optimization problems under some generalized convexity
assumptions. Verma [8] established some parametric sufficient efficiency conditions
for multiobjective fractional optimization problems in terms of generalized invexity
assumptions. Using first- and second-order approximations as generalized derivatives,
Khanh and Tung [10] derived optimality conditions for nonsmooth multiobjective
fractional optimization problems. Chuong [12] established optimality conditions
and duality theorems for nondifferentiable fractional semi-infinite multiobjective
optimization problems.More recently, some results on optimality andduality for a non-
smooth and nonconvex multiobjective fractional programming problem are obtained
in [14] in terms of contingent derivatives.
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However, in contrast to the deterministic case, it appears that there exist few papers
in the literature devoting to the study of multiobjective fractional optimization prob-
lems with uncertain data, see [23]. This is the main motivation to investigate a class
of uncertain multiobjective fractional semi-infinite optimization problems (UMFP,
for brevity). Our main concern is to provide some new characterizations of robust
approximate weakly efficient solutions for (UMFP). Our contributions can be more
specifically stated as follows. By using a robust type constraint qualification condition,
we first establish necessary and sufficient optimality conditions for robust approxi-
mate weakly efficient solutions for (UMFP). The obtained results can be regarded as
the generalizations of the optimality conditions for approximate weakly efficient solu-
tions of deterministic multiobjective fractional optimization problems. Based on the
obtained optimality conditions, we give a Mixed type robust approximate dual prob-
lem of (UMFP). Then, we investigate the weak and strong duality relations between
(RUMFP) and the optimistic counterpart of the uncertain dual problem of (UMFP).
Moreover, we introduce an uncertain approximate multiobjective Lagrangian function
related to (UMFP) and obtain a nonsmooth robust saddle point theorem.

The rest of the paper is organized as follows. Section 2 contains some basic defi-
nitions and auxiliary results. In Sect. 3, we obtain necessary and sufficient optimality
conditions for robust approximate weakly efficient solutions of (UMFP). In Sect. 4,
we first introduce aMixed type robust dual problems for (UMFP), and then discuss the
robust approximate duality properties. We also deal with robust approximate saddle
point of the uncertain approximate multiobjective Lagrangian function for (UMFP).

2 Preliminaries

In this section, we give some basic notations and preliminary results from [30], which
will be used in the sequel. Let R

n be the n-dimensional Euclidean space equipped
with the usual Euclidean norm ‖ · ‖. The nonnegative orthant of R

n is defined by
R
n+:={(x1, ..., xn) ∈ R

n | xi ≥ 0}. The inner product in R
n is denoted by 〈x, y〉 for

any x, y ∈ R
n . For a set D in R

n , the closure and the convex hull of D are denoted
by clD and coD, respectively. The indicator function δD : R

n → R ∪ {+∞} of D is
defined by

δD =
{
0, if x ∈ D,

+∞, if x /∈ D.

Let T be a nonempty infinite index set, R(T ) be the following linear space, which has
been used for semi-infinite programming [31],

R
(T ):={η = (ηt )t∈T | ηt = 0 for all t ∈ T except for finitely many ηt 
= 0}.

The nonnegative cone of R
(T ) is defined by

R
(T )
+ :={η ∈ R

(T ) | ηt ≥ 0,∀t ∈ T }.
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Let ϕ : R
n → R ∪ {+∞} be an extended real value function. The effective domain

and the epigraph of ϕ are defined respectively by

domϕ:={x ∈ R
n | ϕ(x) < +∞} and epiϕ:={(x, r) ∈ R

n × R | ϕ(x) ≤ r}.

The Frenchel conjugate function ϕ∗ of ϕ is defined by

ϕ∗(x∗):= sup
x∈Rn

{〈x∗, x〉 − ϕ(x)}.

The functionϕ is said to be proper if its effective domain is nonempty, andϕ is said to be
convex if epiϕ is a convex set, or equivalently,ϕ(αx+(1−α)y) ≤ αϕ(x)+(1−α)ϕ(y),
for any x, y ∈ R

n and α ∈ [0, 1]. The function ϕ is said to be concave if−ϕ is convex.
Moreover, ϕ is said to be lower semicontinuous if epiϕ is closed. The subdifferential
of ϕ at x̄ ∈ domϕ is defined by

∂ϕ(x̄):={x∗ ∈ R
n | ϕ(x) − ϕ(x̄) ≥ 〈x∗, x − x̄〉,∀x ∈ R

n}.

For any ε ∈ R+, the ε-subdifferential of ϕ at x̄ ∈ domϕ is the convex set given by

∂εϕ(x̄):={x∗ ∈ R
n | ϕ(x) − ϕ(x̄) ≥ 〈x∗, x − x̄〉 − ε,∀x ∈ R

n}.

Obviously, if ϕ is a proper lower semicontinuous convex function, and if x̄ ∈ domϕ,
then

epiϕ∗ =
⋃

ε∈R+
{(ξ, 〈ξ, x̄〉 + ε − ϕ(x̄)) | ξ ∈ ∂εϕ(x̄)} . (1)

The following important properties will be used in the sequel.

Lemma 2.1 [32,33] Let ϕ1, ϕ2 : R
n → R ∪ {+∞} be proper convex function such

that domϕ1 ∩ domϕ2 
= ∅.
(i) If ϕ1 and ϕ2 are lower semicontinuous, then

epi(ϕ1 + ϕ2)
∗ = cl(epiϕ∗

1 + epiϕ∗
2 ).

(ii) If one of ϕ1 and ϕ2 is continuous at some x̄ ∈ domϕ1 ∩ domϕ2, then

epi(ϕ1 + ϕ2)
∗ = epiϕ∗

1 + epiϕ∗
2 .

At the end of this section, we recall some notations of multiobjective fractional
semi-infinite optimization problems used in this paper. Let C ⊆ R

n be a nonempty
closed convex set, and let T be a nonempty infinite index set. In this paper, we focus
on the following multiobjective fractional semi-infinite optimization problem

(MFP) min
x∈C

{(
f1(x)
g1(x)

, ...,
f p(x)
gp(x)

)
| ht (x) ≤ 0,∀t ∈ T

}
,
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where fi , gi : R
n → R, i = 1, ..., p, and ht : R

n → R, t ∈ T , are real-valued
functions. The problem (MFP) with uncertain data in the constraint functions can be
captured by the following uncertain multiobjective fractional semi-infinite optimiza-
tion problem

(UMFP) min
x∈C

{(
f1(x)
g1(x)

, ...,
f p(x)
gp(x)

)
| ht (x, vt ) ≤ 0,∀t ∈ T

}
,

where vt , t ∈ T , are uncertain parameters from the uncertainty set Vt ⊆ R
q , t ∈ T .

ht : R
n × R

q → R, t ∈ T , are given functions.
We consider the robust counterpart of (UMFP), namely

(RUMFP) min
x∈C

{(
f1(x)
g1(x)

, ...,
f p(x)
gp(x)

)
| ht (x, vt ) ≤ 0,∀vt ∈ Vt , t ∈ T

}
,

where the feasible set of (RUMFP) is defined by F :={x ∈ C | ht (x, vt ) ≤ 0,∀vt ∈
Vt , t ∈ T }. In this paper, we assume that fi , i = 1, ..., p, are continuous convex
functions with fi (x) ≥ 0, for all x ∈ F , and gi , i = 1, ..., p, are continuous concave
functions with gi (x) > 0, for all x ∈ F .

3 Robust approximate optimality conditions

This section is devoted to derive necessary and sufficient optimality conditions of
robust ε-weakly efficient solutions for (UMFP). It is worth noting that, in this paper,
we only deal with robust ε-weakly efficient solutions for (UMFP), since other kinds
of robust approximate efficient solutions can be dealt with similarly. For convenience,
we denote ε:=(ε1, ..., εp) ∈ R

p
+.

Now, we recall some important concepts which will be used later in this paper.

Definition 3.1 Let ε ∈ R
p
+. A point x̄ ∈ F is said to be a robust ε-weakly efficient

solution of (UMFP) iff there does not exist x ∈ F such that

fi (x)

gi (x)
<

fi (x̄)

gi (x̄)
− εi , for all i = 1, ..., p.

Definition 3.2 [34]We say that robust type constraint qualification condition (RCQC)
holds iff

⋃
v∈V ,η∈R(T )

+

epi

(∑
t∈T

ηt ht (·, vt )
)∗

+ epiδ∗
C is a closed convex set,

where η:=(ηt )t∈T ∈ R
(T )
+ and v ∈ V means that v is a selection of V , i.e., v : T → R

p

and vt ∈ Vt for all t ∈ T .

The following result provides a robust version of Farkas-type results for infinite
convex systems with uncertain data.
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Lemma 3.1 [34] Let φ : R
n → R be a continuous convex function, and let ht :

R
n × R

q → R, t ∈ T , be continuous functions such that, for any vt ∈ R
q , ht (·, vt ) is

a convex function. Let Vt ⊆ R
q , t ∈ T , be compact and let F 
= ∅. Then the following

statements are equivalent:

(i) {x ∈ C | ht (x, vt ) ≤ 0,∀vt ∈ Vt , t ∈ T } ⊆ {x ∈ C | φ(x) ≥ 0}.
(ii) (0, 0) ∈ epiφ∗ + clco

(⋃
v∈V ,η∈R(T )

+
epi

(∑
t∈T

ηt ht (·, vt )
)∗

+ epiδ∗
C

)
.

In order to investigate the robust ε-weakly efficient solution of (UMFP), we asso-
ciate (RUMFP) with the following optimization problem:

(RUMFP)μ

min
x∈C

{(
f1(x) − μ1g1(x), ..., f p(x) − μpgp(x)

)

| ht (x, vt ) ≤ 0,∀vt ∈ Vt , t ∈ T
}
,

where the parametric μ:=(μ1, ..., μp) ∈ R
p
+.

The following relation between the ε-weakly efficient solution of (RUMFP) and
(RUMFP)μ can be easily obtained by using similar methods of [14, Proposition 1]
and [19, Lemma 2.1]. The proof is included here for the sake of completeness.

Lemma 3.2 Let x̄ ∈ F and ε ∈ R
p
+. Let μ̄i = fi (x̄)

gi (x̄)
−εi ≥ 0, i = 1, ..., p. Then x̄ ∈ F

is a robust ε-weakly efficient solution of (UMFP) if and only if x̄ ∈ F is an ε̄-weakly effi-
cient solution of (RUMFP) μ̄, where μ̄:=(μ̄1, ..., μ̄p) and ε̄:=(ε1g1(x̄), ..., εpgp(x̄)).

Proof (⇒) On the contrary, we assume that x̄ ∈ F is not a robust ε̄-weakly efficient
solution of (RUMFP) μ̄. Then, there exists x̂ ∈ F such that

fi (x̂) − μ̄i gi (x̂) < fi (x̄) − μ̄i gi (x̄) − ε̄i , for all i = 1, .., p.

Then, together with μ̄i = fi (x̄)
gi (x̄)

− εi and ε̄i = εi gi (x̄), i = 1, ..p, we obtain

fi (x̂)

gi (x̂)
<

fi (x̄)

gi (x̄)
− εi , for all i = 1, .., p,

Therefore, x̄ is not a robust ε-weakly efficient solution of (UMFP). We arrive at a
contradiction. Thus, x̄ ∈ F is an ε̄-weakly efficient solution of (RUMFP)μ̄.

(⇐) Assume that x̄ ∈ F is an ε̄-weakly efficient solution of (RUMFP) μ̄. Similarly,
it is easy to show that x̄ ∈ F is a robust ε-weakly efficient solution of (UMFP). The
proof is complete. ��

Now,we establish necessary and sufficient optimality conditions of robust ε-weakly
efficient solutions for (UMFP).

Theorem 3.1 Let x̄ ∈ F, ε ∈ R
p
+, and μ̄i = fi (x̄)

gi (x̄)
− εi ≥ 0, i = 1, ..., p. Let

ht (·, vt ) : R
n × R

q → R, t ∈ T , be continuous functions such that, for any vt ∈ Vt ,
ht (·, vt ) is a convex function. If (RCQC) holds, then x̄ is a robust ε-weakly efficient
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solution of (UMFP) if and only if there exist λ̄i ≥ 0,
p∑

i=1
λ̄i = 1, ε

′
i ≥ 0, ε

′′
i ≥ 0,

i = 1, ..., p, η̄t ≥ 0, v̄t ∈ Vt , ε0t ≥ 0, t ∈ T , and εc ≥ 0, such that

0 ∈
p∑

i=1

(
∂
ε
′
i
(λ̄i fi )(x̄) + ∂

ε
′′
i
(−λ̄i μ̄i gi )(x̄)

)
+
∑
t∈T

∂ε0t
(η̄t ht (·, v̄t )) (x̄) + ∂εcδC (x̄),

(2)

and

p∑
i=1

(
ε

′
i + ε

′′
i

)
+
∑
t∈T

ε0t + εc −
p∑

i=1

λ̄iεi gi (x̄) =
∑
t∈T

η̄t ht (x̄, v̄t ). (3)

Proof (⇒) Let x̄ ∈ F be a robust ε-weakly efficient solution of (UMFP). It follows
from Lemma 3.2 that x̄ is an ε̄-weakly efficient solution of (RUMFP)μ̄, where μ̄ =
(μ̄1, ..., μ̄p) and ε̄ = (ε1g1(x̄), ..., εpgp(x̄)). By [22, Proposition 5.3], there exist

λ̄i ≥ 0, i = 1, ..., p, and
p∑

i=1
λ̄i = 1, such that

p∑
i=1

λ̄i ( fi (x) − μ̄i gi (x)) ≥
p∑

i=1

λ̄i ( fi (x̄) − μ̄i gi (x̄)) −
p∑

i=1

λ̄iεi gi (x̄) = 0,∀x ∈ F .

For any x ∈ C , set φ(x):=
p∑

i=1
λ̄i ( fi (x) − μ̄i gi (x)) . Then,

ht (x, vt ) ≤ 0,∀vt ∈ Vt , t ∈ T , x ∈ C �⇒ φ(x) ≥ 0.

By Lemma 3.1, we have

(0, 0) ∈ epiφ∗ + clco

⎛
⎜⎝ ⋃

v∈V ,η∈R(T )
+

epi

(∑
t∈T

ηt ht (·, vt )
)∗

+ epiδ∗
C

⎞
⎟⎠ .

Since (RCQC) holds, it follows that

(0, 0) ∈ epiφ∗ +
⋃

v∈V ,η∈R(T )
+

epi

(∑
t∈T

ηt ht (·, vt )
)∗

+ epiδ∗
C . (4)

By Lemma 2.1, we obtain

epiφ∗ =
p∑

i=1

(
epi(λ̄i fi )

∗ + epi(−λ̄i μ̄i gi )
∗) , (5)
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and

epi

(∑
t∈T

ηt ht (·, vt )
)∗

=
∑
t∈T

epi (ηt ht (·, vt ))∗ . (6)

Then, together with (4), (5), and (6), we obtain

(0, 0) ∈
p∑

i=1

(
epi(λ̄i fi )

∗ + epi(−λ̄i μ̄i gi )
∗)+

⋃
v∈V ,η∈R(T )

+

∑
t∈T

epi (ηt ht (·, vt ))∗ + epiδ∗
C .

So, there exist η̄t ≥ 0 and v̄t ∈ Vt , t ∈ T , such that

(0, 0) ∈
p∑

i=1

(
epi(λ̄i fi )

∗ + epi(−λ̄i μ̄i gi )
∗)+

∑
t∈T

epi (η̄t ht (·, v̄t ))∗ + epiδ∗
C .

This means that there exist
(
ξ

′
i , r

′
i

)
∈ epi(λ̄i fi )∗,

(
ξ

′′
i , r

′′
i

)
∈ epi(−λ̄i μ̄i gi )∗, i =

1, ...p, (ξt , rt ) ∈ epi (η̄t ht (·, v̄t ))∗, t ∈ T , and (ξc, rc) ∈ epiδ∗
C , such that

(0, 0) ∈
( p∑

i=1

(
ξ

′
i + ξ

′′
i

)
+
∑
t∈T

ξt + ξc,

p∑
i=1

(
r

′
i + r

′′
i

)
+
∑
t∈T

rt + rc

)
. (7)

Moreover, by (1), there exist ε
′
i ≥ 0, ε

′′
i ≥ 0, i = 1, ..., p, and ε0t ≥ 0, t ∈ T , such

that

ξ
′
i ∈ ∂

ε
′
i
(λ̄i fi )(x̄), r

′
i =

〈
ξ

′
i , x̄
〉
+ ε

′
i − λ̄i fi (x̄), i = 1, ..., p,

ξ
′′
i ∈ ∂

ε
′′
i
(−λ̄i μ̄i gi )(x̄), r

′′
i =

〈
ξ

′′
i , x̄

〉
+ ε

′′
i + λ̄i μ̄i gi (x̄), i = 1, ..., p,

ξt ∈ ∂ε0t
(η̄t ht (·, v̄t )) (x̄), rt = 〈ξt , x̄〉 + ε0t − η̄t ht (x̄, v̄t ), t ∈ T ,

and

ξc ∈ ∂εcδC (x̄), rc = 〈ξc, x̄〉 + εc.

It follows from (7) that

0 ∈
p∑

i=1

(
∂
ε
′
i
(λ̄i fi )(x̄) + ∂

ε
′′
i
(−λ̄i μ̄i gi )(x̄)

)
+
∑
t∈T

∂ε0t
(η̄t ht (·, v̄t )) (x̄) + ∂εcδC (x̄),
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and

0 =
p∑

i=1

(
r

′
i + r

′′
i

)
+
∑
t∈T

rt + rc

=
〈 p∑
i=1

(
ξ

′
i + ξ

′′
i

)
+
∑
t∈T

ξt + ξc, x̄

〉
+

p∑
i=1

(
ε

′
i + ε

′′
i

)
+
∑
t∈T

ε0t + εc

−
p∑

i=1

(
λ̄i fi (x̄) − λ̄i μ̄i gi (x̄)

)−
∑
t∈T

η̄t ht (x̄, v̄t )

=
p∑

i=1

(
ε

′
i + ε

′′
i

)
+
∑
t∈T

ε0t + εc −
p∑

i=1

λ̄iεi gi (x̄) −
∑
t∈T

η̄t ht (x̄, v̄t ).

Thus, (2) and (3) hold.

(⇐) Suppose that there exist λ̄i ≥ 0,
p∑

i=1
λ̄i = 1, ε

′
i ≥ 0, ε

′′
i ≥ 0, i = 1, ..., p,

η̄t ≥ 0, v̄t ∈ Vt , ε0t ≥ 0, t ∈ T , and εc ≥ 0, such that (2) and (3) hold. By (2), there
exist ξ

′
i ∈ ∂

ε
′
i
(λ̄i fi )(x̄), ξ

′′
i ∈ ∂

ε
′′
i
(−λ̄i μ̄i gi )(x̄), i = 1, ..., p, ξt ∈ ∂ε0t

(η̄t ht (·, v̄t )) (x̄),

t ∈ T , and ξc ∈ ∂εcδC (x̄), such that

p∑
i=1

(
ξ

′
i + ξ

′′
i

)
+
∑
t∈T

ξt + ξc = 0. (8)

From ξ
′
i ∈ ∂

ε
′
i
(λ̄i fi )(x̄), ξ

′′
i ∈ ∂

ε
′′
i
(−λ̄i μ̄i gi )(x̄), i=1, ..., p, ξt ∈ ∂ε0t

(η̄t ht (·, v̄t )) (x̄),

t ∈ T , and ξc ∈ ∂εcδC (x̄), it follows that, for any x ∈ F ,

λ̄i fi (x) − λ̄i fi (x̄) ≥
〈
ξ

′
i , x − x̄

〉
− ε

′
i , − λ̄i μ̄i gi (x) + λ̄i μ̄i gi (x̄)

≥
〈
ξ

′′
i , x − x̄

〉
− ε

′′
i , i = 1, ..., p,

η̄t ht (x, v̄t ) − η̄t ht (x̄, v̄t ) ≥ 〈ξt , x − x̄〉 − ε0t , t ∈ T , and δC (x) − δC (x̄)

≥ 〈ξc, x − x̄〉 − εc.

Then, adding these inequalities yields

p∑
i=1

(λ̄i fi (x) − λ̄i fi (x̄) − λ̄i μ̄i gi (x) + λ̄i μ̄i gi (x̄)) +
∑
t∈T

η̄t ht (x, v̄t ) −
∑
t∈T

η̄t ht (x̄, v̄t )

≥
〈 p∑
i=1

(
ξ

′
i + ξ

′′
i

)
+
∑
t∈T

ξt + ξc, x − x̄

〉
−

p∑
i=1

(
ε

′
i + ε

′′
i

)
−
∑
t∈T

ε0t − εc,∀x ∈ F .
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Together with
∑
t∈T

η̄t ht (x, v̄t ) ≤ 0 and (8), we obtain

p∑
i=1

(
λ̄i fi (x) − λ̄i fi (x̄) − λ̄i μ̄i gi (x) + λ̄i μ̄i gi (x̄)

)−
∑
t∈T

η̄t ht (x̄, v̄t )

≥ −
p∑

i=1

(
ε

′
i + ε

′′
i

)
−
∑
t∈T

ε0t − εc, ∀x ∈ F . (9)

From (3) and (9), it gives

p∑
i=1

λ̄i ( fi (x) − μ̄i gi (x)) ≥
p∑

i=1

λ̄i ( fi (x̄) − μ̄i gi (x̄)) −
p∑

i=1

λ̄iεi gi (x̄),∀x ∈ F .

Therefore, it follows from [22, Proposition 5.3] that x̄ is an ε̄-weakly efficient solution
of (RUMFP)μ̄, where ε̄ = (ε1g1(x̄), ..., εpgp(x̄)). Thus, by Lemma 3.2, x̄ is a robust
ε-weakly efficient solution of (UMFP). The proof is complete. ��
Remark 3.1 Theorem 3.1 encompasses [26, Theorem 3.1] for the case of scalar opti-
mization problem, where the corresponding results were obtained by applying similar
approaches.

Now, we give an example to illustrate the results obtained in Theorem 3.1.

Example 3.1 Let x ∈ R, C :=R+ and vt ∈ Vt :=[−t + 2, t + 2] for any t ∈ T :=[0, 1].
Consider the following multiobjective fractional optimization problem

(UFMP) min
x∈R+

{(
x2+1
x+2 , 2x2+1

2x+2

)
| t x2 − 2vt x ≤ 0, t ∈ T

}
.

Obviously, f1(x) = x2 + 1, f2(x) = 2x2 + 1, g1(x) = x + 2, g2(x) = 2x + 2, and
ht (x, vt ) = t x2−2vt x , ∀t ∈ T . It is easy to show that F = [0, 2] and the assumptions
of Theorem 3.1 are satisfied.

Let x̄ :=0 ∈ F and ε:=( 14 ,
1
4 ). Obviously, ε̄ = ( 12 ,

1
2 ), μ̄ = ( 14 ,

1
4 ), and x̄ is a robust

ε-weakly efficient solution of (UFMP).Moreover, there exist ε′
i = ε′′

i = εc = 1
32 , λ̄i =

1
2 , i = 1, 2, v̄t = t+2, t ∈ T , η̄t :=

{
0, if t ∈ (0, 1],
1
32 , if t = 0,

and ε0t :=
{
0, if t ∈ (0, 1],
11
32 , if t = 0,

such that

∂ε′
1
(λ̄1 f1)(x̄) =

[
− 1

4
,
1

4

]
, ∂ε′

2
(λ̄2 f2)(x̄) =

[
− 1

2
√
2
,

1

2
√
2

]
, ∂ε′′

1
(−λ̄1μ̄1g1)(x̄) =

{
− 1

8

}
,

∂ε′′
2
(−λ̄2μ̄2g2)(x̄) =

{
− 1

4

}
, ∂ε0t

(η̄t ht (·, v̄t )) (x̄) =
{
0, if t ∈ (0, 1],
− 1

8 , if t = 0,
and ∂εc δC (x̄) = (−∞, 0].

Clearly,

2∑
i=1

(
∂
ε
′
i
(λ̄i fi )(x̄) + ∂

ε
′′
i
(−λ̄i μ̄i gi )(x̄)

)
+
∑
t∈T

∂ε0t
(η̄t ht (·, v̄t )) (x̄) + ∂εc δC (x̄) =

(
−∞,

1

2
√
2

− 1

4

]
,
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and

2∑
i=1

(
ε

′
i + ε

′′
i

)
+
∑
t∈T

ε0t + εc −
2∑

i=1

λ̄iεi gi (x̄) =
∑
t∈T

η̄t ht (x̄, v̄t ).

Thus, Theorem 3.1 is applicable.

4 Robust approximate duality and saddle point theorems

In this section, we introduce a Mixed type robust multiobjective dual problem
for (UMFP), and then investigate the robust approximate weak and strong duality
properties between them. Moreover, we also introduce an uncertain approximate
multiobjective Lagrangian function related to (UMFP) and obtain a nonsmooth
robust saddle point theorem. Here, we only focus on their robust ε-weakly efficient
solutions since other kinds of robust approximate efficient solutions can be dealt
with in a similar manner. For convenience, we use the notations f :=( f1, ..., f p),

g:=(g1, ..., gp), η:=(ηt )t ∈ R
(T )
+ , β:=(βt )t ∈ R

(T )
+ , λ:=(λ1, .., λp) ∈ R

p
+\{0} and

μ:=(μ1, .., μp) ∈ R
p
+.

Let y ∈ C , ε ∈ R
p
+, η ∈ R

(T )
+ , β ∈ R

(T )
+ , λ ∈ R

p
+\{0} and μ ∈ R

p
+. For fixed

vt ∈ Vt , t ∈ T , the conventional Mixed type multiobjective dual problem (MD) of
(UMFP) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max (μ1, ..., μp)

s.t . 0 ∈
p∑

i=1

(
∂
ε
′
i
(λi fi )(y) + ∂

ε
′′
i
(−λiμi gi )(y)

)
+ ∑

t∈T
∂
ε0t

((ηt + βt )ht (·, vt )) (y) + ∂εc δC (y),

p∑
i=1

(λi fi (y) − λiμi gi (y)) + ∑
t∈T

ηt ht (y, vt ) ≥
p∑

i=1
λi εi gi (y),

p∑
i=1

(
ε
′
i + ε

′′
i

)
+ ∑

t∈T
ε0t + εc −

p∑
i=1

λi εi gi (y) ≤ ∑
t∈T

βt ht (y, vt ),

y ∈ C, λi > 0, μi ≥ 0, ε
′
i ≥ 0, ε

′′
i ≥ 0, i = 1, ..., p, εc ≥ 0, ηt ≥ 0, βt ≥ 0, ε0t ≥ 0, t ∈ T .

The optimistic counterpart (OMD) of (MD), called optimistic dual optimization
problem, is a deterministic maximization problem given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max (μ1, ..., μp)

s.t . 0 ∈
p∑

i=1

(
∂
ε
′
i
(λi fi )(y) + ∂

ε
′′
i
(−λiμi gi )(y)

)
+ ∑

t∈T
∂
ε0t

((ηt + βt )ht (·, vt )) (y) + ∂εc δC (y),

p∑
i=1

(λi fi (y) − λiμi gi (y)) + ∑
t∈T

ηt ht (y, vt ) ≥
p∑

i=1
λi εi gi (y),

p∑
i=1

(
ε
′
i + ε

′′
i

)
+ ∑

t∈T
ε0t + εc −

p∑
i=1

λi εi gi (y) ≤ ∑
t∈T

βt ht (y, vt ),

y ∈ C, λi > 0, μi ≥ 0, ε
′
i ≥ 0, ε

′′
i ≥ 0, i = 1, ..., p, εc ≥ 0, ηt ≥ 0, βt ≥ 0, ε0t ≥ 0, vt ∈ Vt , t ∈ T .

Here, the feasible set of (OMD) is defined by F(OMD).
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Remark 4.1 Obviously, if ηt = 0, t ∈ T , (OMD) collapses to Mond-Weir type opti-
mistic dual optimization problem of (UMFP) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max (μ1, ..., μp)

s.t . 0 ∈
p∑

i=1

(
∂
ε
′
i
(λi fi )(y) + ∂

ε
′′
i
(−λiμi gi )(y)

)
+ ∑

t∈T
∂ε0t

(βt ht (·, vt )) (y) + ∂εc δC (y),

p∑
i=1

(λi fi (y) − λiμi gi (y)) ≥
p∑

i=1
λi εi gi (y),

p∑
i=1

(
ε

′
i + ε

′′
i

)
+ ∑

t∈T
ε0t + εc −

p∑
i=1

λi εi gi (y) ≤ ∑
t∈T

βt ht (y, vt ),

y ∈ C, λi > 0, μi ≥ 0, ε
′
i ≥ 0, ε

′′
i ≥ 0, i = 1, ..., p, εc ≥ 0, βt ≥ 0, ε0t ≥ 0, vt ∈ Vt , t ∈ T .

On the other hand, if βt = 0, t ∈ T , (OMD) collapses to Wolfe type optimistic dual
optimization problem of (UMFP) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max (μ1, ..., μp)

s.t . 0 ∈
p∑

i=1

(
∂
ε
′
i
(λi fi )(y) + ∂

ε
′′
i
(−λiμi gi )(y)

)
+ ∑

t∈T
∂ε0t

(ηt ht (·, vt )) (y) + ∂εc δC (y),

p∑
i=1

(λi fi (y) − λiμi gi (y)) + ∑
t∈T

ηt ht (y, vt ) ≥
p∑

i=1
λi εi gi (y),

p∑
i=1

(
ε

′
i + ε

′′
i

)
+ ∑

t∈T
ε0t + εc −

p∑
i=1

λi εi gi (y) ≤ 0,

y ∈ C, λi > 0, μi ≥ 0, ε
′
i ≥ 0, ε

′′
i ≥ 0, i = 1, ..., p, εc ≥ 0, ηt ≥ 0, ε0t ≥ 0, vt ∈ Vt , t ∈ T .

Now, similar to the concept of robust ε-weakly efficient solutions of (UMFP) in
Definition 3.1, we give hereafter such ε-weakly efficient solutions for (OMD). In what
follows, for w1, w2 ∈ R

p, we use the following notations for convenience.

w1 ≺ w2 ⇔ w2 − w1 ∈ int R
p
+, w1 ⊀ w2 is the negation of w1 ≺ w2.

Here, int R
p
+:={(x1, ..., xp) ∈ R

p | xi > 0}.
Definition 4.1 Let ε ∈ R

p
+. We say that (ȳ, λ̄, μ̄, η̄, β̄, v̄) ∈ F(OMD) is an ε-weakly

efficient solution of (OMD) if there does not exist (y, λ, μ, η, β, v) ∈ F(OMD), such
that μ̄ ≺ μ − ε.

Remark 4.2 Clearly, if ε = 0 and Vt , t ∈ T , are singletons, the ε-weakly efficient
solution of (OMD) reduces to the usual weakly efficient solution of the corresponding
deterministic optimization problem. For more details, see [12,14].

The following two theorems describes ε-duality relations between (RUMFP) and
(OMD).

Theorem 4.1 (ε −weak duality) Let ε ∈ R
p
+. For any feasible x of (RUMFP) and any

feasible (y, λ, μ, η, β, v) of (OMD), it holds that
(

f1(x)
g1(x)

, ...,
f p(x)
gp(x)

)
⊀ μ − ε.

Proof On the contrary, we assume that

(
f1(x)

g1(x)
, ...,

f p(x)

gp(x)

)
≺ μ − ε. (10)
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Since (y, λ, μ, η, β, v) is a feasible solution of (OMD), we have y ∈ C , λi > 0,
μi ≥ 0, ε

′
i ≥ 0, ε

′′
i ≥ 0, i = 1, ..., p, εc ≥ 0, ηt ≥ 0, βt ≥ 0, ε0t ≥ 0, vt ∈ Vt , t ∈ T ,

and

0 ∈
p∑

i=1

(
∂
ε
′
i
(λi fi )(y) + ∂

ε
′′
i
(−λiμi gi )(y)

)
+
∑
t∈T

∂
ε0t

((ηt + βt )ht (·, vt )) (y) + ∂εcδC (y),

(11)
p∑

i=1

(λi fi (y) − λiμi gi (y)) +
∑
t∈T

ηt ht (y, vt ) ≥
p∑

i=1

λi εi gi (y), (12)

and

p∑
i=1

(
ε

′
i + ε

′′
i

)
+
∑
t∈T

ε0t + εc −
p∑

i=1

λiεi gi (y) ≤
∑
t∈T

βt ht (y, vt ). (13)

It follows from (11) that there exist ξ
′
i ∈ ∂

ε
′
i
(λi fi )(y), ξ

′′
i ∈ ∂

ε
′′
i
(−λiμi gi )(y), i =

1, ..., p, ξt ∈ ∂ε0t
((ηt + βt )ht (·, vt )) (y), t ∈ T , and ξc ∈ ∂εcδC (y), such that

p∑
i=1

(
ξ

′
i + ξ

′′
i

)
+
∑
t∈T

ξt + ξc = 0. (14)

Note that for any x ∈ F , we have (ηt + βt )ht (x, vt ) ≤ 0, ∀t ∈ T , and g(x) > 0.
Together with (12), (13), and (14), it gives

p∑
i=1

λi ( fi (x) − μi gi (x) + εi gi (x))

≥
p∑

i=1

(
λi fi (y) +

〈
ξ

′
i , x − y

〉
− ε

′
i − λiμi gi (y) +

〈
ξ

′′
i , x − y

〉
− ε

′′
i + λi εi gi (x)

)

=
p∑

i=1

(λi fi (y) − λiμi gi (y)) −
〈∑
t∈T

ξt , x − y

〉
− 〈ξc, x − y〉 +

p∑
i=1

(
−ε

′
i − ε

′′
i + λi εi gi (x)

)

≥
p∑

i=1

(λi fi (y) − λiμi gi (y)) −
∑
t∈T

(ηt + βt )ht (x, vt )

+
∑
t∈T

(ηt + βt )ht (y, vt ) −
∑
t∈T

ε0t − εc +
p∑

i=1

(
−ε

′
i − ε

′′
i + λi εi gi (x)

)

≥
p∑

i=1

(λi fi (y) − λiμi gi (y)) +
∑
t∈T

ηt ht (y, vt )

+
∑
t∈T

βt ht (y, vt ) −
∑
t∈T

ε0t − εc +
p∑

i=1

(
−ε

′
i − ε

′′
i

)
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≥
p∑

i=1

(λi fi (y) − λiμi gi (y)) +
∑
t∈T

ηt ht (y, vt ) −
p∑

i=1

λi εi gi (y)

≥ 0.

This implies that there exists i0 ∈ {1, ..., p} such that fi0(x)−μi0gi0(x)+εi0gi0(x) ≥
0. The inequality is equivalent to

fi0(x)

gi0(x)
≥ μi0 − εi0 ,

which is a contradiction to (10). The proof is complete. ��
Theorem 4.2 (ε − strong duality) Let x̄ ∈ F and ε ∈ R

p
+. Let ht : R

n × R
q → R, t ∈

T , be continuous functions such that, for any vt ∈ Vt , ht (·, vt ) is a convex function.
Assume that (RCQC) holds. If x̄ is a robust ε-weakly efficient solution of (UMFP) and
fi (x̄)
gi (x̄)

− εi ≥ 0, then there exist λ̄ ∈ R
p
+\{0}, μ̄ ∈ R

p
+, η̄ ∈ R

(T )
+ , v̄ ∈ V , such that

(x̄, λ̄, μ̄, 0, η̄, v̄) is a 2ε-weakly efficient solutions of (OMD).

Proof Let μ̄i := fi (x̄)
gi (x̄)

− εi ≥ 0, i = 1, ..., p. Then,

p∑
i=1

( fi (x̄) − μ̄i gi (x̄)) =
p∑

i=1

εi gi (x̄). (15)

By Theorem 3.1, there exist λ̄i ≥ 0,
p∑

i=1
λ̄i = 1, ε

′
i ≥ 0, ε

′′
i ≥ 0, i = 1, ..., p, η̄t ≥ 0,

v̄t ∈ Vt , ε0t ≥ 0, t ∈ T , and εc ≥ 0, such that

0 ∈
p∑

i=1

(
∂
ε
′
i
(λ̄i fi )(x̄) + ∂

ε
′′
i
(−λ̄i μ̄i gi )(x̄)

)
+
∑
t∈T

∂
ε0t

(η̄t ht (·, v̄t )) (x̄) + ∂εcδC (x̄), (16)

and

p∑
i=1

(
ε

′
i + ε

′′
i

)
+
∑
t∈T

ε0t + εc −
p∑

i=1

λ̄iεi gi (x̄) =
∑
t∈T

η̄t ht (x̄, v̄t ). (17)

From (15), (16), and (17), we can deduce that (x̄, λ̄, μ̄, 0, η̄, v̄) is a robust feasible
solution of (OMD). By Theorem 4.1, for any feasible solution (y, λ, μ, η, β, v) of
(OMD),

μ̄ − μ =
(

f1(x̄)

g1(x̄)
, ...,

f p(x̄)

gp(x̄)

)
− ε − μ ⊀ μ − ε − ε − μ = −2ε.

Thus, (x̄, λ̄, μ̄, 0, η̄, v̄) is a 2ε-weakly efficient solutions of (OMD). The proof is
complete. ��
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At the end of this section, we give an ε-weak saddle point theorem for (UMFP). We
first define an uncertain multiobjective Lagrangian-type function related to (UMFP)
as follows:

Lμ(x, η, v) := f (x) − μg(x) +
∑
t∈T

ηt ht (x, vt )e

=
(
f1(x) − μ1g1(x) +

∑
t∈T

ηt ht (x, vt ), ..., f p(x) − μpgp(x) +
∑
t∈T

ηt ht (x, vt )

)
,

where x ∈ C , μ:=(μ1, .., μp) ∈ R
p
+, η:=(ηt )t∈T ∈ R

(T )
+ , v:=(vt )t∈T ∈ V and

e:=(1, ..., 1) ∈ R
p.

Now, we introduce a new concept of robust ε-weak saddle points of Lμ related to
(UMFP).

Definition 4.2 Let ε ∈ R
p
+ and C ⊆ R

n . We say that (x̄, η̄, v̄) ∈ C × R
(T )
+ × V

is a robust ε-weak saddle points of Lμ related to (UMFP), iff for any (x, η, v) ∈
C × R

(T )
+ × V ,

Lμ̄(x, η̄, v̄) + ε̄ ⊀ Lμ̄(x̄, η̄, v̄) ⊀ Lμ̄(x̄, η, v) − ε̄,

where ε̄=(ε1g1(x̄), ..., εpgp(x̄)) and μ̄=(μ̄1, ..., μ̄p)=
(
f1(x̄)
g1(x̄)

−ε1, ...,
f p(x̄)
gp(x̄)

−εp

)
.

Now, we present an example to explain the existence of robust ε-weak saddle point.

Example 4.1 Let C :=[−1, 1], x ∈ R, and vt ∈ Vt :=[2 − t, 2 + t], t ∈ T :=[0, 1).
Consider the functions

f (x) = ( f1(x), f2(x)) = (x2 + 1, x2 + 1
)
, g(x) = (g1(x), g2(x)) = (−x2 + 2,−x2 + 2

)
,

and

ht (x, vt ) = t x2 − 2vt x − 3t .

Then, for any (x, η, v) ∈ C × R
(T )
+ × V and μ ∈ R

p
+, the uncertain multiobjective

Lagrangian-type function Lμ related to (UMFP) is

Lμ(x, η, v) =
(
x2 + 1 − μ1(−x2 + 2) +

∑
t∈T

ηt (t x
2 − 2vt x − 3t),

x2 + 1 − μ2(−x2 + 2) +
∑
t∈T

ηt (t x
2 − 2vt x − 3t)

)
.

Now, let x̄ :=0 and ε = (ε1, ε2):=( 14 ,
1
4 ). Then, ε̄ = (ε̄1, ε̄2) = ( 1

2 ,
1
2

)
and μ̄ =(

f1(x̄)
g1(x̄)

− ε1,
f2(x̄)
g2(x̄)

− ε2

)
= ( 14 ,

1
4 ). By selecting η̄t :=

{
0, if t ∈ (0, 1),
1
4 , if t = 0,

and v̄t :=
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2 − t , t ∈ [0, 1). It is easy to show that

Lμ̄(x̄, η̄, v̄) =
(
1

2
,
1

2

)
, L μ̄(x̄, η, v) =

(
1

2
−
∑
t∈T

3tηt ,
1

2
−
∑
t∈T

3tηt

)
,

and

Lμ̄(x, η̄, v̄) =
(
5

4
x2 − x + 1

2
,
5

4
x2 − x + 1

2

)
.

Obviously, for any (x, η, v) ∈ C × R
(T )
+ × V ,

Lμ̄(x, η̄, v̄) + ε̄ ⊀ Lμ̄(x̄, η̄, v̄) ⊀ Lμ̄(x̄, η, v) − ε̄.

This means that (x̄, η̄, v̄) is a robust ε-weak saddle point.

The following theorem is a robust ε-weak saddle point theorem of Lμ related to
(UMFP). This is a new result on robust ε-saddle point theorem for multiobjective
fractional optimization not yet being considered in the literature.

Theorem 4.3 Let x̄ ∈ F, ε ∈ R
p
+, and μ̄i = fi (x̄)

gi (x̄)
−εi ≥ 0, i = 1, ..., p. Let ht (·, vt ) :

R
n × R

q → R, t ∈ T , be continuous functions such that, for any vt ∈ Vt , ht (·, vt ) is
a convex function. Assume that (RCQC) holds. If x̄ ∈ F is a robust ε-weakly efficient
solution of (UMFP), then there exist η̄ = (η̄t )t∈T ∈ R

(T )
+ , and v̄ = (v̄t )t∈T ∈ V ,

such that (x̄, η̄, v̄) ∈ C × R
(T )
+ × V is a robust ε-weak saddle point of Lμ related to

(UMFP).

Proof Since x̄ is a robust ε-weakly efficient solution of (UMFP), it follows from

Theorem 3.1 that there exist λ̄i ≥ 0,
p∑

i=1
λ̄i = 1, ε

′
i ≥ 0, ε

′′
i ≥ 0, i = 1, ..., p, η̄t ≥ 0,

v̄t ∈ Vt , ε0t ≥ 0, t ∈ T , and εc ≥ 0, such that (2) and (3) hold. By (2), there exist
ξ

′
i ∈ ∂

ε
′
i
(λ̄i fi )(x̄), ξ

′′
i ∈ ∂

ε
′′
i
(−λ̄i μ̄i gi )(x̄), i = 1, ..., p, ξt ∈ ∂ε0t

(η̄t ht (·, v̄t )) (x̄),

t ∈ T , and ξc ∈ ∂εcδC (x̄), such that

p∑
i=1

(ξ
′
i + ξ

′′
i ) +

∑
t∈T

ξt + ξc = 0. (18)

Moreover, from ξ
′
i ∈ ∂

ε
′
i
(λ̄i fi )(x̄), ξ

′′
i ∈ ∂

ε
′′
i
(−λ̄i μ̄i gi )(x̄), i = 1, ..., p, ξt ∈

∂ε0t
(η̄t ht (·, v̄t )) (x̄), t ∈ T , and ξc ∈ ∂εcδC (x̄), it follows that, for any x ∈ C ,

λ̄i fi (x) ≥ λ̄i fi (x̄) +
〈
ξ

′
i , x − x̄

〉
− ε

′
i , − λ̄i μ̄i gi (x) ≥ −λ̄i μ̄i gi (x̄) +

〈
ξ

′′
i , x − x̄

〉

−ε
′′
i , i = 1, ..., p, η̄t ht (x, v̄t ) ≥ η̄t ht (x̄, v̄t ) + 〈ξt , x − x̄〉 − ε0t , t ∈T , and δC (x)

≥ δC (x̄) + 〈ξc, x − x̄〉 − εc.
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These, together with (3) and (18), imply that for any x ∈ F ,

p∑
i=1

λ̄i ( fi (x) − μ̄i gi (x)) +
∑
t∈T

η̄t ht (x, v̄t )

≥
p∑

i=1

λ̄i ( fi (x̄) − μ̄i gi (x̄)) +
∑
t∈T

η̄t ht (x̄, v̄t ) −
p∑

i=1

(
ε

′
i + ε

′′
i

)
−
∑
t∈T

ε0t − εc

=
p∑

i=1

λ̄i ( fi (x̄) − μ̄i gi (x̄)) −
p∑

i=1

λ̄iεi gi (x̄).

Moreover, by x̄ ∈ F , we get ht (x̄, v̄t ) ≤ 0, ∀t ∈ T . Then,

p∑
i=1

λ̄i ( fi (x) − μ̄i gi (x)) +
∑
t∈T

η̄t ht (x, v̄t )

≥
p∑

i=1

λ̄i ( fi (x̄) − μ̄i gi (x̄)) +
∑
t∈T

η̄t ht (x̄, v̄t ) −
p∑

i=1

λ̄iεi gi (x̄). (19)

Assume that there exists x̂ ∈ C such that Lμ̄(x̂, η̄, v̄) + ε̄ ≺ Lμ̄(x̄, η̄, v̄). That is

fi (x̂) − μ̄i gi (x̂) +
∑
t∈T

η̄t ht (x̂, v̄t ) + ε̄i < fi (x̄) − μ̄i gi (x̄) +
∑
t∈T

η̄t ht (x̄, v̄t ).

Thus,

p∑
i=1

λ̄i

(
fi (x̂) − μ̄i gi (x̂) +

∑
t∈T

η̄t ht (x̂, v̄t ) + εi gi (x̄)

)

<

p∑
i=1

λ̄i

(
fi (x̄) − μi gi (x̄) +

∑
t∈T

η̄t ht (x̄, v̄t )

)
.

This contradicts (19).
On the other hand, assume to the contrary that there exist η̂ ∈ R

(T )
+ , and v̂ ∈ V

such that Lμ̄(x̄, η̄, v̄) ≺ Lμ̄(x̄, η̂, v̂) − ε̄. This implies that

∑
t∈T

η̄t ht (x̄, v̄t ) <
∑
t∈T

η̂t ht (x̄, v̂t ) − εi gi (x̄), i = 1, ..., p. (20)

Since
p∑

i=1
λ̄i = 1, we deduce from (20) that

∑
t∈T

η̄t ht (x̄, v̄t ) <
∑
t∈T

η̂t ht (x̄, v̂t ) −
p∑

i=1

λ̄iεi gi (x̄). (21)
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Now, we will get a contradiction. Indeed, from (3), we have

∑
t∈T

η̄t ht (x̄, v̄t ) +
p∑

i=1

λ̄iεi gi (x̄) =
p∑

i=1

(
ε

′
i + ε

′′
i

)
+
∑
t∈T

ε0t + εc ≥ 0.

By x̄ ∈ F , we get ht (x̄, v̂t ) ≤ 0, ∀t ∈ T . Therefore,

∑
t∈T

η̄t ht (x̄, v̄t ) +
p∑

i=1

λ̄iεi gi (x̄) −
∑
t∈T

η̂t ht (x̄, v̂t ) ≥ 0,

which contradicts (21). The proof is complete. ��
The following result can be easily obtained by using similar methods reported in

[24, Theorem 6.7].

Theorem 4.4 Let ε ∈ R
p
+. If (x̄, η̄, v̄) ∈ C × R

(T )
+ × V is a robust ε-weak saddle

point of Lμ related to (UMFP), then, x̄ ∈ F is a robust ε-weakly efficient solution of
(UMFP).

5 Conclusions

In this paper, following the framework of robust optimization, we consider robust
ε-weakly efficient solutions for a class of nonsmooth multiobjective fractional semi-
infinite optimization problems with uncertain data in the constraint functions. We
employ a scalarization method and a robust type constraint qualification condition to
establish necessary and sufficient conditions for the robust ε-weakly efficient solutions
of this uncertain fractional semi-infinite optimization problem. We also obtain some
robust ε-duality properties and ε-weak saddle point theorems. It is worth noting that
the approach used in this paper is new, and some existing results in the literature
can be obtained by the use of our approach. Moreover, the mathematical framework
developed in this paper can be extended to the investigation of robust ε-quasi (weakly)
efficient solutions for uncertain multiobjective fractional semi-infinite optimization.
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