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Abstract
In this paper, we develop a unified convergence analysis framework for the Accel-
erated Smoothed GAp ReDuction algorithm (ASGARD) introduced in Tran-Dinh et
al. (SIAM J Optim 28(1):96–134, 2018). Unlike Tran-Dinh et al. (SIAM J Optim
28(1):96–134, 2018), the new analysis covers three settings in a single algorithm:
general convexity, strong convexity, and strong convexity and smoothness. Moreover,
we establish the convergence guarantees on three criteria: (i) gap function, (ii) primal
objective residual, and (iii) dual objective residual. Our convergence rates are opti-
mal (up to a constant factor) in all cases. While the convergence rate on the primal
objective residual for the general convex case has been established in Tran-Dinh et
al. (SIAM J Optim 28(1):96–134, 2018), we prove additional convergence rates on
the gap function and the dual objective residual. The analysis for the last two cases is
completely new. Our results provide a complete picture on the convergence guarantees
of ASGARD. Finally, we present four different numerical experiments on a represen-
tative optimization model to verify our algorithm and compare it with the well-known
Nesterov’s smoothing algorithm.

Keywords Accelerated smoothed gap reduction · Primal–dual algorithm · Nesterov’s
smoothing technique · Convex–concave saddle-point problem

1 Introduction

We consider the following classical convex–concave saddle-point problem:

min
x∈Rp

max
y∈Rn

{
L(x, y) := f (x) + 〈Kx, y〉 − g∗(y)

}
, (1)
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1236 Q. Tran-Dinh

where f : Rp → R∪{+∞} and g : Rn → R∪{+∞} are proper, closed, and convex,
K : Rp → R

n is a linear operator, and g∗(y) := supx {〈y, x〉 − g(x)} is the Fenchel
conjugate of g.

The convex–concave saddle-point problem (1) can be written in the primal and dual
forms. The primal problem is defined as

F� := min
x∈Rp

{
F(x) := f (x) + g(Kx)

}
. (2)

The corresponding dual problem is written as

D� := min
y∈Rn

{
D(y) := f ∗(−K	y) + g∗(y)

}
. (3)

Clearly, both the primal problem (2) and its dual form (3) are convex.

Motivation In [23], two accelerated smoothed gap reduction algorithms are proposed
to solve (2) and its special constrained convex problem. Both algorithms achieve opti-
mal sublinear convergence rates (up to a constant factor) in the sense of black-box
first-order oracles [15,16], when f and g are convex, and when f is strongly convex
and g is just convex, respectively. The first algorithm in [23] is calledASGARD (Accel-
erated Smoothed GAp ReDuction). To the best of our knowledge, except for a special
case [24], ASGARD was the first primal–dual first-order algorithm that achieves a
non-asymptotic optimal convergence rate on the last primal iterate. ASGARD is also
different from the alternating direction method of multipliers (ADMM) and its vari-
ants, where it does not require solving complex subproblems but uses the proximal
operators of f and g∗. However, ASGARD (i.e. [23, Algorithm 1]) only covers the
general convex case, and it needs only one proximal operation of f and of g∗ per
iteration. To handle the strong convexity of f , a different variant is developed in [23],
called ADSGARD, but requires two proximal operations of f per iteration. Therefore,
the following natural question is arising:

Can we develop a unified variant of ASGARD that covers three settings: general
convexity, strong convexity, and strong convexity and smoothness?

Contribution In this paper, we affirmatively answer this question by developing a
unified variant of ASGARD that covers the following three settings:

Case 1: Both f and g∗ in (1) are only convex, but not necessarily strongly convex.
Case 2: Either f or g∗ is strongly convex, but not both f and g∗.
Case 3: Both f and g∗ are strongly convex.

The new variant only requires one proximal operation of f and of g∗ at each iteration
as in the original ASGARD and existing primal–dual methods, e.g., in [4,5,7,8,11,
12,19,28]. Our algorithm reduces to ASGARD in Case 1, but uses a different update
rule for ηk (see Step 5 of Algorithm 1) compared to ASGARD. In Cases 2 and 3, our
algorithm is completely new by incorporating the strong convexity parameter μ f of f
and/or μg∗ of g∗ in the parameter update rules to achieve optimal O

(
1/k2

)
sublinear

123



A unified convergence rate analysis of the ASGARD algorithm 1237

and
(
1 − O

(
1/

√
κF

))
linear rates, respectively, where k is the iteration counter and

κF := ‖K‖2/(μ f μg∗).
In terms of convergence guarantees, we establish that, in all cases, our algorithm

achieves optimal rates on the last primal sequence {xk} and an averaging dual sequence{
ỹk

}
. Moreover, our convergence guarantees are on three different criteria: (i) the gap

function for (1), (ii) the primal objective residual F(xk)− F� for (2), and (iii) the dual
objective residual D(ỹk)− D� for (3). Our paper therefore provides a unified and full
analysis on convergence rates of ASGARD for solving three problems (1), (2), and
(3) simultaneously.

We emphasize that primal–dual first-order methods for solving (1), (2), and (3),
and their convergence analysis have been well studied in the literature. To avoid
overloading this paper,we refer to our recentworks [23,25] for amore thorough discus-
sion and comparison between existing methods. Hitherto, there have been numerous
papers studying convergence rates of primal–dual first-order methods, including [4–
7,9,14,27]. However, the best known and optimal rates are only achieved via averaging
or weighted averaging sequences, which are also known as ergodic rates. The con-
vergence rates on the last iterate sequence are often slower and suboptimal. Recently,
the optimal convergence rates of the last iterates have been studied for primal–dual
first-order methods, including [23,25,27]. As pointed out in [5,10,21,23,25], the last
iterate convergence guarantee is very important in various applications to maintain
some desirable structures of the final solutions such as sparsity, low-rankness, or
sharp-edgedness in images. This also motivates us to develop ASGARD.

Paper outline The rest of this paper is organized as follows. Section 2 recalls some
basic concepts, states our assumptions, and characterizes the optimality condition of
(1). Section 3 presents our main results on the algorithm and its convergence analysis.
Section 4 provides a set of experiments to verify our theoretical results and compare
our method with Nesterov’s smoothing scheme in [17]. Some technical proofs are
deferred to the “Appendix”.

2 Basic concepts, assumptions, and optimality condition

We are working with Euclidean spaces, Rp and Rn , equipped with the standard inner
product 〈·, ·〉 and the Euclidean norm ‖ · ‖. We will use the Euclidean norm for the
entire paper. Given a proper, closed, and convex function f , we use dom ( f ) and
∂ f (x) to denote its domain and its subdifferential at x , respectively. We also use
∇ f (x) for a subgradient or the gradient (if f is differentiable) of f at x . We denote by
f ∗(y) := sup {〈y, x〉 − f (x) : x ∈ dom ( f )} the Fenchel conjugate of f . We denote
by ri(X ) the relative interior of X .

A function f is called M f -Lipschitz continuous if | f (x) − f (x̃)| ≤ M f ‖x − x̃‖
for all x, x̃ ∈ dom ( f ), where M f ∈ [0,+∞) is called a Lipschitz constant. A
proper, closed, and convex function f is M f -Lipschitz continuous if and only if
∂ f (·) is uniformly bounded by M f on dom ( f ). For a smooth function f , we say
that f is L f -smooth (or Lipschitz gradient) if for any x, x̃ ∈ dom ( f ), we have
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1238 Q. Tran-Dinh

‖∇ f (x) − ∇ f (x̃)‖ ≤ L f ‖x − x̃‖, where L f ∈ [0,+∞) is a Lipschitz constant. A
function f is called μ f -strongly convex with a strong convexity parameter μ f ≥ 0
if f (·) − μ f

2 ‖ · ‖2 remains convex. For a proper, closed, and convex function f ,
proxγ f (x) := argmin

{
f (x̃) + 1

2γ ‖x̃ − x‖2 : x̃ ∈ dom ( f )
}
is called the proximal

operator of γ f , where γ > 0.

2.1 Basic assumptions and optimality condition

In order to show the relationship between (1), (2) and its dual form (3), we require the
following assumptions.

Assumption 1 The following assumptions hold for (1).

(a) Both functions f and g are proper, closed, and convex on their domain.
(b) There exists a saddle-point z� := (x�, y�) of L defined in (1), i.e.:

L(x�, y) ≤ L(x�, y�) ≤ L(x, y�), ∀(x, y) ∈ dom ( f ) × dom
(
g∗) . (4)

(c) The Slater condition 0 ∈ ri(dom (g) − Kdom ( f )) holds.

Assumption 1 is standard in convex–concave saddle-point settings. Under Assump-
tion 1, strong duality holds, i.e. F� = L(x�, y�) = −D�.

To characterize a saddle-point of (1), we define the following gap function:

GX×Y (x, y) := sup
{
L(x, ỹ) − L(x̃, y) : x̃ ∈ X , ỹ ∈ Y

}
, (5)

where X ⊆ dom ( f ) and Y ⊆ dom (g∗) are nonempty, closed, and convex subsets
such thatX×Y contains a saddle-point (x�, y�)of (1).Clearly,wehaveGX×Y (x, y) ≥
0 for all (x, y) ∈ X ×Y . Moreover, if (x�, y�) is a saddle-point of (1) in X ×Y , then
GX×Y (x�, y�) = 0.

2.2 Smoothing technique for g

We first smooth g in (2) using Nesterov’s smoothing technique [17] as

gβ(u, ẏ) := max
y∈Rn

{
〈u, y〉 − g∗(y) − β

2 ‖y − ẏ‖2
}

, (6)

where g∗ is the Fenchel conjugate of g, β > 0 is a smoothness parameter, and ẏ is a
given proximal center. We denote by ∇ugβ(u) = proxg∗/β(ẏ + 1

β
u) the gradient of

gβ w.r.t. u.
Given gβ defined by (6), we can approximate F in (2) by

Fβ(x, ẏ) := f (x) + gβ(Kx, ẏ). (7)

The following lemma provides two key inequalities to link Fβ to L and D.
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A unified convergence rate analysis of the ASGARD algorithm 1239

Lemma 1 Let Fβ be defined by (7) and (x�, y�) be a saddle-point of (1). Then, for
any x, x̄ ∈ dom ( f ) and ẏ, ỹ, y ∈ dom (g∗), we have

L(x̄, y) ≤ Fβ(x̄, ẏ) + β
2 ‖y − ẏ‖2,

D(ỹ) − D(y�) ≤ Fβ(x̄, ẏ) − L(x̃, ỹ) + β
2 ‖y� − ẏ‖2, ∀x̃ ∈ ∂ f ∗(−K	 ỹ).

(8)

Proof Using the definition of L in (1) and of Fβ in (7), we have L(x̄, y) = f (x̄) +
〈K x̄, y〉 − g∗(y) ≤ f (x̄) + supy{〈K x̄, y〉 − g∗(y) − β

2 ‖y − ẏ‖2} + β
2 ‖y − ẏ‖2 =

Fβ(x̄, ẏ) + β
2 ‖y − ẏ‖2, which proves the first line of (8).

Next, for any x̃ ∈ ∂ f ∗(−K	 ỹ), we have f ∗(−K	 ỹ) = 〈−K	 ỹ, x̃〉 − f (x̃) by
Fenchel’s equality [1]. Hence, D(ỹ) = f ∗(−K	 ỹ) + g∗(ỹ) = −L(x̃, ỹ). On the
other hand, by (4), we have L(x̄, y�) ≥ L(x�, y�) = −D(y�). Combining these two
expressions and the first line of (8), we obtain D(ỹ)−D(y�) ≤ L(x̄, y�)−L(x̃, ỹ) ≤
Fβ(x̄, ẏ) − L(x̃, ỹ) + β

2 ‖ẏ − y�‖2. ��

3 New ASGARD variant and its convergence guarantees

In this section, we derive a new and unified variant of ASGARD in [23] and analyze
its convergence rate guarantees for three settings.

3.1 The derivation of algorithm and one-iteration analysis

Given ẏ ∈ R
n and x̂ k ∈ R

p, the main step of ASGARD consists of one primal and
one dual updates as follows:

{
yk+1 := proxg∗/βk

(
ẏ + 1

βk
K x̂k

)
,

xk+1 := prox f /Lk

(
x̂ k − 1

Lk
K	yk+1

)
,

(9)

where βk > 0 is the smoothness parameter of g, and Lk > 0 is an estimate of the
Lipschitz constant of∇gβk . Here, (9) serves as basic steps of various primal–dual first-
order methods in the literature, including [5,14,23]. However, instead of updating ẏ,
ASGARD fixes it for all iterations.

The following lemma serves as a key step for our analysis in the sequel. Since its
statement and proof are rather different from [23, Lemma 2], we provide its proof in
“Appendix B.1”.

Lemma 2 [23] Let (xk+1, yk+1) be generated by (9), Fβ be defined by (7), and L be
given by (1). Then, for any x ∈ dom ( f ) and τk ∈ [0, 1], we have
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1240 Q. Tran-Dinh

Fβk (x
k+1, ẏ) ≤ (1 − τk)Fβk−1(x

k, ẏ) + τkL(x, yk+1)

+ Lkτ
2
k

2

∥∥ 1
τk

[x̂ k − (1 − τk)xk] − x
∥∥2 − μ f (1−τk )τk

2 ‖x − xk‖2

− τ 2k
2

(
Lk + μ f

) ∥∥ 1
τk

[xk+1 − (1 − τk)xk] − x
∥∥2

− Lk
2 ‖xk+1 − x̂ k‖2 + 1

2(μg∗+βk )
‖K (xk+1 − x̂ k)‖2

− 1−τk
2

[
τkβk − (βk−1 − βk)

] ‖∇ugβk (Kxk, ẏ) − ẏ‖2.

(10)

Together with the primal–dual step (9), we also apply Nesterov’s accelerated step to
x̂ k and an averaging step to ỹk as follows:

{
x̂ k+1 := xk+1 + ηk+1(xk+1 − xk),

ỹk+1 := (1 − τk)ỹk + τk yk+1,
(11)

where τk ∈ (0, 1) and ηk+1 > 0 will be determined in the sequel.
To analyze the convergence of the new ASGARD variant, we define the following

Lyapunov function (also called a potential function):

Vk(x) := Fβk−1(x
k, ẏ) − L(x, ỹk)

+ (Lk−1+μ f )τ
2
k−1

2 ‖ 1
τk−1

[xk − (1 − τk−1)xk−1] − x‖2.
(12)

The following lemma provides a key recursive estimate to analyze the convergence of
(9) and (11), whose proof is given in “Appendix B.2”.

Lemma 3 Let (xk, x̂ k, yk, ỹk) be updated by (9) and (11). Given β0 > 0, τk, τk+1 ∈
(0, 1], let βk , Lk , and ηk+1 be updated by

βk := βk−1

1 + τk
, Lk := ‖K‖2

βk + μg∗
, and ηk+1 := (1 − τk)τk

τ 2k + mk+1τk+1
, (13)

where mk+1 := Lk+1+μ f
Lk+μ f

. Suppose further that τk ∈ (0, 1] satisfies
{

(Lk−1 + μ f )(1 − τk)τ
2
k−1 + μ f (1 − τk)τk ≥ Lkτ

2
k ,

(Lk−1 + μ f )(Lk + μ f )τkτ
2
k−1 + (Lk + μ f )

2τ 2k ≥ (Lk−1 + μ f )Lkτ
2
k−1.

(14)

Then, for any x ∈ dom ( f ), the Lyapunov function Vk defined by (12) satisfies

Vk+1(x) ≤ (1 − τk)Vk(x). (15)

The unified ASGARD algorithm Our next step is to expand (9), (11), and (13) algo-
rithmically to obtain a new ASGARD variant (called ASGARD+) as presented in
Algorithm 1.
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A unified convergence rate analysis of the ASGARD algorithm 1241

Algorithm 1 (New Accelerated Smoothed GAp ReDuction (ASGARD+))

1: Initialization: Choose x0 ∈ dom ( f ), ỹ0 ∈ dom (g∗), and ẏ ∈ R
n .

2: Choose τ0 ∈ (0, 1] and β0 > 0. Set L0 := ‖K‖2
μg∗+β0

and x̂0 := x0.

3: For k := 0, 1, · · · , kmax do
4: Update τk+1 as in Theorems 1, 2, or 3, and update βk+1 := βk

1+τk+1
.

5: Let Lk+1 := ‖K‖2
μg∗+βk+1

, mk+1 := Lk+1+μ f
Lk+μ f

, and ηk+1 := (1−τk )τk
τ 2k +mk+1τk+1

.

6: Update ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yk+1 := proxg∗/βk
(
ẏ + 1

βk
K x̂k

)
,

xk+1 := prox f /Lk

(
x̂ k − 1

Lk
K	yk+1

)
,

x̂ k+1 := xk+1 + ηk+1(xk+1 − xk),

ỹk+1 := (1 − τk)ỹk + τk yk+1.

7: EndFor

Compared to the original ASGARD in [23], Algorithm 1 requires one additional
averaging dual step on ỹk at Step 6 to obtain the dual convergence. Note that Algo-
rithm 1 also incorporates the strong convexity parameters μ f of f and μg∗ of g∗ to
cover three settings: general convexity (μ f = μg∗ = 0), strong convexity (μ f > 0
and μg∗ = 0), and strong convexity and smoothness (μ f > 0 and μg∗ > 0). More
precisely, Lk and the momentum step-size ηk+1 are also different from [23] by incor-
poratingμg∗ andμ f . The per-iteration complexity of ASGARD+ remains the same as
ASGARD except for the averaging dual update ỹk . However, this step is not required
if we only solve (2). We highlight that if we apply a new approach from [25] to (1),
then we can also update the proximal center ẏ at each iteration.

3.2 Case 1: Both f and g∗ are just convex (�f = �g∗ = 0)

The following theorem establishes convergence rates of Algorithm 1 for the general
convex case where both f and g∗ are just convex.

Theorem 1 Suppose that Assumption 1 holds and both f and g∗ are only convex, i.e.
μ f = μg∗ = 0. Let {(xk, ỹk)} be generated by Algorithm 1 for solving (1), where
τ0 := 1 and τk+1 is the unique solution of the cubic equation τ 3 + τ 2 + τ 2k τ − τ 2k = 0
in τ , which always exists. Then, for all k ≥ 1, we have:

(a) The gap function GX×Y defined by (5) satisfies

GX×Y (xk, ỹk) ≤ ‖K‖2
2β0k

sup
x∈X

‖x0 − x‖2 + β0

k + 1
sup
y∈Y

‖y − ẏ‖2. (16)
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1242 Q. Tran-Dinh

(b) If g is Mg-Lipschitz continuous on dom (g), then for (2), it holds that

F(xk) − F� ≤ ‖K‖2
2β0k

‖x0 − x�‖2 + β0

k + 1
(‖ẏ‖ + Mg)

2. (17)

(c) If f ∗ is M f ∗ -Lipschitz continuous on dom ( f ∗), then for (3), it holds that

D(ỹk) − D� ≤ ‖K‖2
2β0k

(‖x0‖ + M f ∗)2 + β0

k + 1
‖ẏ − y�‖2. (18)

Proof First, since μ f = μg∗ = 0, Lk = ‖K‖2
βk

, and (1 + τk)βk = βk−1, the two
conditions of (14) respectively reduce to

(1 − τk)τ
2
k−1 ≥ (1 + τk)τ

2
k and (1 + τk)τ

2
k ≥ τ 2k−1(1 − τk).

These conditions hold if τ 3k + τ 2k + τ 2k−1τk − τ 2k−1 = 0. We first choose τ0 := 1, and
update τk by solving the cubic equation τ 3 + τ + τ 2k−1τ − τ 2k−1 = 0 for k ≥ 1. Note
that this equation has a unique positive real solution τk ∈ (0, 1) due to Lemma 5(b).
Moreover, we have

∏k
i=1(1 − τi ) ≤ 1

k+1 and βk ≤ 2β0
k+2 .

Next, by induction, (15) leads to Vk(x) ≤
[∏k−1

i=1 (1 − τi )
]
V1(x) ≤ 1

kV1(x), where

we have used
∏k−1

i=1 (1 − τi ) ≤ 1
k from Lemma 5(b). However, from (45) in the proof

of Lemma 3 and τ0 = 1, we have V1(x) ≤ (1 − τ0)V0(x) + L0τ
2
0

2 ‖x̂0 − x‖2 =
‖K‖2
2β0

‖x0 − x‖2. Hence, we eventually obtain

Vk(x) ≤ ‖K‖2
2β0k

‖x0 − x‖2. (19)

Using (8) from Lemma 1 and βk−1 ≤ 2β0
k+1 from Lemma 5(b), we get

L(xk, y) − L(x, ỹk)
(8)≤ Fβk−1(x

k, ẏ) − L(x, ỹk) + βk−1
2 ‖y − ẏ‖2

(12)≤ Vk(x) + βk−1
2 ‖y − ẏ‖2

(19)≤ ‖K‖2
2β0k

‖x0 − x‖2 + β0
k+1‖ẏ − y‖2.

Taking the supreme over X and Y both sides of the last estimate and using (5), we
obtain (16).

Now, since Fβk−1(x
k, ẏ)− F�

(4)≤ Fβk−1(x
k, ẏ)−L(x�, ỹk)

(12)≤ Vk(x�), combining
this inequality and (19), we get

Fβk−1(x
k, ẏ) − F� ≤ ‖K‖2

2β0k
‖x0 − x�‖2.
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A unified convergence rate analysis of the ASGARD algorithm 1243

On the other hand, since g is Mg-Lipschitz continuous, we have

sup
{
‖y − ẏ‖ : y ∈ ∂g(Kxk)

}
≤ ‖ẏ‖ + sup{‖y‖ : ‖y‖ ≤ Mg} = ‖ẏ‖ + Mg.

Hence, by (31) of Lemma 4, we have F(xk) ≤ Fβk−1(x
k, ẏ) + βk−1

2 (‖ẏ‖ + Mg)
2 ≤

Fβk−1(x
k, ẏ) + β0

k+1 (‖ẏ‖ + Mg)
2. Combining both estimates, we obtain (17).

Finally, using (8), we have

D(ỹk) − D� ≤ Fβk−1(x
k, ẏ) − L(x̃ k, ỹk) + βk−1

2 ‖ẏ − y�‖2
(12)≤ Vk(x̃ k) + β0

k+1‖ẏ − y�‖2
(19)≤ ‖K‖2

2β0k
(‖x0‖ + M f ∗)2 + β0

k+1‖ẏ − y�‖2,

which proves (18). Here, since x̃ k ∈ ∂ f ∗(−K	 ỹk), we have ‖x0 − x̃ k‖ ≤ ‖x̃ k‖ +
‖x0‖ ≤ M f ∗ + ‖x0‖, which has been used in the last inequality. ��

3.3 Case 2: f is strongly convex and g∗ is convex (�f > 0 and�g∗ = 0)

Next, we consider the case when only f or g∗ is strongly convex. Without loss of
generality, we assume that f is strongly convex with a strong convexity parameter
μ f > 0, but g∗ is only convex with μg∗ = 0. Otherwise, we switch the role of f and
g∗ in Algorithm 1.

The following theorem establishes an optimal O
(
1/k2

)
convergence rate (up to a

constant factor) of Algorithm 1 in this case (i.e. μ f > 0 and μg∗ = 0).

Theorem 2 Suppose that Assumption 1 holds and that f is strongly convex with a
convexity parameter μ f > 0, but g∗ is just convex (i.e. μg∗ = 0). Let us choose

τ0 := 1 and β0 ≥ 0.382‖K‖2
μ f

. Let {(xk, ỹk)} be generated by Algorithm 1 using the

update rule τk+1 := τk
2

(√
τ 2k + 4 − τk

)
for τk . Then, we have:

(a) The gap function GX×Y be defined by (5) satisfies

GX×Y (xk, ỹk) ≤ 2‖K‖2
β0(k + 1)2

sup
x∈X

‖x0 − x‖2 + 10β0

(k + 3)2
sup
y∈Y

‖ẏ − y‖2. (20)

(b) If g is Mg-Lipschitz continuous on dom (g), then for (2), it holds that

F(xk) − F� ≤ 2‖K‖2‖x0 − x�‖2
β0(k + 1)2

+ 10β0(‖ẏ‖ + Mg)
2

(k + 3)2
. (21)

(c) If f ∗ is M f ∗ -Lipschitz continuous on dom ( f ∗), then for (3), it holds that

D(ỹk) − D� ≤ 2‖K‖2(‖x0‖ + M f ∗)2

β0(k + 1)2
+ 10β0‖ẏ − y�‖2

(k + 3)2
. (22)
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1244 Q. Tran-Dinh

Proof Since μg∗ = 0 and τ 2k = τ 2k−1(1 − τk) by the update rule of τk , βk = βk−1
1+τk

,

and Lk = ‖K‖2
βk

, the first condition of (14) is equivalent to βk−1 ≥ ‖K‖2τ 2k
μ f

. However,

since βk−1 ≥ β0τ
2
k

τ 21
due to Lemma 5(a), and τ1 = 0.6180, βk−1 ≥ ‖K‖2τ 2k

μ f
holds if

β0 ≥ ‖K‖2τ 21
μ f

= 0.382‖K‖2
μ f

. Thus we can choose β0 ≥ 0.382‖K‖2
μ f

to guarantee the first
condition of (14).

Similarly, using mk = Lk+μ f
Lk−1+μ f

≥ 1, the second condition of (14) is equivalent

to m2
kτ

2
k + mkτkτ

2
k−1 ≥ Lkτ

2
k−1

Lk−1+μ f
. Since Lk

Lk−1+μ f
≤ mk , the last condition holds if

m2
kτ

2
k +mkτkτ

2
k−1 ≥ mkτ

2
k−1. Using again τ 2k = τ 2k−1(1− τk), this condition becomes

mkτ
2
k ≥ τ 2k−1(1 − τk) = τ 2k . This always holds true since mk ≥ 1. Therefore, the

second condition of (14) is satisfied.
As a result, we have the recursive estimate (15), i.e.:

Vk+1(x) ≤ (1 − τk)Vk(x). (23)

From (27), Lemma 5(a), (45), and noting that x̃0 := x0 and τ0 := 1, we have

Vk(x) ≤ [ ∏k−1
i=1 (1 − τi )

]
V1(x) = Θ1,k−1V1(x) ≤ 4

(k+1)2
R0(x).

where R0(x) := ‖K‖2
2β0

‖x0 − x‖2. Similar to the proof of Theorem 1, using the last

inequality and βk−1 ≤ 4β0τ 20
τ 22 [τ0(k+1)+2]2 ≤ 20β0

(k+3)2
from Lemma 5(a), we obtain the

bounds (20), (21), and (22), respectively. ��
Remark 1 The variant of Algorithm 1 in Theorem 2 is completely different from [23,
Algorithm 2] and [25, Algorithm 2], where it requires only one prox f /Lk

(·) as opposed
to two proximal operations of f as in [23,25].

3.4 Case 3: Both f and g∗ are strongly convex (�f > 0 and�g∗ > 0)

Finally, we assume that both f and g∗ are strongly convex with strong convexity
parameters μ f > 0 and μg∗ > 0, respectively. Then, the following theorem proves
the optimal linear rate (up to a constant factor) of Algorithm 1.

Theorem 3 Suppose that Assumption 1 holds and both f and g∗ in (1) are strongly
convex with μ f > 0 and μg∗ > 0, respectively. Let {(xk, ỹk)} be generated by

Algorithm 1 using τk := τ = 1√
1+κF

∈ (0, 1) and β0 > 0, where κF := ‖K‖2
μ f μg∗ . Then,

the following statements hold:

(a) The gap function GX×Y defined by (5) satisfies

GX×Y (xk, ỹk) ≤ (1 − τ)kR̄p + 1

2(1 + τ)k
sup
y∈Y

‖ẏ − y‖2, (24)
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where R̄p := sup
x∈X

{
(1 − τ)

[
Fβ0(x

0) − L(x, ỹ0)
] + ‖K‖2τ 2

2(μg∗+β0)
‖x0 − x‖2

}
.

(b) If g is Mg-Lipschitz continuous on dom (g), then for (2), it holds that

F(xk) − F� ≤ (1 − τ)kR̄�
p + β0

2(1 + τ)k

(‖ẏ‖ + Mg
)2

, (25)

where R̄�
p := (1 − τ)

[
Fβ0(x

0) − L(x�, ỹ0)
] + ‖K‖2τ 2

2(μg∗+β0)
‖x0 − x�‖2.

(d) If f ∗ is M f ∗ -Lipschitz continuous on dom ( f ∗), then for (3), it holds that

D(ỹk) − D� ≤ (1 − τ)kR̄�
d + β0‖ẏ − y�‖2

2(1 + τ)k
, (26)

where R̄�
d := (1 − τ)

[
Fβ0(x

0) − D(ỹ0)
] + ‖K‖2τ 2

2(μg∗+β0)

(‖x0‖ + M f ∗
)2
.

Proof Since τk = τ = 1√
1+κF

=
√

μ f μg∗
‖K‖2+μ f μg∗

∈ (0, 1) andβk−1 = (1+τ)βk , after a

few elementary calculations, we can show that the first condition of (14) automatically
holds. The second condition of (14) is equivalent to mkτ + m2

k ≥ Lk
Lk−1+μ f

. Since

mk ≥ Lk
Lk−1+μ f

, this condition holds if mkτ + m2
k ≥ mk , which is equivalent to

τ + mk ≥ 1. This obviously holds true since τ > 0 and mk ≥ 1.
From (15) of Lemma 3, we have Vk+1(x) ≤ (1− τ)Vk(x). Therefore, by induction

and using again (45), we get

Vk(x) ≤ (1 − τ)kV1(x) ≤ (1 − τ)kR̄0(x). (27)

where R̄p(x) := (1 − τ)
[
Fβ0(x

0) − L(x, ỹ0)
] + ‖K‖2τ 2

2(μg∗+β0)
‖x0 − x‖2.

Now, since βk−1 = β0
(1+τ)k

due to the update rule of βk , by (8), we have

L(xk, y) − L(x, ỹk) ≤ Vk(x) + βk−1

2
‖ẏ − y‖2 ≤ (1 − τ)kR̄p(x) + ‖ẏ − y‖2

2(1 + τ)k
.

This implies (24). The estimates (25) and (26) can be proved similarly as in Theorem 1,
and we omit the details here. ��
Remark 2 Since g∗ isμg∗ -strongly convex, it is well-known that g◦K is ‖K‖2

μg∗ -smooth.

Hence, κF := ‖K‖2
μ f μg∗ is the condition number of F in (2). Theorem shows that Algo-

rithm 1 can achieve a
(
1 − 1

(1+√
2)

√
κF

)k-linear convergence rate. Consequently, it

also achievesO
(√

κF log
( 1

ε

))
oracle complexity to obtain an ε-primal–dual solution

(xk, ỹk). This linear rate and complexity are optimal (up to a constant factor) under
the given assumptions in Theorem 3. However, Algorithm 1 is very different from
existing accelerated proximal gradient methods, e.g., [2,18,26] for solving (2) since
our method uses the proximal operator of g∗ (and therefore, the proximal operator of
g) instead of the gradient of g as in [2,18,26].
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1246 Q. Tran-Dinh

Remark 3 TheO (1/k),O
(
1/k2

)
, and linear convergence rates in Theorems 1, 2, and

3, respectively are already optimal (up to a constant factor) under given assumptions
as discussed, e.g., in [20,25]. The primal convergence rate on {F(xk) − F�} has been
proved in [23, Theorem 4], but only for the case O (1/k). The convergence rates on
{GX×Y (xk, ỹk)} and {D(ỹk)− D�} are new. Moreover, the convergence of the primal
sequence is on the last iterate xk , while the convergence of the dual sequence is on the
averaging iterate ỹk .

4 Numerical experiments

In this section, we provide four numerical experiments to verify the theoretical conver-
gence aspects and the performance of Algorithm 1. Our algorithm is implemented in
Matlab R.2019b running on aMacBook Laptop with 2.8GHz Quad-Core Intel Core i7
and 16 GB RAM. We also compare our method with Nesterov’s smoothing algorithm
in [17] as a baseline. We emphasize that our experiments bellow follow exactly the
parameter update rules as stated in Theorems 1 and 2 without any parameter tuning
trick. To further improve practical performance of Algorithm 1, one can exploit the
restarting strategy in [23], where its theoretical guarantee is established in [22].

The nonsmooth and convex optimization problem we use for our experiments is
the following representative model:

min
x∈Rp

{
F(x) := ‖Kx − b‖2 + λ‖x‖1 + ρ

2
‖x‖22

}
, (28)

where K ∈ R
n×p is a given matrix, b ∈ R

n is also given, and λ > 0 and ρ ≥ 0
are two given regularization parameters. The norm ‖ · ‖2 is the 2-norm (or Euclidean
norm). If ρ = 0, then (28) reduces to the square-root LASSOmodel proposed in [3]. If
ρ > 0, then (28) becomes a square-root regression problemwith elastic net regularizer
similar to [30]. Clearly, if we define g(y) := ‖y − b‖2 and f (x) := λ‖x‖1 + ρ

2 ‖x‖22,
then (28) can be rewritten into (2).

To generate the input data for our experiments, we first generate K from standard
i.i.d. Gaussian distributions with either uncorrelated or 50% correlated columns. Then,
we generate an observed vector b as b := Kx� + N (0, σ ), where x� is a predefined
sparse vector andN (0, σ ) stands for standard Gaussian noise with variance σ = 0.05.
The regularization parameter λ to promote sparsity is chosen as suggested in [3], and
the parameter ρ is set to ρ := 0.1. We first fix the size of problem at p := 1000 and
n := 350 and choose the number of nonzero entries of x� to be s := 100. Then, for
each experiment, we generate 30 instances of the same size but with different input
data (K , b).

For Nesterov’s smoothing method, following [17], we smooth g as

gγ (y) := max
v∈Rn

{
〈y − b, v〉 − γ

2
‖v‖2 : ‖v‖2 ≤ 1

}
,

where γ > 0 is a smoothness parameter. In order to correctly choose γ for Nesterov’s
smoothingmethod, we first solve (28) with CVX [13] usingMosekwith high precision
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A unified convergence rate analysis of the ASGARD algorithm 1247

to get a high accurate solution x� of (28). Then, we set γ ∗ :=
√
2‖K‖‖x0−x�‖
kmax

√
DV

by

minimizing its theoretical bound from [17] w.r.t. γ > 0, where DV := 1
2 is the prox-

diameter of the unit 2-norm ball, and kmax is the maximum number of iterations.
For Algorithm 1, using (17) and ẏ := 0, we can set β0 = β∗ := ‖K‖‖x0−x∗‖

Mg
by

minimizing the right-hand side of (17) w.r.t. β0 > 0, where Mg := 1. We choose
kmax := 5000 for all experiments. To see the effect of the smoothness parameters
γ and β0 on the performance of both algorithms, we also consider two variants by
increasing or decreasing these parameters 10 times, respectively. More specifically,
we set them as follows.

• For Nesterov’s smoothing scheme, we consider two additional variants by setting
γ := 10γ ∗ and γ = 0.1γ ∗, respectively.

• For Algorithm 1, we also consider two other variants with β0 := 10β∗ and β0 :=
0.1β∗, respectively.

We first conduct two different experiments for the square-root LASSO model (i.e.
setting ρ := 0 in (28)). In this case, the underlying optimization problem is non-
strongly convex and fully nonsmooth.

• Experiment 1: We test Algorithm 1 (abbreviated by Alg. 1) and Nesterov’s
smoothing method (abbreviated by Nes. Alg.) on 30 problem instances with
uncorrelated columns of K . Since both algorithms essentially have the same per-

iteration complexity, we report the relative primal objective residual F(xk )−F(x�)
max{1,|F(x�)|}

against the number of iterations.
• Experiment 2: We conduct the same test on another set of 30 problem instances,
but using 50% correlated columns in the input matrix K .

The results of both experiments are depicted in Fig. 1, where the left plot is for
Experiment 1 and the right plot is for Experiment 2. The solid line of each curve shows
the mean over 30 problem samples, and the corresponding shaded area represents the
sample variance of 30 problem samples (i.e. the area between the lowest and the
highest deviation from the mean).

From Fig. 1, we observe that, with the choice β0 := β∗ and γ := γ ∗ as suggested
by the theory, both algorithms perform best compared to other smaller or larger values
of these parameters. We also see that Algorithm 1 outperforms Nesterov’s smoothing
scheme in both experiments. If β0 (respectively, γ ) is large, then both algorithmsmake
good progress in early iterations, but become saturated at a given objective value in
the last iterations. Alternatively, if β0 (respectively, γ ) is small, then both algorithms
perform worse in early iterations, but further decrease the objective value when the
number of iterations is increasing. This behavior also confirms the theoretical results
stated in Theorem 1 and in [17]. In fact, if β0 (or γ ) is small, then the algorithmic
stepsize is small. Hence, the algorithm makes slow progress at early iterations, but it
better approximates the nonsmooth function g, leading tomore accurate approximation
from F(xk) to F(x�). In contrast, if β0 (or γ ) is large, then we have a large stepsize
and therefore a faster convergence rate in early iterations. However, the smoothed
approximation is less accurate.

In order to test the strongly convex case in Theorem 2, we conduct two additional
experiments on (28) with ρ := 0.1. In this case, problem (28) is strongly convex with
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1248 Q. Tran-Dinh

Fig. 1 The convergence behavior ofAlgorithm 1 andNesterov’s smoothing scheme on 30 problem instances
of (28) (the non-strongly convex case). Left plot: uncorrelated columns in K , and Right plot: 50% correlated
columns in K

Fig. 2 The convergence behavior of the two variants of Algorithm 1 on a collection of 30 problem instances
of (28) (the strongly convex case). Left plot: uncorrelated columns in K , and Right plot: 50% correlated
columns in K

μ f := 0.1. Since [17] does not directly handle the strongly convex case, we only
compare two variants of Algorithm 1 stated in Theorem 1 (Alg. 1) and Theorem 2

(Alg. 1b), respectively. We set β0 := 0.382‖K‖2
μ f

in Alg. 1b) as suggested by
Theorem 2. We consider two experiments as follows:

– Experiment 3: Test two variants of Algorithm 1 on a collection of 30 problem
instances with uncorrelated columns of K .

– Experiment 4: Conduct the same test on another set of 30 problem instances, but
using 50% correlated columns in K .

The results of both variants of Algorithm 1 are reported in Fig. 2, where the left plot
is for Experiment 3 and the right plot is for Experiment 4.

Clearly, as shown in Fig. 2,Alg. 1b (i.e. corresponding to Theorem 2) highly out-
performs Alg. 1 (corresponding to Theorem 1). Alg. 1matches well theO (1/k)
convergence rate as stated in Theorem 1, while Alg. 1b shows its O

(
1/k2

)
con-

vergence rate as indicated by Theorem 2. Note that since g∗ in (28) is non-strongly
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A unified convergence rate analysis of the ASGARD algorithm 1249

convex, we omit testing the result of Theorem 3. This case is rather well studied in the
literature, see, e.g., [5].

5 Concluding remarks

We have developed a new variant of ASGARD introduced in [23, Algorithm 1], Algo-
rithm 1, that unifies three different settings: general convexity, strong convexity, and
strong convexity and smoothness. We have proved the convergence of Algorithm 1 for
three settings on three convergence criteria: gap function, primal objective residual,
and dual objective residual. Our convergence rates in all cases are optimal up to a
constant factor and the convergence rates of the primal sequence is on the last iterate.
Our preliminary numerical experiments have shown that the theoretical convergence
rates of Algorithm 1 match well the actual rates observed in practice. The proposed
algorithm can be easily extended to solve composite convex problems with three or
multi-objective terms. It can also be customized to solve other models, including
general linear and nonlinear constrained convex problems as discussed in [21,23,25].

Acknowledgements This work is partly supported by the Office of Naval Research under Grant No. ONR-
N00014-20-1-2088 (2020–2023), and the Nafosted Vietnam, Grant No. 101.01-2020.06 (2020–2022).

A Appendix 1: Technical lemmas

We need the following technical lemmas for our convergence analysis in the main text.

Lemma 4 ([23, Lemma 10]) Given β > 0, ẏ ∈ R
n, and a proper, closed, and convex

function g : Rn → R ∪ {+∞} with its Fenchel conjugate g∗, we define

gβ(u, ẏ) := max
y∈Rn

{
〈u, y〉 − g∗(y) − β

2 ‖y − ẏ‖2
}

. (29)

Let y∗
β(u, ẏ) be the unique solution of (29). Then, the following statements hold:

(a) gβ(·, ẏ) is convex w.r.t. u on dom (g) and 1
β+μg∗ -smooth w.r.t. u on dom (g),

where ∇ugβ(u, ẏ) = proxg∗/β(ẏ + 1
β
u). Moreover, for any u, û ∈ dom (g), we

have

gβ(û, ẏ)+〈∇gβ(û, ẏ), u−û〉 ≤ gβ(u, ẏ)−β + μg∗

2
‖∇ugβ(û, ẏ)−∇ugβ(u, ẏ)‖2.

(30)
(b) For any β > 0, ẏ ∈ R

n, and u ∈ dom (g), we have

gβ(u, ẏ) ≤ g(u) ≤ gβ(u, ẏ) + β
2 [Dg(ẏ)]2, where Dg(ẏ) := supy∈∂g(u) ‖y − ẏ‖ .

(31)
(c) For u ∈ dom (g) and ẏ ∈ R

n, gβ(u, ẏ) is convex in β, and for all β̂ ≥ β > 0,
we have

gβ(u, ẏ) ≤ g
β̂
(u, ẏ) + ( β̂−β

2

)‖∇ugβ(u, ẏ) − ẏ‖2. (32)
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(d) For any β > 0, and u, û ∈ dom (g), we have

gβ(u, ẏ) + 〈∇ugβ(u, ẏ), û − u〉 ≤ β(û, ẏ) − β
2 ‖∇ugβ(u, ẏ) − ẏ‖2, (33)

whereβ(û, ẏ) := 〈û,∇ugβ(u, ẏ)〉−g∗(∇ugβ(u, ẏ)) ≤ g(û)−μg∗
2 ‖∇ugβ(u, ẏ)−

∇g(û)‖2 for any ∇g(û) ∈ ∂g(û).

Lemma 5 The following statements hold.

(a) Let {τk} ⊂ (0, 1] be computed by τk+1 := τk
2

[
(τ 2k + 4)1/2 − τk

]
for some

τ0 ∈ (0, 1]. Then, we have

τ 2k = (1 − τk)τ
2
k−1,

1

k + 1/τ0
≤ τk <

2

k + 2/τ0
,

and
1

1 + τk−2
≤ 1 − τk ≤ 1

1 + τk−1
.

Moreover, we also have

Θl,k :=
k∏
i=l

(1 − τi ) = τ 2k

τ 2l−1

for 0 ≤ l ≤ k,

Θ0,k = (1 − τ0)τ
2
k

τ 20
≤ 4(1 − τ0)

(τ0k + 2)2
,

and
τ 2l+1

τ 2k+2

≤ Γl,k :=
k∏
i=l

(1 + τi ) ≤ τ 2l

τ 2k+1

for 0 ≤ l ≤ k.

If we update βk := βk−1
1+τk

for a given β0 > 0, then

4β0τ
2
0

τ 21 [τ0(k + 1) + 2]2 ≤ β0τ
2
k+1

τ 21
≤ βk = β0

Γ1,k
≤ β0τ

2
k+2

τ 22
≤ 4β0τ

2
0

τ 22 [τ0(k + 2) + 2]2 .

(b) Let {τk} ⊂ (0, 1] be computed by solving τ 3k + τ 2k + τ 2k−1τk − τ 2k−1 = 0 for all

k ≥ 1 and τ0 := 1. Then, we have 1
k+1 ≤ τk ≤ 2

k+2 andΘ1,k := ∏k
i=1(1−τi ) ≤

1
k+1 . Moreover, if we update βk := βk−1

1+τk
, then βk ≤ 2β0

k+2 .

Proof The first two relations of (a) have been proved, e.g., in [24]. Let us prove the
last inequality of (a). Since 1

1+τk−2
≤ 1− τk is equivalent to τk−2(1− τk) ≥ τk . Using

1 − τk = τ 2k
τ 2k−1

, we have τkτk−2 ≥ τ 2k−1. Utilizing τk = τk−1
2

[
(τ 2k−1 + 4)2 − τk−1

]
,

this condition is equivalent to τ 2k−2 ≥ τ 2k−1(1 + τk−2). However, since τ 2k−1 = (1 −
τk−1)τ

2
k−2, the last condition becomes 1 ≥ (1 − τk−1)(1 + τk−2), or equivalently,

τk−1 ≤ τk−2, which automatically holds.
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To prove 1 − τk ≤ 1
1+τk−1

, we write it as τk−1(1 − τk) ≤ τk . Using again τ 2k =
(1−τk)τ

2
k−1, the last inequality is equivalent to τk ≤ τk−1, which automatically holds.

The last statements of (a) is a consequence of 1−τk = τ 2k
τ 2k−1

and the previous relations.

(b) We consider the function ϕ(τ) := τ 3 + τ 2 + τ 2k−1τ − τ 2k−1. Clearly, ϕ(0) =
−τ 2k−1 < 0 and ϕ(1) = 2 > 0. Moreover, ϕ′(τ ) = 3τ 2 + 2τ + τ 2k−1 > 0 for
τ ∈ [0, 1]. Hence, the cubic equation ϕ(τ) = 0 has a unique solution τk ∈ (0, 1).
Therefore, {τk}k≥0 is well-defined.

Next, since τ 3k +τ 2k +τkτ
2
k−1−τ 2k−1 = 0 is equivalent to τ 2k−1(1−τk) = τ 2k (1+τk),

we have τ 2k−1(1 − τk) = τ 2k (1 + τk) ≤ τ 2k
1−τk

. This inequality becomes τk ≥ τk−1
1+τk−1

.

By induction and τ0 = 1, we can easily show that τk ≥ 1
k+1 . On the other hand,

τ 2k−1(1 − τk) = τ 2k (1 + τk) ≥ τ 2k . From this inequality, with a similar argument as in

the proof of the statement (a), we can also easily show that τk ≤ 2
k+2 . Hence, we have

1
k+1 ≤ τk ≤ 2

k+2 for all k ≥ 0.

Finally, since τk ≥ 1
k+1 , we have

∏k
i=1(1 − τi ) ≤ ∏k

i=1

(
1 − 1

i+1

)
= 1

k+1 .

Alternatively,
∏k

i=1(1 + τi ) ≥ ∏k
i=1

(
1 + 1

i+1

)
= k+2

2 . However, since βk = βk−1
1+τk

,

we have βk = β0
∏k

i=1
1

1+τi
≤ 2β0

k+2 . ��

Lemma 6 ([29, Lemma 4] and [23]) The following statements hold.

(a) For any u, v, w ∈ R
p and t1, t2 ∈ R such that t1 + t2 �= 0, we have

t1‖u − w‖2 + t2‖v − w‖2 = (t1 + t2)‖w − 1
t1+t2

(t1u + t2v)‖2 + t1t2
t1+t2

‖u − v‖2.

(b) For any τ ∈ (0, 1), β̂, β > 0, w, z ∈ R
p, we have

β(1 − τ)‖w − z‖2 + βτ‖w‖2 − (1 − τ)(β̂ − β)‖z‖2 = β‖w − (1 − τ)z‖2
+ (1 − τ)

[
τβ − (β̂ − β)

]‖z‖2.

The following lemma is a key step to address the strongly convex case of f in (1).

Lemma 7 Given Lk > 0, μ f > 0, and τk ∈ (0, 1), let mk := Lk+μ f
Lk−1+μ f

and ak :=
Lk

Lk−1+μ f
. Assume that the following two conditions hold:

{
(1 − τk)

[
τ 2k−1 + mkτk

] ≥ akτk

mkτkτ
2
k−1 + m2

kτ
2
k ≥ akτ 2k−1.

(34)
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Let
{
xk

}
be a given sequence in Rp. We define x̂k := xk + 1

ωk
(xk − xk−1), where ωk

is chosen such that

max

⎧⎨
⎩

τk−1 +
√

τ 2k−1 + 4ak

2(1 − τk−1)
,

akτk
(1 − τk)(1 − τk−1)τk−1

⎫⎬
⎭ ≤ ωk ≤ τ 2k−1 + mkτk

τk−1(1 − τk−1)
.

(35)
Then, ωk is well-defined, and for any x ∈ R

p, we have

Lkτ
2
k ‖ 1

τk
[x̂ k − (1 − τk)xk] − x‖2 − μ f τk(1 − τk)‖xk − x‖2

≤ (1 − τk)
(
Lk−1 + μ f

)
τ 2k−1‖ 1

τk−1
[xk − (1 − τk−1)xk−1] − x‖2. (36)

Proof Firstly, from the definition x̂ k := xk + 1
ωk

(xk − xk−1) of x̂ k , we have ωk(x̂ k −
xk) = xk − xk−1. Hence, we can show that

τ 2k−1‖ 1
τk−1

[xk − (1 − τk−1)xk−1] − x‖2 = ‖(1 − τk−1)(xk − xk−1) + τk−1(xk − x)‖2
= ‖(1 − τk−1)ωk(x̂ k − xk) + τk−1(xk − x)‖2
= ω2

k (1 − τk−1)
2‖x̂ k − xk‖2 + τ 2k−1‖xk − x‖2

+ 2ωk(1 − τk−1)τk−1〈x̂ k − xk, xk − x〉.

Alternatively, we also have

τ 2k ‖ 1
τk

[x̂ k − (1 − τk)xk] − x‖2 = ‖x̂ k − xk‖2 + τ 2k ‖xk − x‖2 + 2τk〈x̂ k − xk , xk − x〉.

Utilizing the two last expressions, (36) can be rewritten equivalently to

T[1] := 2
[(
Lk−1 + μ f

)
(1 − τk)(1 − τk−1)τk−1ωk − Lkτk

] 〈x̂ k − xk, x − xk〉
≤ [(

Lk−1 + μ f
)
(1 − τk)(1 − τk−1)

2ω2
k − Lk

] ‖x̂ k − xk‖2
+ [(

Lk−1 + μ f
)
(1 − τk)τ

2
k−1 − Lkτ

2
k + μ f τk(1 − τk)

] ‖xk − x‖2.

Now, let us denote

⎧
⎪⎨
⎪⎩

c1 := (
Lk−1 + μ f

)
(1 − τk)(1 − τk−1)τk−1ωk − Lkτk

c2 := (
Lk−1 + μ f

)
(1 − τk)(1 − τk−1)

2ω2
k − Lk

c3 := (
Lk−1 + μ f

)
(1 − τk)τ

2
k−1 − Lkτ

2
k + μ f (1 − τk)τk .

Then, (36) is equivalent to

2c1〈x̂ k − xk, x − xk〉 ≤ c2‖x̂ k − xk‖2 + c3‖x − xk‖2. (37)
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Secondly, we need to guarantee that c1 ≥ 0. This condition holds if we choose ωk

such that
ωk ≥ akτk

(1 − τk)(1 − τk−1)τk−1
. (38)

Thirdly, we also need to guarantee c2 ≥ c1, which is equivalent to

c2−c1 = (
Lk−1 + μ f

)
(1−τk)(1−τk−1)

[
(1 − τk−1)ω

2
k − τk−1ωk

]
−Lk(1−τk) ≥ 0.

This condition holds if

ωk ≥
τk−1 +

√
τ 2k−1 + 4ak

2(1 − τk−1)
. (39)

Alternatively, we also need to guarantee c3 ≥ c1, which is equivalent to

c3−c1 = (
Lk−1 + μ f

)
(1−τk)

[
τ 2k−1 − (1 − τk−1)τk−1ωk

]
+(Lk+μ f )τk(1−τk) ≥ 0.

This condition holds if

ωk ≤ τ 2k−1 + mkτk

τk−1(1 − τk−1)
. (40)

Combining (38), (39), and (40), we obtain

max

⎧⎨
⎩

τk−1 +
√

τ 2k−1 + 4ak

2(1 − τk−1)
,

akτk
(1 − τk)(1 − τk−1)τk−1

⎫⎬
⎭ ≤ ωk ≤ τ 2k−1 + mkτk

τk−1(1 − τk−1)
,

which is exactly (35). Here, under the condition (34), the left-hand side of the last
expression is less than or equal to the right-hand side. Therefore, ωk is well-defined.

Finally, under the choice of ωk as in (35), we have c2 ≥ c1 ≥ 0 and c3 ≥ c1 ≥ 0.
Hence, (37) holds, which is also equivalent to (36). ��

B Appendix 2: Technical proof of Lemmas 2 and 3 in Sect. 3

This section provides the full proof of Lemmas 2 and 3 in the main text.

B.1 The proof of Lemma 2: key estimate of the primal–dual step (9)

Proof From the first line of (9) and Lemma 4(a), we have∇ugβk (K x̂k, ẏ) = K	yk+1.
Now, from the second line of (9), we also have

0 ∈ ∂ f (xk+1) + Lk(x
k+1 − x̂ k) + K	∇ugβk (K x̂k, ẏ).
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Combining this inclusion and the μ f -convexity of f , for any x ∈ dom ( f ), we get

f (xk+1) ≤ f (x) + 〈∇ugβk (K x̂k, ẏ), K (x − xk+1)〉 + Lk〈xk+1 − x̂ k, x − xk+1〉
− μ f

2 ‖xk+1 − x‖2.

Since gβ(·, ẏ) is 1
β+μg∗ -smooth by Lemma 4(a), for any x ∈ dom ( f ), we have

gβk (Kxk+1, ẏ) ≤ gβk (K x̂k, ẏ) + 〈∇ugβk (K x̂k, ẏ), K (xk+1 − x̂ k)〉
+ 1

2(βk+μg∗ )
‖K (xk+1 − x̂ k)‖2

= gβk (K x̂k, ẏ) + 〈∇ugβk (K x̂k, ẏ), K (x − x̂ k)〉
− 〈∇ugβk (K x̂k, ẏ), K (x − xk+1)〉
+ 1

2(μg∗+βk )
‖K (xk+1 − x̂ k)‖2.

Now, combining the last two estimates, we get

f (xk+1) + gβk (Kxk+1, ẏ) ≤ f (x) + gβk (K x̂k, ẏ) + 〈∇ugβk (K x̂k, ẏ), K (x − x̂ k)〉
+ Lk〈xk+1 − x̂ k, x − x̂ k〉 − Lk‖xk+1 − x̂ k‖2
+ 1

2(μg∗+βk )
‖K (xk+1 − x̂ k)‖2 − μ f

2 ‖x − xk+1‖2.
(41)

Using Lemma 4(a) again, we have

βk (x
k, ẏ) := gβk (K x̂k, ẏ) + 〈∇ugβk (K x̂k, ẏ), K (xk − x̂ k)〉

≤ gβk (Kxk, ẏ) − βk+μg∗
2 ‖∇ugβk (K x̂k, ẏ) − ∇ugβk (Kxk, ẏ)‖2.

(42)

Substituting x := xk into (41), and multiplying the result by 1 − τk and adding the
result to (41) after multiplying it by τk , then using (42), we can derive

Fβk (x
k+1, ẏ) := f (xk+1) + gβk (Kxk+1, ẏ)

≤ (1 − τk)[ f (xk) + gβk (Kxk, ẏ)] + τk
[
f (x) + βk (x, ẏ)

]

− Lk‖xk+1 − x̂ k‖2 + 1
2(μg∗+βk )

‖K (xk+1 − x̂ k)‖2

+ Lk〈xk+1 − x̂ k, τk x − x̂ k + (1 − τk)xk〉
− μ f

2

[
(1 − τk)‖xk+1 − xk‖2 + τk‖x − xk+1‖2]

− (1−τk )(βk+μg∗ )

2 ‖∇ugβk (K x̂k, ẏ) − ∇ugβk (Kxk, ẏ)‖2.

(43)

From Lemma 6(a), we can easily show that

(1 − τk)‖xk+1 − xk‖2 + τk‖xk+1 − x‖2 = τ 2k ‖ 1
τk

[xk+1 − (1 − τk)xk] − x‖2
+ τk(1 − τk)‖x − xk‖2.
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We also have the following elementary relation

〈xk+1 − x̂ k, τk x − [x̂ k − (1 − τk)xk]〉 = τ 2k
2 ‖ 1

τk
[x̂ k − (1 − τk)xk] − x‖2 + 1

2‖xk+1 − x̂ k‖2

− τ 2k
2 ‖ 1

τk
[xk+1 − (1 − τk)xk] − x‖2.

Substituting the two last expressions into (43), we obtain

Fβk (x
k+1, ẏ) ≤ (1 − τk)Fβk (x

k, ẏ) + τk
[
f (x) + βk (x, ẏ)

]

+ Lkτ
2
k

2 ‖ 1
τk

[x̂ k − (1 − τk)xk] − x‖2

− τ 2k
2

(
Lk + μ f

) ‖ 1
τk

[xk+1 − (1 − τk)xk] − x‖2

− (1−τk )(μg∗+βk )

2 ‖∇ugβk (K x̂k, ẏ) − ∇ugβk (Kxk, ẏ)‖2
− Lk

2 ‖xk+1 − x̂ k‖2 + 1
2(μg∗+βk )

‖K (xk+1 − x̂ k)‖2

− μ f (1−τk )τk
2 ‖x − xk‖2.

(44)

One the one hand, by (32) of Lemma 4, we have

Fβk (x
k, ẏ) ≤ Fβk−1(x

k, ẏ) + (βk−1 − βk)

2
‖∇ugβk (Kxk, ẏ) − ẏ‖2.

On the other hand, by (33) of Lemma 4, we get

f (x) + βk (x, ẏ) ≤ L(x, yk+1) − βk

2
‖∇ugβk (K x̂k, ẏ) − ẏ‖2,

where L(x, yk+1) := f (x) + 〈Kx, yk+1〉 − g∗(yk+1) is the Lagrange function in (1).
Now, substituting the last two inequalities into (44), and using Lemma 6(b) with

w := ∇ugβk (K x̂k, ẏ) − ẏ and z := ∇ugβk (Kxk, ẏ) − ẏ, we arrive at

Fβk (x
k+1, ẏ) ≤ (1 − τk)Fβk−1(x

k , ẏ) + τkL(x, yk+1) + Lkτ
2
k

2 ‖ 1
τk

[x̂ k − (1 − τk)xk] − x‖2

− τ 2k
2

(
Lk + μ f

) ‖ 1
τk

[xk+1 − (1 − τk)xk] − x‖2 − μ f (1−τk )τk
2 ‖x − xk‖2

− Lk
2 ‖xk+1 − x̂ k‖2 + 1

2(μg∗+βk )
‖K (xk+1 − x̂ k)‖2

− (1−τk )
2

[
τkβk − (βk−1 − βk)

] ‖∇ugβk (Kxk , ẏ) − ẏ‖2
− βk

2 ‖∇ugβk (K x̂k , ẏ) − ẏ − (1 − τk)
[∇ugβk (Kxk , ẏ) − ẏ

] ‖2
− (1−τk )μg∗

2 ‖∇ugβk (K x̂k , ẏ) − ∇ugβk (Kxk , ẏ)‖2.

By dropping the last two nonpositive terms in the last inequality, we obtain (10). ��
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1256 Q. Tran-Dinh

B.2 The proof of Lemma 3: recursive estimate of the Lyapunov function

Proof First, from the last line ỹk+1 = (1 − τk)ỹk + τk yk+1 of (11), and the μg∗ -
convexity of g∗, we have

L(x, ỹk+1) := f (x) + 〈Kx, ỹk+1〉 − g∗(ỹk+1)

≥ (1 − τk)L(x, ỹk) + τkL(x, yk+1) + μg∗ τk (1−τk )

2 ‖yk+1 − ỹk‖2.

Hence, τkL(x, yk+1) ≤ L(x, ỹk+1) − (1 − τk)L(x, ỹk) − μg∗ τk (1−τk )

2 ‖yk+1 − ỹk‖2.
Substituting this estimate into (10) and dropping the term −μg∗ τk (1−τk )

2 ‖yk+1 − ỹk‖2,
we can derive

Fβk (x
k+1, ẏ) ≤ (1 − τk)Fβk−1(x

k, ẏ) + L(x, ỹk+1) − (1 − τk)L(x, ỹk)

+ Lkτ
2
k

2

∥∥ 1
τk

[x̂ k − (1 − τk)xk] − x
∥∥2

− τ 2k
2

(
Lk + μ f

) ∥∥ 1
τk

[xk+1 − (1 − τk)xk] − x
∥∥2

− Lk
2 ‖xk+1 − x̂ k‖2 + 1

2(μg∗+βk )
‖K (xk+1 − x̂ k)‖2

− μ f τk (1−τk )

2 ‖xk − x‖2.

(45)

Now, it is obvious to show that the condition (14) is equivalent to the condition (34)
of Lemma 7. In addition, we choose ηk = 1

ωk
in our update (13), where ωk :=

τ 2k−1+mkτk

τk−1(1−τk−1)
, which is the upper bound of (35). Hence, (35) automatically holds. Using

(36), we have

T[2] := Lkτ
2
k

2

∥∥ 1
τk

[x̂ k − (1 − τk)xk] − x
∥∥2 − μ f τk (1−τk )

2 ‖xk − x‖2

≤ τ 2k−1
2 (1 − τk)

(
Lk−1 + μ f

) ∥∥ 1
τk−1

[xk − (1 − τk−1)xk−1] − x
∥∥2.

Moreover, 1
2(μg∗+βk )

‖K (xk+1 − x̂ k)‖2 ≤ ‖K‖2
2(μg∗+βk )

‖xk+1 − x̂ k‖2 = Lk
2 ‖xk+1 − x̂ k‖2

due to the definition of Lk in (13). Substituting these two estimates into (45), and
utilizing the definition (12) of Vk , we obtain (15). ��
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