
Optimization Letters (2022) 16:2115–2122
https://doi.org/10.1007/s11590-021-01769-2

ORIG INAL PAPER

Efficient PTAS for the maximum traveling salesman
problem in a metric space of fixed doubling dimension

Vladimir Shenmaier1

Received: 7 December 2020 / Accepted: 8 June 2021 / Published online: 16 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The maximum traveling salesman problem (Max TSP) consists of finding a Hamilto-
nian cycle with the maximum total weight of the edges in a given complete weighted
graph. This problem is APX-hard in the general metric case but admits polynomial-
time approximation schemes in the geometric setting, when the edge weights are
induced by a vector norm in fixed-dimensional real space.We propose the first approxi-
mation scheme for Max TSP in an arbitrary metric space of fixed doubling dimension.
The proposed algorithm implements an efficient PTASwhich, for any fixed ε ∈ (0, 1),
computes a (1 − ε)-approximate solution of the problem in cubic time. Additionally,
we suggest a cubic-time algorithm which finds asymptotically optimal solutions of
the metric Max TSP in fixed and sublogarithmic doubling dimensions.

Keywords Max TSP · Metric space · Doubling dimension · Efficient PTAS ·
Asymptotically exact algorithm

1 Introduction

The maximum traveling salesman problem can be formulated as follows:
Max TSP Given an n-vertex complete weighted (directed or undirected) graph G with
non-negative edge weights, find a Hamiltonian cycle in G with the maximum total
weight of the edges.

Max TSP is the maximization version of the classic traveling salesman problem
(TSP) and, like TSP, is among the most intensively researched NP-hard problems in
computer science. In this paper, we consider the metric Max TSP, i.e., the special case
in which the edge weights satisfy the triangle inequality and the symmetry axiom.

Related work Max TSP has been actively studied since the 1970s. The approxima-
tion factors of currently best polynomial-time algorithms in different cases are: 2/3 for
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2116 V. Shenmaier

arbitrary asymmetric weights [10]; 7/9 for arbitrary symmetric weights [15]; 35/44
for the asymmetric metric case [13]; and 7/8 for the metric case [12].

On the complexity side,MaxTSP isAPX-hard even in ametric spacewith distances
1 and 2: It follows from the corresponding result for TSP [6,17]. The problem remains
NP-hard in the geometric setting when the vertices of the input graph are some points
in space R

3 and the distances between them are induced by Euclidean norm [7].
The proof of this fact implies that the Euclidean Max TSP does not admit a fully
polynomial-time approximation scheme (FPTAS) unless P=NP.

However, there exists a polynomial-time algorithmwhich computes asymptotically
optimal solutions of the Euclidean problem in any fixed dimension [19]. The relative

error of this algorithm is estimated as cd/n
2

d+1 , where d is the dimension of space
and cd is some constant depending on d. In [22,23], this result is extended to the case
when the edge weights are induced by any (unknown) vector norm. It follows that
Max TSP in a fixed-dimensional normed space admits an efficient polynomial-time
approximation scheme (EPTAS). Another approach to constructing close-to-optimal
solutions of the geometric Max TSP is based on the algorithmic properties of this
problem in a polyhedral space [3,21]. This approach leads to a scheme EPTAS for
the case of a “fixed norm”, when it is possible to approximate the distances between
vertices by a polyhedral metric.

Note that the usual traveling salesman problem is not in APX [18]. The Euclidean
TSP is NP-hard already in R2 [16] but admits approximation schemes PTAS for each
fixed dimension [1,14]. Moreover, as Bartal, Gottlieb, and Krauthgamer show, TSP
admits a scheme PTAS with running time O

(
n2

O(dim) · 2(2dim/ε)O(dim)
√
log n

)
in any

metric space of fixed doubling dimension dim [2].
Our contributions Surprisingly, the existence of a polynomial-time approximation

scheme for Max TSP in fixed doubling dimensions was still an open question. The
doubling dimension of a metric space is the smallest value dim ≥ 0 such that every
ball in this space can be covered by 2dim balls of half the radius. A doubling space,
i.e., a metric space of bounded doubling dimension, seems to be a natural and useful
generalization of a fixed-dimensional normed space since, unlike the metrics induced
by vector norms, a doubling metric may be not translation invariant and not homoge-
neous, which is relevant to real-life distance functions.

We show that, for any ε ∈ (0, 1), a (1 − ε)-approximate solution of the maximum
traveling salesmanproblem in an arbitrarymetric space of doubling dimensiondim can
be computed in time O

(
2(2/ε)2dim+1 + n3

)
. Thus, in the case of fixed doubling dimen-

sion, we have a scheme EPTAS, which is the first polynomial-time approximation
scheme for Max TSP in a doubling space. Additionally, we propose an O(n3)-time
approximation algorithm which computes asymptotically optimal solutions of the
problem in fixed and sublogarithmic doubling dimensions, i.e., when dim = o(log n).

The relative error of this algorithm is estimated as (11/6)/n
1

2dim+1 .
Our technique is pretty simple and is based on combining cycles in cycle covers

of the input graph. The key statement we use is the observation that, in the case of a
low doubling dimension, the number of cycles in any cycle cover can be reduced to
a small value with a small relative loss of the weight (Lemma 2). It allows to get a
Hamiltonian cycle whose total weight is close to that of an optimal cycle cover.
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Efficient PTAS for Max TSP in a doubling space 2117

2 Basic definitions and properties

Ametric space is an arbitrary setMwith a non-negative distance function dist which
is defined for each pair x, y ∈ M and satisfies the triangle inequality and the symmetry
axiom. Given a metric space (M, dist), a ball of radius r in this space centered at a
point x ∈ M is the set B(x, r) = {y ∈ M | dist(x, y) ≤ r}. The doubling dimension
of a metric space is the smallest value dim ≥ 0 such that every ball in this space can
be covered by 2dim balls of half the radius.

Remark 1 It is easy to see that, if a metric space is of doubling dimension at most
dim, then each r -radius ball in this space can be covered by (2/δ)dim balls of radius
δr , where δ is any value from (0, 1). Indeed, by induction, an r -radius ball can be
covered by 2i ·dim balls of radius r/2i , i = 1, 2, . . . . Hence, by selecting the integer i
for which 1/2i ≤ δ < 1/2i−1, we obtain 2i ·dim < (2/δ)dim covering balls of radius
r/2i ≤ δr .

Suppose thatwe are given a setV of n points inM and also all the pairwise distances
dist(a, b), a, b ∈ V . Denote by G[V ] the complete weighted undirected graph on the
vertex set V in which the weight of every edge {a, b} is defined as dist(a, b). The
metric Max TSP asks to find a maximum-weight Hamiltonian cycle in G[V ].

In short, the suggested algorithm can be described as follows. We start with con-
structing a maximum-weight cycle cover of the graph G[V ], i.e., a maximum-weight
spanning subgraph of this graph in which every connected component is a cycle. Then,
based on properties of doubling metrics, we significantly reduce the number of cycles
in this cycle cover with a small weight loss. Finally, the remaining cycles are combined
into one, also with a slight weight loss, by using the known method from [20].

To reduce the number of cycles in the cycle cover, we repeatedly patch two of the
cycles into one. Below, we define the main notion we use in this procedure:

Definition Let c1, c2 be vertex-disjoint cycles in G[V ] and {ai , bi } be any edge in
ci , i = 1, 2. A δ-gluing of the cycles c1, c2 on the edges {a1, b1}, {a2, b2}, where
δ ∈ (0, 1), is a combining of these cycles into one by replacing the pair of edges
{a1, b1}, {a2, b2} by one of two pairs {a1, b2}, {a2, b1} or {a1, a2}, {b1, b2} such that
the total weight of the replacing pair is at least (1 − δ)

(
dist(a1, b1) + dist(a2, b2)

)
.

A δ-gluing allows to patch the cycles c1, c2 into one so that we lose at most δ of
the total weight of the edges {a1, b1}, {a2, b2}.

Let us consider arbitrary vertex-disjoint cycles c1, . . . , ck forming a cycle cover of
the graph G[V ], select any edge {ai , bi } in each cycle ci , i = 1, . . . , k, and suppose
that {aτ , bτ } is a shortest edge among all {ai , bi }. Define the value

Rτ ({ai , bi }ki=1) = max
v∈S dist({aτ , bτ }, v),

where S = {a1, b1, . . . , ak, bk} and dist({a, b}, v) = min{dist(a, v), dist(b, v)}.
The key statements underlying our algorithm are the following lemmas.

Lemma 1 If no pair of cycles cp, cq admits a δ-gluing on the edges {ap, bp}, {aq , bq},
p, q ∈ {1, . . . , k}, then Rτ ({ai , bi }ki=1) < t/δ − t , where t = dist(aτ , bτ ).
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Fig. 1 Proof of Lemma 1

Proof By the construction, the value of R = Rτ ({ai , bi }ki=1) equals the distance
between some vertex u ∈ {aτ , bτ } and some vertex v ∈ {a�, b�}, where � ∈ {1, . . . , k}.
Let u′ and v′ be the other endpoints of the edges {aτ , bτ } and {a�, b�}, i.e., those for
which {aτ , bτ } = {u, u′} and {a�, b�} = {v, v′}. Then, by the triangle inequality, we
have dist(u, v) + dist(u, v′) ≥ dist(v, v′) (see Fig. 1). At the same time, the choice
of u implies that dist(u, v) = dist({u, u′}, v) ≤ dist(u′, v). So

dist(u′, v) + dist(u, v′) ≥ dist(u, v) + dist(u, v′) ≥ max{dist(v, v′), dist(u, v)}.

By the condition, the cycles cτ and c� do not admit a δ-gluing on the edges
{aτ , bτ }, {a�, b�}. Then, by the above, we have max{Q, R} < (Q + t)(1 − δ), where
Q = dist(v, v′). But the maximum of two values is at least any of their convex combi-
nations, somax{Q, R} ≥ Q(1−δ)+Rδ. It follows that Q(1−δ)+Rδ < (Q+t)(1−δ),
which implies the inequality R < t/δ − t . The lemma is proved. ��
Lemma 2 If the space (M, dist) is of doubling dimension at most dim and no pair
of cycles cp, cq admits a δ-gluing on the edges {ap, bp}, {aq , bq}, p, q ∈ {1, . . . , k},
then k is at most (2/δ)2dim/2.

Proof By Lemma 1 and the triangle inequality, the set S = {a1, b1, . . . , ak, bk} is
contained in the ball B(u, t/δ), where u ∈ {aτ , bτ }. On the other hand, the definition
of doubling dimension implies that this ball can be covered by (4/δ2)dim = (2/δ)2dim

balls of radius tδ/2 (see Remark 1).
Suppose that k > (2/δ)2dim/2. Then |S| = 2k > (2/δ)2dim , so there exists a pair

of vertices x, y ∈ S, x 	= y, lying in one of the (tδ/2)-radius balls which cover the
ball B(u, t/δ). But t is the weight of a shortest edge among all {ai , bi }. Hence, by the
triangle inequality and since δ < 1, we have

dist(x, y) ≤ tδ < t ≤ dist(ai , bi )

for all i ∈ {1, . . . , k}. It follows that x and y are vertices of different edges {ai , bi }, say,
x ∈ {ap, bp}, y ∈ {aq , bq} for some p, q ∈ {1, . . . , k}, p 	= q. Denote by x ′ and y′ the
other endpoints of {ap, bp}, {aq , bq}, i.e., {x, x ′} = {ap, bp} and {y, y′} = {aq , bq}.
Then, by the above and by the axioms of metric, we obtain the inequalities

dist(y, x ′) ≥ dist(x, x ′) − tδ ≥ dist(x, x ′)(1 − δ),
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Efficient PTAS for Max TSP in a doubling space 2119

dist(x, y′) ≥ dist(y, y′) − tδ ≥ dist(y, y′)(1 − δ),

which imply that the cycles cp, cq admit a δ-gluing on the edges {ap, bp}, {aq , bq}.
The lemma is proved. ��

Next, we recall the following result of Serdyukov, which will be useful for us:

Fact 1 [4,20] Let G be an n-vertex complete weighted graph where the distances
between vertices satisfy the triangle inequality and let C be a cycle cover of G which
consists of k cycles. Then C can be combined into a Hamiltonian cycle of total weight
at least (1 − 1/n)k−1 of that of C by an O(kn)-time algorithm.

3 Algorithms

Lemma 2 and Fact 1 prompt an idea how to patch the cycles of an optimal cycle cover
into one with a small weight loss: While it is possible, we will perform δ-gluings of
these cycles and then combine the remaining, rather small, number of cycles by using
the Serdyukov’s result. It can be formalized as follows:

Algorithm A
Input: a set V of n points inM; the distances dist(a, b) for all a, b ∈ V ; a parameter
δ ∈ (0, 1). Output: a Hamiltonian cycle H in the graph G[V ].
Step 1: By using the O(n3)-time algorithm from [8], find a maximum-weight cycle
cover C0 of the graph G[V ]; construct a set E0 which includes exactly two minimum-
weight edges of each cycle in C0.
Step 2: SetC = C0 and,while it is possible, repeat the following operations.Denote by
c1, . . . , ck the cycles in C and, for each i = 1, . . . , k, select any edge {ai , bi } ∈ E0 in
the cycle ci . Find any pair of cycles cp, cq , p, q ∈ {1, . . . , k}, which admit a δ-gluing
on the edges {ap, bp}, {aq , bq} and update C by performing this δ-gluing.
Step 3: Apply the algorithm from Fact 1 to the cycle cover C and return the resulting
Hamiltonian cycle H .

Theorem 1 If the space (M, dist) is of doubling dimension at most dim, then Algo-
rithmA finds a Hamiltonian cycle of total weight at least 1−(2/3)δ−(2/δ)2dim/(2n)

of that of an optimal cycle cover in time O(n3).

Proof It is easy to prove by induction that, at each iteration of Step 2, every cycle
in the cycle cover C contains at least two edges from the set E0. So we always may
select a required edge {ai , bi } in every cycle ci in C . Then, according to Lemma 2,
the number of cycles in C is reduced to k ≤ (2/δ)2dim/2 by the end of Step 2.

Next, at each δ-gluing, we replace some edges e1, e2 ∈ E0 in the cycle cover C
by some edges e′

1, e
′
2 which connect the endpoints of e1 with those of e2. Since the

edges e1, e2 belong to different cycles in C0, then the edges e′
1, e

′
2 can not belong to

C0, so e′
1, e

′
2 /∈ E0. Therefore, after any edge is removed from the cycle cover C , it

is no longer included in C on further δ-gluings. At the same time, the total weight of
e′
1, e

′
2 is at least 1 − δ of that of e1, e2. It follows that, during Step 2, the total weight

of C is decreased at most by δ of the total weight of E0. But, by the construction of
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the set E0, its total weight is at most 2/3 of that of C0. Hence, by the end of Step 2,
the total weight of C is at least 1 − (2/3)δ of that of C0.

Finally, by Fact 1, the Hamiltonian cycle H we obtain at Step 3 is of total weight
at least (1 − 1/n)k−1 > 1 − k/n of that of C . So the total weight of H is at least

(
1 − (2/3)δ

)
(1 − k/n) > 1 − (2/3)δ − (2/δ)2dim/(2n)

of that of C0.
It remains to estimate the time complexity of AlgorithmA. At Step 1, we construct

an optimal cycle cover by using the algorithm from [8] in time O(n3). Each iteration of
Step 2 can be performed in time O(n2), while the number of these iterations is O(n).
Step 3 takes time O(kn) = O(n2) by Fact 1. Thus, the running time of Algorithm A
is O(n3). The theorem is proved. ��

As a corollary, we obtain an efficient polynomial-time approximation scheme for
Max TSP in a metric space of fixed doubling dimension:

Theorem 2 Max TSP in a metric space of doubling dimension at most dim admits an
approximation scheme which, for any ε ∈ (0, 1), finds a (1− ε)-approximate solution
of the problem in time O

(
2(2/ε)2dim+1 + n3

)
.

Proof If ε ≥ 1/6, then we get a (1 − ε)-approximate solution of Max TSP by using
the O(n3)-time 5/6-approximation algorithm of Kostochka and Serdyukov [4,11].
Suppose that ε < 1/6. In this case, we set δ = (12/11)ε and, since δ < 1, obtain that
the approximation ratio of AlgorithmA is at least 1−(8/11)ε−((11/6)/ε)2dim/(2n).

If n is greater than n(ε) = ((11/6)/ε)2dim+1, then the term ((11/6)/ε)2dim/(2n)

is less than (3/11)ε, so AlgorithmA outputs a Hamiltonian cycle with approximation
factor at least 1 − ε. If n ≤ n(ε), then we compute an optimal solution of Max TSP
by using the exact O(2nn2)-time dynamic-programming algorithm for the usual TSP
from [5,9]. To reduce Max TSP to TSP, we replace the weight w(e) of every edge e
by the value w − w(e), where w is the maximum edge weight.

Thus, in any case, we get a (1 − ε)-approximate solution of Max TSP in time

O
(
max

{
2((11/6)/ε)2dim+1

((11/6)/ε)4dim+2, n3
}) = O

(
2(2/ε)2dim+1 + n3

)
.

The theorem is proved. ��
Another corollary of Theorem 1 is a simple cubic-time approximation algorithm

which computes asymptotically optimal solutions of Max TSP in fixed and “slowly
growing” doubling dimensions:

Theorem 3 Max TSP in a metric space of doubling dimension at most dim admits an

O(n3)-time approximation algorithm with relative error at most (11/6)/n
1

2dim+1 .

Proof By Theorem 1, the relative error of Algorithm A is bounded by the value of
err(δ) = (2/3)δ + (2/δ)q/(2n), where q = 2dim. If n > 2q+1, then we apply this
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algorithm with the parameter δ = 2/n
1

q+1 . In this case, we have δ < 1 and

err(δ) = (4/3)/n
1

q+1 + n
q

q+1 /(2n) = (4/3 + 1/2)/n
1

q+1 = (11/6)/n
1

q+1 .

If n ≤ 2q+1, then we use the O(n3)-time 5/6-approximation algorithm of Kos-
tochka and Serdyukov [4,11]. In this case, we also obtain a solution with relative error

at most (11/6)/n
1

q+1 since (11/6)/(2q+1)
1

q+1 => 1/6. The theorem is proved. ��
In the case when dim = o(ln n), the relative error of the algorithm described in

Theorem 3 is at most (11/6)/n
1

o(ln n) = (11/6)/e
ln n

o(ln n) → 0 as n → ∞. So we have a
polynomial-time asymptotically exact algorithm for the metric Max TSP in fixed and
sublogarithmic doubling dimensions.

4 Conclusion

We propose an efficient polynomial-time approximation scheme (EPTAS) for the
maximum traveling salesman problem in a metric space of fixed doubling dimension.
Additionally, we describe a cubic-time asymptotically exact algorithm for this problem
in fixed and sublogarithmic doubling dimensions.

A natural direction for future work is constructing an approximation scheme which
is “efficient” not only in the sense of the definition of an EPTAS but also in the practical
sense, i.e., which finds close-to-optimal solutions of the problem in reasonable time.
However, this may not be easy since, unless P=NP, even the 3-dimensional Euclidean
Max TSP does not admit a fully polynomial-time approximation scheme.

An open question is the existence of an approximation scheme for sublogarithmic
doubling dimensions. This case is interesting in that any n-point metric space is of
doubling dimension at most log2 n, while Max TSP is APX-hard in the general metric
setting. In this regard, the dimension dim = o(ln n) may be a boundary case for
instances of Max TSP which admit a near-optimal approximation.
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