
Vol.:(0123456789)

Optimization Letters (2022) 16:1073–1091
https://doi.org/10.1007/s11590-021-01763-8

1 3

ORIGINAL PAPER

Minsum scheduling with acceptable lead‑times
and optional job rejection

Baruch Mor1 · Dana Shapira2

Received: 10 February 2020 / Accepted: 3 June 2021 / Published online: 9 July 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In our current fast-paced era, customers are often willing to pay extra premium for
shorter lead times, which motivates further research on the scheduling problem with
due-date assignment and customer-specified lead times. As part of this effort, we
extend the classic minsum ‘DIF’ scheduling model to allow optional job-rejection,
thus adding an important component of real-life applications, namely, the possibility
that the scheduler decides to process only a subset of the jobs and outsource the dis-
joint set. The scheduler is penalised for rejecting certain jobs by setting job-depend-
ent rejection costs, and he is limited by a given upper bound on the total rejection
cost. The most general version of the minsum DIF problem includes job-dependent
cost parameters and lead-times, and it is strongly NP-hard. Therefore, we study six
variants of the problem, where either only the cost parameters or the lead-times are
job dependent. All alternatives are extended by optional job-rejection that possibly
bounds the constraints or the underlying cost functions. We establish that all studied
problems are NP-hard in the ordinary sense and present pseudo-polynomial dynamic
programming algorithms and extensive numerical studies for most solutions.

Keywords Single-machine scheduling · Due-date assignment · Minsum · Job-
rejection · Dynamic programming

1 Introduction

The objective of scheduling with due-dates is to find the sequence of jobs that opti-
mises performance under specific due-date constraints. In the DIF method for solv-
ing this scheduling problem, the due-dates are decision variables (i.e., an integral
part of the solution, rather than part of the input), the assignment is unrestricted,

 * Baruch Mor
 baruchm@ariel.ac.il

1 Department of Economics and Business Administration, Ariel University, Ariel, Israel
2 Department of Computer Science, Ariel University, Ariel, Israel

http://orcid.org/0000-0002-6909-8160
http://orcid.org/0000-0002-2320-9064
http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-021-01763-8&domain=pdf

1074 B. Mor, D. Shapira

1 3

and the scheduler is penalised if the job-dependent due-dates exceed given dead-
lines, known as lead-times. Thus, the scheduler must find the optimal sequence and
due-dates that minimise the sum of three component costs: earliness, tardiness, and
due-date tardiness. In the original DIF model [15], the scheduler is penalised if the
due dates exceed the lead-times, reflecting the potential loss in sales; since deliver-
ing early has no cost in this model, the difference between the due date and lead
time is represented by a linear function. The DIF method is highly appropriate in
the rapidly increasing field of e-commerce, where retail sales are expected to exceed
several trillion dollars in the next few years. Indeed, the commitment of the supplier
to deliver the goods earlier than the customers’ acceptable lead-time is pivotal in
e-commerce, and late delivery may void the contract.

Several studies addressed the minsum DIF model, e.g., Shabtay and Steiner
[18], who study job-dependent lead-times; Shabtay and Steiner [19, 20] and Ley-
vand et al. [11], who extend the model by considering controllable job processing
times, and Shabtay [16], who addresses the model with batch delivery costs. Oth-
ers address the minmax version of the DIF model, e.g., Mor et al. [12], who con-
sider job-dependent cost parameters and lead-times; Gerstl and Mosheiov [5, 6],
who extend the model to a time window for acceptable lead-times and solve both
the minmax and minsum versions, respectively; and Gerstl et al. [3], who focus on
the minmax version with either position-dependent processing times or optional job
rejection. In the current study, we follow the approach of Gerstl et al. [3] and extend
the minsum DIF problem to include possible job rejection. Shabtay et al. [17] claim
that optional job rejection is justified in highly loaded production industries where
the scheduler may prefer to reject or outsource some orders, rather than imposing a
greater loss. Subsequently, the supplier may incur a considerable rejection cost that
must be evaluated already at the scheduling phase. Numerous studies addressed the
combination of due-date scheduling with optional job-rejection, including, among
others, Zhao et al. [24], who study due-date assignments with job-rejection and
position-dependent processing times; Gerstl and Mosheiov [4], who address sched-
uling with generalised due dates and job rejection; and Mosheiov and Pruwer [14],
who focus on minmax common due-date problems with position-dependent process-
ing times.

Shabtay and Steiner [18] prove that the DIF problem, with job-dependent accept-
able lead-times and job-dependent cost parameters for earliness, tardiness, and due-
date tardiness, is strongly NP-hard. Since this proof implies the lack of a pseudo
polynomial-time solution unless P is equal to NP, we study several variations of the
problem, where either the cost parameters or the lead-times are job-dependent. All
alternatives are extended by an optional job-rejection, possibly bounding the con-
straints or the underlying cost functions. We establish that all studied problems
are NP-hard in the ordinary sense and provide pseudo-polynomial DP algorithms.
We present an extensive numerical study that proves that all the DP algorithms are
extremely efficient for medium-size problems.

This paper is constructed as follows: Sect. 2 provides the formulation of the
problem; Sect. 3 presents preliminary analyses and important known results in
scheduling theory; Sect. 4 presents the solution to the problem with job-depend-
ent cost parameters and a common (zero) lead-time, as well as its complementary

1075

1 3

Minsum scheduling with acceptable lead‑times and optional…

problem; Sect. 5 focuses on the variant with common cost parameters and com-
mon lead-time and its complementary problem; Sect. 6 addresses the case of job-
dependent cost parameters and common lead-times; Sect. 7 discusses common
cost parameters and job-dependent lead-times; and Sect. 8 presents our numerical
study.

2 Notations and formulation

Given is a set J of n jobs that need to be processed on a single machine. The pro-
cessing time of job j is denoted by pj, j = 1,… , n , the total processing time of
the jobs in set J is denoted by P

�
=
∑

j∈J pj

�
 , and the longest processing time

among all jobs in set J is denoted by pmax
(
= maxj∈J

{
pj
})

 . The due-date of job j
is a decision variable denoted by dj, j = 1,… , n. For a given schedule, let Cj
denote the completion time of job j, j = 1,… , n . We consider a job-dependent
lead-time, denoted by lj, j = 1,… , n ; as common in the DIF model, if the due-
date of job j is set to be later than its upper bound, the scheduler is penalised. For
given schedule and due-dates, let Ej = max

{
0, dj − Cj

}
 , Tj = max

{
0,Cj − dj

}
 ,

and Aj = max
{
0, dj − lj

}
 denote the earliness, tardiness, and due-date tardiness of

job j, j = 1,… , n , respectively. For each job j, j = 1,… , n , three job-dependent
unit costs are considered: the earliness unit cost, �j , the tardiness unit cost, �j , and
the due-date tardiness unit cost, �j . Following Seidmann et al. [15] and Shabtay
and Steiner [18], the objective function studied is of the minsum type. We extend
the DIF model by allowing job rejection, i.e., we consider a job-dependent rejec-
tion cost, denoted by rj, j = 1,… , n , and we assume a given upper bound on the
total rejection cost of all rejected jobs, denoted by R.

Let JP and JR denote the set of accepted (processed) jobs and the set of
rejected (outsourced) jobs, respectively, such that J = JP ∪ JR and JP ∩ JR = � .
The goal is to find the optimal schedule and due-dates that minimise the total
(summed) cost of the earliness, tardiness, and due-date tardiness of set JP , i.e.,
Z =

∑
j∈JP

�
�jEj + �jTj + �jAj

�
 , under the constraint that the total rejection cost of

set JR is not larger than the rejection cost limit, i.e.,
∑

j∈JR
rj ≤ R . We also con-

sider two complementary problems where the goal is to minimise the total rejec-
tion cost, subject to the constraint that the total weighted completion time or the
total weighted tardiness cannot exceed a given upper bound, denoted by Q.

We first extend the problem addressed by Shabtay and Steiner [18], wherein
the cost parameters are considered to be job dependent and the lead-time is com-
mon to all jobs and is set to zero, i.e., lj = 0, j = 1,… , n . Thus, the objective
function is Z =

∑
j∈JP

�
�jEj + �jTj + �jAj

�
 and, using the three-field notation, the

problem is

and its complementary problem,

(1)P1.1 ∶ 1|lj = 0,
∑
j∈JR

rj ≤ R| ∑
j∈JP

(
�jEj + �jTj + �jAj

)

1076 B. Mor, D. Shapira

1 3

Next, we adjoin job rejection to the problem studied in Seidman et al. [15],
i.e., common cost parameters and a common lead-time. Thus, for j = 1,… , n ,
�j = �, �j = �, �j = � and lj = l , and the second problem studied here is

and its complementary problem,

Third, we consider job-dependent cost parameters and a common lead-time with
job-rejection:

Finally, we assume common cost parameters and job-dependent lead-times,
implying that

3 Preliminary analysis

Shabtay and Steiner [18] studied the most general form of the DIF model with
acceptable lead-times, i.e., where the unit cost parameters and lead-times are
job-dependent:

The authors referred to the problem as Total Weighted Earliness and Tardiness
with Due Date Assignment (TWETD) and proved the following essential properties
and theorem:

Property 1 In an optimal schedule, no job is early, i.e., Ej = 0 , for all
j = 1, . . . , n.

Property 2 In an optimal schedule, if �j ≤ �j then the optimal due date of job j is
dj = Cj . Otherwise, dj = min

{
lj, Cj

}
.

P1.2 ∶ 1 |lj = 0,
∑
j∈JP

(
�jEj + �jTj + �jAj

)
≤ Q| ∑

j∈JR

rj.

(2)P2.1 ∶ 1|lj = l,
∑
j∈JR

rj ≤ R| ∑
j∈JP

(
�Ej + �Tj + �Aj

)

P2.2 ∶ 1 |lj = l,
∑
j∈JP

(
�jEj + �jTj + �jAj

)
≤ Q| ∑

j∈JR

rj.

(3)P3 ∶ 1|lj = l,
∑
j∈JR

rj ≤ R| ∑
j∈JP

(
�jEj + �jTj + �jAj

)

(4)P4 ∶ 1|lj,
∑
j∈JR

rj ≤ R| ∑
j∈JP

(
�Ej + �Tj + �Aj

)
.

(5)1 ∥
∑(

�jEj + �jTj + �jAj

)
.

1077

1 3

Minsum scheduling with acceptable lead‑times and optional…

Following the above properties, the TWETD problem can be re-formulated as

Thus, to solve the TWETD problem, one must find the sequence that minimises
(7), which leads to the following important theorem:

Theorem 0 The TWETD problem is equivalent to a 1 ∥
∑

wjTj problem. Therefore,
TWETD is strongly NP-hard, even if �j = �j

(
= wj

)
, j = 1,… , n . Furthermore, the

TWETD problem with uniform penalties, i.e., with �j = �j = �j = w, j = 1,… , n , is
ordinary NP-hard.

The theorem follows from the facts that 1 ∥
∑

wjTj is NP-hard in the strong sense
and that 1��∑wTj is NP-hard in the ordinary sense. Since TWETD is strongly NP-
hard and a pseudo polynomial-time solution does not exist unless P is equal to NP,
we focus here on the special cases in which either the unit cost parameters or the
acceptable lead-times are job-dependent; these problems can be solved in polyno-
mial time. Below, we establish that these problems, when extended to allow job
rejection, are ordinary NP-hard and present DP solutions.

4 Problem P1.1 1
���lj = 0,

∑
j∈JR

rj ≤ R
���
∑

j∈JP

�
˛jEj + ˇjT j + jAj

�

and its complementary problem
P1.2 1

���lj = 0,
∑

j∈JP

�
˛jEj + ˇjT j + jAj

�
≤ Q

���
∑
j∈JR

rj

Shabtay and Steiner [18] consider the DIF model with job-dependent cost parame-
ters and a common lead-time, such that lj = 0 for j = 1,… , n . The authors claim that
setting the upper bound of the lead-time to zero is realistic when the customer
requests that the order is delivered as soon as possible and may even agree to pay for
a faster delivery. Based on Properties 1 and 2 and formulation (7),
1
���lj = 0

���
∑

j∈JP

�
�jEj + �jTj + �jAj

�
 is equivalent to the elementary problem

1 ∥
∑

wjCj , where wj = min
{
�j, �j

}
 . Thus, Problem P1.1 is reduced to

and its complementary problem, P1.2 , is reduced to 1 ���
∑

wjCj ≤ Q
���
∑

rj.
Cao et al. [1] proved that this problem is binary NP-hard and presented a

pseudo polynomial-time DP algorithm and a fully polynomial-time approximation
scheme (FPTAS). Their DP computational complexity is O

(
n3pmaxwmax

)
 , where

wmax = max1≤j≤n
{
wj

}
 . Next, we suggest a DP solution to P1.1 with a faster process-

ing time of O(n ⋅ P ⋅ R).

(6)Let: wj = min
{
�j, �j

}
,

(7)1 ∥
∑

wj max
{
0, Cj − lj

}
.

(8)1 |∑ rj ≤ R |∑wjCj.

1078 B. Mor, D. Shapira

1 3

Problem 1 ∥
∑

wjCj is known to be solved by sorting the jobs in a Weighted
Shortest Processing Time first (WSPT) order, i.e., in a non-decreasing order of
pj

wj

, j = 1, … , n ; hence, we start our DP by sorting the jobs in a WSPT order.
Let f(j, t, r) denote the total weighted completion time for the partial schedule of

jobs 1, …, j, with a completion time t and a maximum rejection cost r. At each itera-
tion of the DP, one needs to decide whether to accept or reject job j. In the former
case, the total weighted completion time cost is increased; in the latter, the rejection
cost of job j does not exceed the current rejection limit. The formal DP (denoted by
DP1.1) given by its recursion formula is:

Dynamic programming algorithm DP1:

In this equation, the first line reflects an unfeasible case, the second line reflects
the option of processing job j , the third line represents the option of rejecting job
j , and the fourth line reflects the case in which job j may be either processed or
rejected, such that the option that achieves the minimal cost is selected.

The boundary conditions are: f (0, 0, r) = 0 and f (0, t, r) = ∞ if t ≠ 0 , t ≤ P , for
all r ≤ R . f (j, t, 0) =

∑j

k=1
wkCk , and t =

∑j

k=1
pk.

The optimal solution is given by min {f (n, t, r)|0 ≤ t ≤ P, 0 ≤ r ≤ R } . Note that,
in the case of R ≥

∑n

j=1
rj , the solution is trivial because all jobs may be rejected

with a zero cost. Thus, the variable r is assumed to be bounded by R.

Theorem 1 Algorithm DP1.1 solves Problem P1.1.

Proof By induction on j , t and r.

Base case: The case j = 0 indicates an empty set. Therefore, in this case, the total
completion time, t , is also equal to 0 and f (0, 0, r) = 0 , whereas f (0, t, r) = ∞ for
0 ≠ t ≤ P and r ≤ R . If j ≠ 0 and the rejection upper bound is 0, all jobs should be
processed. That is, the total completion time is t =

∑j

k=1
pk and f (j, t, 0) =

∑j

k=1
wkCk

is the cost of the processed jobs when no job is rejected.
We assume the correctness of f (i, s, u) in the case that at least one of 0 ≤ i < j or

0 ≤ s < t or 0 ≤ u < r holds, and we prove the correctness of f (j, t, r) . In the case
that job j must be processed, that is, its rejection cost cannot be added to the total
rejection cost without violating the rejection upper bound, i.e., rj > r , the reference
cost is f

(
j − 1, t − pj, r

)
 , which is assumed to be correct by the induction hypothesis.

This cost considers the first j − 1 jobs with a total completion time t − pj , which
is applicable only when the processing time of job j can fit in the total comple-
tion time, i.e., pj ≤ t . The cost is updated by wjt , considering the additional cost
for processing job j and leaving the total rejection cost unchanged, as seen on line

(9)

f (j, t, r) =

⎧
⎪⎨⎪⎩

∞, pj > t and rj > r

f
�
j − 1, t − pj, r

�
+ wjt, pj ≤ t and rj > r

f
�
j − 1, t, r − rj

�
, pj > t and rj ≤ r

min
�
f
�
j − 1, t − pj, r

�
+ wjt, f

�
j − 1, t, r − rj

��
, pj ≤ t and rj ≤ r

1079

1 3

Minsum scheduling with acceptable lead‑times and optional…

2 of Eq. (9). If the processing time of job j cannot fit in the total completion time,
i.e., pj > t , then the job should be rejected. Accordingly, the cost is equal to that of
f
(
j − 1, t, r − rj

)
 , which is known to be correct by the induction hypothesis. This

is applied only in the case of rj ≤ r ; otherwise, the case is impossible with infinity
cost, as reflected by the first line of Eq. (9). In cases where the job may be either pro-
cessed or rejected, its processing time is not higher than the total completion time.
In these cases, the rejection cost can be added without violating the rejection upper
bound, i.e., pj ≤ t and rj ≤ r , and the minimum cost between case 2 and case 3 is
chosen. By the induction hypothesis, as f

(
j − 1, t − pj, r

)
+ wjt and f

(
j − 1, t, r − rj

)

are optimal, the minimum is optimal for f (j, t, r). ◻

Theorem 2 The computational complexity of DP1.1 is O(n ⋅ P ⋅ R).

Proof Using the recursive formula in (9), the DP is calculated for every
job j, 1 ≤ j ≤ n , every possible processing time (which is bounded by
P), and every rejection cost r (which is bounded by R), resulting in a pro-
cessing time of O(n ⋅ P ⋅ R) . The calculation of the optimal solution,
f
(
n, t0, r0

)
= min {f (n, t, r)|0 ≤ t ≤ P, 0 ≤ r ≤ R } , is done in O(R) . The recon-

struction of the solution is done by backtracking, starting at f
(
n, t0, r0

)
 and ending

at f (0, 0, 0) , for an addition of O(n + P + R) operations. We conclude that the total
processing time is still O(n ⋅ P ⋅ R) . ◻

Example 1 Consider the following six-job problem, in which the rejection cost limit
is R = 72 and the common lead-time is l = 0 . The processing times are
pj = (18, 26, 35, 40, 30, 31) , the rejection costs are rj = (35, 47, 43, 14, 32, 46) ,
and the job-dependent cost parameters are �j = (13, 12, 19, 23, 21, 1) ,
�j = (3, 9, 8, 4, 3, 2) , and �j = (4, 4, 4, 23, 10, 20) . Our solution starts by utiliz-
ing wj = min

{
�j, �j

}
 , resulting in wj = (3, 4, 4, 4, 3, 2) . Subsequently,

pj

wj

= (6.0, 6.5, 8.75, 10.0, 10.0, 15.5) , implying that the jobs are sequenced in a
WSPT order.

Executing DP1.1 , the set of rejected jobs is JR =
{
J3, J4

}
 with a total rejection

cost
∑

j∈JR
rj = 57 ≤ 72 = R.

The set of accepted jobs is the complementary set JP =
(
J1, J2, J5, J6

)
 , the jobs’

due dates are dj = (0, 44, 0, 0) , their tardiness values are Tj = (18, 0, 74, 105) , and
their due-tardiness values are Aj = (0, 44, 0, 0) . Consequently, the total processing
cost is Z = 662.

In the next subsection, we focus on Problem P1.2 . As mentioned above, this is
the complemeary problem of P1.1 and the goal is to minimize the total rejection
costs, subject to the constraint that the total weighted completion cannot exceed a
given upper bound (Q). Thus, our problem, denoted as P1.2 , is 1 ���

∑
wjCj ≤ Q

���
∑

rj .
Shabtay et al. [17] indicated that since the decision version of Problem P1.1 is iden-
tical to that of P1.2 , then P1.2 is also NP-hard. Hence, we turn our attention toward
providing a DP solution for the problem at hand.

1080 B. Mor, D. Shapira

1 3

Let g(j, t, r) denote the total rejection cost for the partial schedule of jobs 1,… , j ,
having a completion time t and a total rejection cost r . Similar to DP1.1, we first sort
the jobs in a WSPT order. At each iteration of the DP, the scheduler then needs to
decide whether to reject job j , implying that the total rejection cost is increased, or
accept job j , which increases in the total weighted completion time. In the suggested
DP, we must keep track of the scheduling measure to ensure that its value does not
exceed the dictated upper bound. To this end, we utilize a variable, hj , which rep-
resents the total weighted completion time of the accepted jobs of subset {1,… , j} ,
defined as follows:

Dynamic programming algorithm DP1.2:

In this equation, the first line reflects an unfeasible case, the second line reflects
the option of processing job j , the third line represents the option of rejecting job j ,
the fourth line reflects the case in which job j may be either processed or rejected
and the option that achieves the minimal cost is selected. The boundary conditions
are g(0, 0, 0) = 0 , g(0, t, r) = ∞ if 0 < t ≤

∑
pj = P , and 0 < r ≤

∑
rj . The optimal

solution is given by min
�
g(n, t, r)�0 ≤ t ≤ P, 0 ≤ r ≤

∑
rj
�
.

Theorem 3 Algorithm DP1.2 solves Problem P1.2 and its computational complex-
ity is O

�
n ⋅ P ⋅

∑
rj
�
.

Proof The proof is similar to those given for Theorems 1 and 2. Therefore, it is
omitted here.

5 Problem P2.1 1
���lj = l,

∑
j∈JR

rj ≤ R
���
∑

j∈JP

�
˛Ej + ˇTj + Aj

�
 and its

complementary problem
P2.2 1

���lj = l,
∑

j∈JP

�
˛Ej + ˇTj + Aj

�
≤ Q

���
∑

j∈JR
rj

In this section, we extend the classic DIF model introduced by Seidman et al. [15],
which postulates common cost parameters and a common lead time, by consider-
ing job-rejection. Employing Property 2 and setting w = min {�, �} and lj = l , for
j = 1,… , n in (7), we obtain

hj =

{
hj−1 + wjt, if job j is accepted

hj−1, else
, where h0 = 0.

(10)

g(j, t, r) =

⎧
⎪⎪⎨⎪⎪⎩

∞, pj > t and rj > r

g
�
j − 1, t − pj, r

�
, pj ≤ t and hj ≤ Q and rj > r

g
�
j − 1, t, r − rj

�
+ rj, pj > t and rj ≤ r

min

�
g
�
j − 1, t − pj, r

�
g
�
j − 1, t, r − rj

�
+ rj,

, pj ≤ t and hj ≤ Q and rj ≤ r

1081

1 3

Minsum scheduling with acceptable lead‑times and optional…

Shabtay and Steiner [18] show that the TWETD problem is equivalent to the
well-known problem 1���dj = d

���
∑

Tj . Replacing lj by dj , for j = 1,… , n and l by d ,
we conclude that Problem P2.1 can be reformulated as:

and its complementary problem, P2.2 , is reduced to

Zhang et al. [23] proved that (12) is binary NP-hard by reduction from Knap-
sack; subsequently, Problem P2.1 is also NP-hard. Below, we provide a pseudo-
polynomial time DP algorithm for Problem P2.1 , establishing that it remains
ordinary NP-hard. Following Seidman et al. [15], we start the DP by sorting the
jobs in a Shortest Processing Time first (SPT) order.

At each iteration of the DP, we compute the minimum due-date tardiness of
jobs 1 to j that have a total processing time t and an upper bound r on the rejec-
tion cost. The computation is based on the results obtained for jobs 1 to j − 1 that
have:

 (i) Completion time t − pj and an upper bound rejection cost r;
 (ii) Completion time t and an upper bound rejection cost r − rj.

At each stage, one needs to decide whether to accept or reject job j:

 (i) Job j must be accepted if its rejection cost exceeds the current rejection limit
r.

 (ii) Job j may be accepted if its contribution minimises the total due-date tardiness.
 (iii) Job j may be rejected if it minimises the objective function.

The recursive formula is given in the following dynamic programming algo-
rithm DP2.1:

The boundary conditions are f (0, 0, r) = 0 for 0 ≤ r ≤ R , f (0, t, r) = ∞ for
0 ≤ r ≤ R, 0 < t ≤ P and f (j, t, 0) =

∑j

k=1
w max (0, t − l) , and t =

∑j

k=1
pk . The

optimal solution is given by min (f (n, t, r)|0 ≤ t ≤ P, 0 ≤ r ≤ R).

(11)1
||| lj = l,

∑
rj ≤ R

|||w
∑

max
(
0, Cj − l

)
.

(12)1
||| dj = d,

∑
rj ≤ R

|||w
∑

Tj,

1
|||dj = d, w

∑
Tj ≤ Q

|||
∑

rj.

(13)

f (j, t, r) =

⎧
⎪⎪⎨⎪⎪⎩

∞, pj > t and rj > r

f
�
j − 1, t − pj, r

�
+ wmax (0, t − l), pj ≤ t and rj > r

f
�
j − 1, t, r − rj

�
, pj > t and rj ≤ r

min

�
f
�
j − 1, t − pj, r

�
+ wmax (0, t − l)

f
�
j − 1, t, r − rj

� , pj ≤ t and rj ≤ r

1082 B. Mor, D. Shapira

1 3

Theorem 4 Algorithm DP2 solves Problem P2.1.

Proof The correctness proof is identical to the proof of Theorem 1 by substituting
the additional cost incurred by job j wjt by wmax (0, t − l) . ◻

Theorem 5 The computational complexity of DP2.1 is O(n ⋅ P ⋅ R).

Proof The proof is similar to the proof of Theorem 2. ◻

Example 2 Assume a six-job problem with R = 13 , � = 16, � = 5, � = 15 , and
l = 15 . The processing times (sequenced in an SPT order and renumbered) are
pj = (6, 7, 8, 9, 11, 16) , and their rejection costs are rj = (11, 8, 2, 3, 9, 13) .
Since � = 5 ≤ 15 = � , all processed jobs are tardy, i.e., Aj = 0, ∀j ∈ JP . Applying
DP2 , the following optimal solution is attained.

The set of rejected jobs is JR =
{
J2, J3, J4

}
 , with a total rejection cost of ∑

j∈JR
rj = 13 ≤ 13 = R.

The set of accepted jobs is JP =
(
J1, J5, J6

)
 , the due dates of these jobs is

dj = (6, 15, 15) , and their tardiness is Tj = (0, 2, 18) . The total processing cost is,
therefore, Z = 100.

In what follows, we concentrate on the complementary problem of P2.1 . Our goal
is to minimise the total rejection cost subject to the constraint that the total weighted
tardiness cannot exceed a given upper bound (Q). Thus, our problem, denoted P2.2 ,
is 1 ���w

∑
Tj ≤ Q

���
∑

rj . Let g(j, t, r) denote the total rejection cost for the partial
schedule of jobs 1,… , j , with a completion time t and a total rejection cost r . At
each iteration of the DP, the scheduler must decide whether to reject job j , implying
that the total rejection cost is increased, or to accept job j , and that the total weighted
tardiness time is increased. Similar to the explanation of DP1.2, in the current DP,
we need to keep track to the total weighted tardiness, which is defined as follows:

Dynamic programming algorithm DP2.2:

The boundary conditions are g(0, 0, 0) = 0 , g(0, t, r) = ∞ if 0 < t ≤
∑

pj = P , and
0 < r ≤

∑
rj . The optimal solution is given by min

�
g(n, t, r)�0 ≤ t ≤ P, 0 ≤ r ≤

∑
rj
�
.

hj =

{
hj−1 + wmax {0, t − l}, if job j is accepted

hj−1 , else
, where h0 = 0.

(14)

g(j, t, r) =

⎧
⎪⎪⎨⎪⎪⎩

∞, pj > t and rj > r

g
�
j − 1, t − pj, r

�
, pj ≤ t and hj ≤ Q and rj > r

g
�
j − 1, t, r − rj

�
+ rj, pj > t and rj ≤ r

min

�
g
�
j − 1, t − pj, r

�
g
�
j − 1, t, r − rj

�
+ rj

, pj ≤ t and hj ≤ Q and rj ≤ r

1083

1 3

Minsum scheduling with acceptable lead‑times and optional…

Theorem 6 Algorithm DP2.2 solves Problem �2.2 and its computational complex-
ity is O

�
n ⋅ P ⋅

∑
rj
�
.

Proof The proof is similar to those given for Theorems 4 and 5.

6 Problem P3 1
���lj = l,

∑
j∈JR

rj ≤ R
���
∑

j∈JP

�
˛jEj + ˇjT j + jAj

�

Next, we consider job-dependent cost parameters and a common lead-time with
optional job-rejection, formally given in (3) and rewritten as:

Using Property 2 and setting wj = min
{
�j, �j

}
 and lj = l for j = 1,… , n in (7), we

obtain:

If job-rejection is not allowed, then the problem is equivalent to minimising the
total weighted tardiness with a common due date, i.e., 1���dj = d

���
∑

wjTj . This prob-
lem was proved to be NP-hard by Yuan [22], hence, P3 is also NP-hard. Below, we
present an O

(
n2 ⋅ l ⋅ R

)
 DP algorithm solution for P3.

Kellerer and Strusevich [8] propose an O
(
nP

(
WUB

)2) time DP algorithm solu-
tion, where WUB is the upper bound on the total weighted tardiness with a common
due date on a single machine. Kianfar and Moslehi [9] suggest an O

(
n2d

)
 pseudo-

polynomial DP algorithm time extending the algorithm of Kacem [7]. This running
time also improves the complexity of the algorithm of Kellerer and Strusevich
because n < WUB and d < P for non-trivial cases. Our solution to P3 also extends
the solution of Kacem [7] by considering all cases and the option of job rejection
[13]. For completeness of exposition, we report it briefly here. Early jobs are sched-
uled starting at time 0, while tardy jobs are scheduled so that they are completed at
time P , going backwards. Let t denote the completion time of the last early job
(scheduled before l), let r ∈ {0, 1,… ,R} denote the allowed rejection costs, and let
f denote the minsum DIF of the corresponding schedule. The DP solution, given in
Algorithm DP3 , generates a set of states, vk , for each iteration k , 1 ≤ k ≤ n . Each
state in vk is represented by an ordered triple (r, t, f) , implying a completion time t , a
rejection cost r , and a cost f for the first k jobs. The initial sorting of the jobs is in a
Weighted Longest Processing Time first (WLPT) rule order; however, eventually,
the tardy jobs are sequenced in accordance with the WSPT rule. In an optimal
schedule, the early jobs are processed starting at time zero, and they may be fol-
lowed by a straddling job that starts before time l and is completed, at least, at time
l; the straddling job, in turn, is followed by the tardy jobs. The loop starting on line 6
of Algorithm DP3 , below, addresses straddling jobs, as each job can potentially be
the straddling job; the remaining n − 1 jobs can be either early (line 4) or late (line
5), but not straddling. When a job k is rejected, the cost of the tardy jobs scheduled

(14)1
||| lj = l ,

∑
rj ≤ R

|||
∑(

�jEj + �jTj + �jAj

)
.

(15)1
||| lj = l,

∑
rj ≤ R

|||
∑

wj max
(
0, Cj − l

)
.

1084 B. Mor, D. Shapira

1 3

thus far—those scheduled to the right of k , i.e., jobs with pj∕wj ≥ pk∕wk—must be
updated. For a given schedule � , let qT ⊆ JP be the set of tardy jobs of � . The fol-
lowing Lemma is proved in Mor and Shapira [13].

Lemma 1 The difference in the minsum DIF between accepting and rejecting job k
is
∑

j∈qT
j<k

wjpk.

It follows that, for each state, we additionally store the summation of the weights
of the tardy jobs that have already been scheduled. Thus, the value of the minsum
DIF is updated in constant time, when a certain job k is rejected. In Algorithm DP3
the loop r ∈ {0, 1,… ,R} , which starts on line 2 of this algorithm, examines, on line
5(iii), all possible rejection costs.

Dynamic programming algorithm DP3:

Theorem 7 Algorithm DP3 solves Problem P3 and its computational complexity is
O
(
n2 ⋅ l ⋅ R

)
.

1085

1 3

Minsum scheduling with acceptable lead‑times and optional…

Proof The correctness of DP3 follows from the reduction of P3 to
1
��� lj = l,

∑
rj ≤ R

���
∑

wj max
�
0, Cj − l

�
 and from the correctness of Lemma 1. For

the running time of DP3, the inner loop is applied n − 1 times on each triplet in �j
k−1

at each iteration 1 ≤ k ≤ n . Each triplet can be examined to see whether step (1) or
step (3) should be applied, such that traversing the states in �j

k−1
 is, in fact, done only

once—in a linear order. As stated by Kacem [7], the complexity of the inner loop of
DP3 is proportional to

∑n

k=1

���v
j

k

��� , where |||v
j

k

||| denotes the size of vj
k
 . By choosing the

state (r, t, f) with the smallest value f at each iteration k and for every t , the time is
bounded by O(n ⋅ l) , as d is the maximum value that t can reach. The next outer loop
is then applied R times for each possible total rejection cost. Finally, the outer loop
is applied n times for each potential straddling job, for a total of O

(
n2 ⋅ l ⋅ R

)
 . Return-

ing the minimum cost on the last line requires a linear scan of all ordered triples in
�
j
n , which does not increase the asymptotic running time. Therefore, the total run-

ning time is O
(
n2 ⋅ l ⋅ R

)
 . ◻

Example 3 Consider the following six-job problem, where the rejection cost
limit is R = 12 and the common lead time is l = 28 . The processing times,
sequenced in WLPT order and renumbered, are pj = (27, 12, 32, 27, 32, 5) ,
with rejection costs rj = (8, 11, 7, 9, 1, 6) . The job-dependent cost param-
eters are �j = (20, 16, 17, 5, 14, 8) , �j = (1, 15, 7, 8, 11, 16) , and
�j = (4, 1, 7, 18, 17, 12).

Calculating the weights using (6), we obtain
wj = min

{
�j, �j

}
= (1, 1, 7, 8, 11, 12) and, subsequently,

pj

wj

= (27.000, 12.000, 4.571, 3.375, 2.909, 0.417) . Applying DP3, the set of
rejected jobs is JR =

{
J3, J5

}
 , implying that

∑
j∈JR

rj = 8 ≤ 12 = R . The set of
accepted jobs is JP =

(
J6, J4, J2, J1

)
 . Using Property 2, dj = (5, 28, 64, 28) and,

therefore, Tj = (0, 4, 0, 43) , Aj = (0, 0, 16, 0) , and the total processing cost is
Z = 91.

7 Problem P4 1
���lj,

∑
j∈JR

rj ≤ R
���
∑

j∈JP

�
˛Ej + ˇTj + Aj

�

In this section, we study common cost parameters and job-dependent lead-times.
Setting w = min {�, �} in (6), P4 can be reformulated as:

Denoting by P
′

4 the problem P4 without the option of job-rejection, it follows
from (16) that P

′

4 is equivalent to the fundamental problem, 1� �∑ Tj . This funda-
mental problem was studied by Lawler [10] and proved by Du and Leung [2] to be
ordinary NP-hard. Assuming that the weights of the jobs are agreeable, i.e., that
pi < pj implies that wi ≥ wj , Lawler showed that an optimal sequence can be found
by a DP algorithm with a worst-case running time of O

(
n4P

)
 or O

(
n5pmax

)
 . Steiner

(16)1
|||lj,

∑
rj ≤ R

|||w
∑

max
(
0, Cj − lj

)
.

1086 B. Mor, D. Shapira

1 3

and Zhang [21] studied a problem related to P
′

4 , namely,
1
���lj
���
∑

max
�
0, dj − lj

�
+
∑

�jUj , where � is the delivery time quotation cost per
extended time unit, �j is the job-dependent tardiness cost (which can be treated as a

rejection cost), and Uj is a binary variable, such that Uj =

{
1, Cj > dj
0, Cj ≤ 0

 , j = 1,… , n .

They proved that this problem is equivalent to the problem of minimising the total
tardiness with rejection, and they presented an O

(
n4P3

)
 time DP algorithm and an

O
(
n4Z3

)
 time FPTAS algorithm, where Z is an upper bound on the optimal solution,

based on Lawler [10]. Based on the DP provided in Lawler [10], we introduce a DP
algorithm with a worst-case running time of either O

(
n4 ⋅ P ⋅ R

)
 or O

(
n5 ⋅ pmax ⋅ R

)

for Problem P4 , proving that it remains NP-hard in the ordinary sense.
First, we claim that, because wj = w, j = 1,… , n in our problem, Lawler’s

agreeability assumption is clearly valid. We start by ordering the jobs in an Earliest
Due Date first (EDD) order, 1, 2,… , n . Following Lawler, we denote by S(i, j, k) the
subset of jobs in i, i + 1,… , j that have processing times shorter than those of job
k , formally S(i, j, k) =

{
j
�

|i ≤ j
�

≤ j, pj� < pk
}
 . We define T(S(i, j, k), t, r) as the total

weighted tardiness for an optimal schedule of the jobs in S(i, j, k) , starting at time t
and with a total rejection cost R.

Lawler [10] proved that for some � , 0 ≤ � ≤ n − k there exists an optimal sched-
ule so that:

1. Jobs 1, 2,… , k − 1, k + 1, … , k + � in some sequence start at time t , followed by
2. Job k , with a completion time of Ck(�) = t +

∑
j≤k+�

pj , followed by

3. Jobs k + � + 1, k + � + 2,… , n in some sequence starting at time Ck(�).

For simplicity, we present the DP algorithm in two stages: first for computing
the total weighted tardiness, and then for allowing rejection. Based on Lawler’s DP
algorithm:

T(S(i, j, k), t, r) = min�

{
T
(
S
(
i, k

�

+ �, k
�)
, t, r

)
+ wk

� ⋅max
(
0, Ck

� (�) − dk�
)
+ T(

S
(
k
�

+ � + 1, j, k
�)
,Ck

� (�), r
)}

 , where k′ is the job with the maximal processing time
within S(i, j, k) , and

The boundary conditions are T

(
�, t, r

)
= 0 , T({j}, t, 0) = wj ⋅max

(
0, t − pj − lj

)

and if r > 0, T({j}, t, r) =

{
0 rj ≤ r

T({j}, t, 0) else
.

(17)

Ck
� (�) = t +

∑
j
�
≤k

� +�

pj� .

T({1, 2,… , n}, t, r) = min
(
T({1, 2,… , n}, t, r), min

k

{
T
(
S(i, j, k), t, r − rk

)})
.

1087

1 3

Minsum scheduling with acceptable lead‑times and optional…

Theorem 8 Algorithm DP4 solves Problem P4 and its computational complexity
isO

(
n4 ⋅ P ⋅ R

)
.

Proof By induction on r . The correctness of the base case of the induction follows
directly from the correctness of T(S(i, j, k), t, r) for r = 0 using the truth of the algo-
rithm of Lawler. The correctness of T({1, 2,… , n}, t, r) then follows from the induc-
tion hypothesis, which assumes correctness for all values lower than r and for all
groups of cardinality lower than n in Eq. (17).

The correctness of the running time follows directly from the definition of
T(S(i, j, k), t, r) . The group S(i, j, k) is defined for each i, j, k , where 1 ≤ i, j, k ≤ n ,
t is defined for each 1 ≤ t ≤ P , and r is defined for each 1 ≤ r ≤ R . Calculating
T(S(i, j, k), t, r) requires another factor of n for the minimum calculation running over
all � s, 1 ≤ � ≤ n . ◻

Example 4 Assume a problem of five jobs with R = 5 , � = 7, � = 6, � = 11 ,
w = min {�, �} = 6 , and lj = (24, 28, 35, 36, 67) . The processing times, sequenced
in their EDD order, are pj = (17, 16, 14, 19, 15) , and their rejection costs are
rj = (3, 3, 4, 3, 2) . Since � = 6 ≤ 11 = � , all processed jobs are tardy. By apply-
ing the solution shown above, the set of rejected jobs in the optimal solution is
JR =

{
J1, J5

}
 , with a total rejection cost of 5 ≤ 5 = R . The set of processed jobs

is JP =
(
J2, J3, J4

)
 , their due-dates are dj = (16, 30, 36) , and their tardiness is

Tj = (0, 1, 13) . The total processing cost is, therefore, Z = 84.

8 Numerical study

We performed numerical tests to measure the running time of algorithms DP1.1 ,
DP2.1 , and DP3 . Throughout this experimental study, the job processing times (pj)
and rejection costs (rj) were generated uniformly in the interval [1, 50] , and the cost
parameters (�j, �j, �j) were generated uniformly in the interval [1, 20] . We denote by
p̄ and r̄ the maximum possible value of jobs’ processing times and rejection costs,
respectively; thus, p̄ = r̄ = 50 . The different C++ programs were executed on an
Intel (R) Core™ i7-8650U CPU @ 1.90 GHz, 16.0 GB RAM platform. All numeri-
cal results are presented in tables constructed in the same format; the columns indi-
cate the number of jobs, n , the range of the rejection cost, R , and the average and
worst-case running times.

DP1.1 : Instances with n = 15, 30, 45, and 60 jobs were generated, where
the cost parameters are job-dependent and the common lead time set to zero. The
upper bound on the total rejection cost, R , was generated uniformly in three inter-
vals: [0.0025, 0.0050]r̄n, [0.0075, 0.010]r̄n , and [0.015, 0.020]r̄n . Note that
these intervals roughly reflect rejections of 5%, 10%, and 15% of the jobs, respec-
tively. For each combination of n and R , 20 instances were generated and solved.
The results in Table 1 demonstrate that DP1.1 is efficient for solving medium-size

1088 B. Mor, D. Shapira

1 3

Table 1 Average and worst-
case running times of the DP1
algorithm for Problem P1, with
either 5%, 10%, or 15% rejected
jobs (top, middle, and bottom
tables, respectively)

n R Average running
time (ms)

Worst-case
running time
(ms)

Approximately 5rejected jobs
20 [2, 5] < 1 < 1
30 [3, 7] < 1 < 1
40 [5, 10] 1 1
50 [6, 12] 1 1
60 [7, 15] 2 3
Approximately 10% rejected jobs
20 [7, 10] < 1 < 1
30 [11, 15] 1 1
40 [15, 20] 1 2
50 [18, 25] 2 2
60 [22, 30] 4 4
Approximately 15% rejected jobs
20 [15, 20] < 1 < 1
30 [22, 30] 1 1
40 [30, 40] 3 5
50 [37, 50] 5 7
60 [44, 60] 9 12

Table 2 Average and worst-
case running times of the DP2
algorithm for Problem P2,
with either 10%, 15%, or 20%
rejected jobs (top, middle, and
bottom tables, respectively)

n R Average running
time (s)

Worst-case
running time
(s)

Approximately 10 rejected jobs
50 [12, 25] 0.010 0.017
75 [18, 37] 0.031 0.044
100 [25, 50] 0.069 0.089
125 [31, 62] 0.142 0.186
150 [37, 75] 0.220 0.290
Approximately 15% rejected jobs
50 [37, 50] 0.017 0.021
75 [56, 75] 0.059 0.079
100 [75, 100] 0.134 0.157
125 [93, 125] 0.267 0.306
150 [112, 150] 0.435 0.525
Approximately 20% rejected jobs
50 [62, 75] 0.025 0.028
75 [93, 112] 0.084 0.094
100 [125, 150] 0.193 0.236
125 [156, 187] 0.392 0.438
150 [187, 225] 0.979 2.915

1089

1 3

Minsum scheduling with acceptable lead‑times and optional…

problems. The worst-case running time for problems of 60 jobs and 15% rejected
jobs did not exceed 12 ms.

DP2.1 : Instances with n = 50, 75, 100, 125 , and 150 jobs were generated. The
cost parameters are common to all jobs and the common lead time was generated
uniformly in the interval [0, 0.25]np̄ . The upper bound on the total rejection cost
was generated uniformly in the intervals [0.005, 0.010]nr̄, [0.015, 0.020]nr̄ , and
[0.025, 0.030]nr̄ , reflecting approximately 10%, 15%, and 20% of rejected jobs.
Table 2 presents the average and worst-case running times of Algorithm DP2.1 for
solving 20 randomly generated instances of n and R . Note that the worst-case run-
ning time for problems of 150 jobs and 20% rejected jobs did not exceed 3 s, demon-
strating that, similar to DP1 , DP2.1 is exceptionally efficient in solving medium-size
problems.

DP3 : Instances were generated with n = 10, 20, 30 , and 40 jobs. The cost
parameters are job dependent. A tightness factor � = 0.20, 0.30, 0.40 was used to
generate the common lead time for each instance, as a factor of the total process-
ing times, using l = �P . The total rejection cost R was generated uniformly in the
interval [0.02, 0.04]nr̄ , replicating approximately 20% of rejected jobs. For each set
of n and l , 20 cases were constructed and solved. Table 3 presents the average and
worst-case running times (in seconds) for � = 0.20, 0.30, and 0.40. The results dem-
onstrate that DP3 is efficient and can solve medium-size problems. In particular, the
worst-case running times for problems with n = 40 , � = 0.40 , and 20% of rejected
jobs is less than 4.1 s.

Table 3 Average and worst-
case running times of the DP3
algorithm for Problem P3, with
a tightness factor (�) of either
0.2, 0.3, or 0.4 (top, middle, and
bottom tables, respectively)

n R Average running
time (s)

Worst-case
running time
(s)

� = 0.20

 10 [10, 20] 0.001 0.003
 20 [20, 40] 0.034 0.055
 30 [30, 60] 0.325 0.474
 40 [40, 80] 1.301 1.914
� = 0.30

 10 [10, 20] 0.001 0.002
 20 [20, 40] 0.052 0.079
 30 [30, 60] 0.469 0.716
 40 [40, 80] 1.940 3.005
� = 0.40

 10 [10, 20] 0.001 0.004
 20 [20, 40] 0.076 0.123
 30 [30, 60] 0.590 1.074
 40 [40, 80] 2.738 4.014

1090 B. Mor, D. Shapira

1 3

9 Conclusions

We studied a single-machine scheduling and due-date assignment problem, known
as DIF, with the extension of optional job rejection that possibly bounds the con-
straints or the underlying cost functions. As DIF with job-dependent cost parameters
and lead times is strongly NP-hard, we focused on several restricted versions of the
problem, in which either the cost parameters or the lead times are job dependent. We
established that all studied problems are NP-hard in the ordinary sense and intro-
duced efficient pseudo-polynomial dynamic programming algorithms that are suit-
able for solving real-life, medium-sized instances. Solutions to larger instances may
perhaps be addressed by FPTAS, metaheuristics, or machine learning. A challenging
problem for future research is to provide a heuristic or branch and bound solution
for the general problem of job-dependent cost parameters and lead times with an
optional job-rejection, and to extend the setting to a more complex machine such as
flowshops and parallel machines.

Funding The authors did not receive support from any organization for the submitted work.

Data availability Data sharing not applicable to this article as no datasets were generated or analysed dur-
ing the current study.

Declarations

Conflict of interests The authors have no relevant financial or non-financial interests to disclose.

References

 1. Cao, Z.G., Wang, Z., Zhang, Y.Z., Liu, S.P.: On several scheduling problems with rejection or dis-
cretely compressible processing times. Lect. Notes Comput. Sci. 3959, 90–98 (2006)

 2. Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard. Math. Oper. Res. 15,
483–495 (1990)

 3. Gerstl, E., Mor, B., Mosheiov, G.: Minmax scheduling with acceptable lead-times: extensions to
position-dependent processing times, due-window and job rejection. Comput. Oper. Res. 83, 150–
156 (2017)

 4. Gerstl, E., Mosheiov, G.: Single machine scheduling problems with generalised due-dates and job-
rejection. Int. J. Prod. Res. 55, 3164–3172 (2017)

 5. Gerstl, E., Mosheiov, G.: Minmax due-date assignment with a time window for acceptable lead-
times. Ann. Oper. Res. 211(1), 167–177 (2013)

 6. Gerstl, E., Mosheiov, G.: Scheduling with a due-window for acceptable lead-times. J. Oper. Res.
Soc. 66(9), 1578–1588 (2015)

 7. Kacem, I.: Fully polynomial time approximation scheme for the total weighted tardiness minimiza-
tion with a common due date. Discret. Appl. Math. 158, 1035–1040 (2010)

 8. Kellerer, H., Strusevich, V.A.: A fully polynomial approximation scheme for the single machine
weighted total tardiness problem with a common due date. Theoret. Comput. Sci. 369, 230–238
(2006)

 9. Kianfar, K., Moslehi, G.: A note on “Fully polynomial time approximation scheme for the total
weighted tardiness minimization with a common due date.” Discrete Appl. Math. 161, 2205–2206
(2013)

1091

1 3

Minsum scheduling with acceptable lead‑times and optional…

 10. Lawler, E.L.: A “pseudopolynomial” algorithm for sequencing jobs to minimize total tardiness.
Ann. Discrete Math. 1, 331–342 (1977)

 11. Leyvand, Y., Shabtay, D., Steiner, G.: A unified approach for scheduling with convex resource con-
sumption functions using positional penalties. Eur. J. Oper. Res. 206, 301–312 (2010)

 12. Mor, B., Mosheiov, G., Shabtay, D.: A note: minmax due-date assignment problem with lead-time
cost. Comput. Oper. Res. 40, 2161–2164 (2013)

 13. Mor, B., Shapira, D.: Scheduling with regular performance measures and optional job rejection on a
single machine. J. Oper. Res. Soc. 71(8), 1315–1325 (2020)

 14. Mosheiov, G., Pruwer, S.: On the minmax common-due-date problem: extensions to position-
dependent processing times, job rejection, learning effect, uniform machines and flowshops. Eng.
Optim. 53(3), 408–424 (2021)

 15. Seidmann, A., Panwalkar, S.S., Smith, M.L.: Optimal assignment of due-dates for a single processor
scheduling problem. Int. J. Prod. Res. 19, 393–399 (1981)

 16. Shabtay, D.: Scheduling and due date assignment to minimize earliness, tardiness, holding, due date
assignment and batch delivery costs. Int. J. Prod. Econ. 123, 235–242 (2010)

 17. Shabtay, D., Gaspar, N., Kaspi, M.: A survey on offline scheduling with rejection. J. Sched. 16, 3–28
(2013)

 18. Shabtay, D., Steiner, G.: Two due-date assignment problems in scheduling a single machine. Oper.
Res. Lett. 34, 683–691 (2006)

 19. Shabtay, D., Steiner, G.: The single-machine earliness-tardiness scheduling problem with due-date
assignment and resource-dependent processing times. Ann. Oper. Res. 159, 25–40 (2008)

 20. Shabtay, D., Steiner, G.: Optimal due date assignment in multi-machine scheduling environments. J.
Sched. 11, 217–228 (2008)

 21. Steiner, G., Zhang, R.: Revised delivery-time quotation in scheduling with tardiness penalties. Oper.
Res. 59, 1504–1511 (2011)

 22. Yuan, J.: The NP-hardness of the single machine common due date weighted tardiness problem.
Tabriz Univ. Ser. 5, 328–333 (1992)

 23. Zhang, L., Lu, L., Yuan, J.: Single-machine scheduling under the job rejection constraint. Theoret.
Comput. Sci. 411, 1877–1882 (2010)

 24. Zhao, C., Yin, Y., Cheng, T.C.E., Wu, C.C.: Single-machine scheduling and due date assignment
with rejection and position-dependent processing times. J. Indus. Manag. Optim. 10(3), 691–700
(2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Minsum scheduling with acceptable lead-times and optional job rejection
	Abstract
	1 Introduction
	2 Notations and formulation
	3 Preliminary analysis
	4 Problem and its complementary problem
	5 Problem and its complementary problem
	6 Problem
	7 Problem
	8 Numerical study
	9 Conclusions
	References

