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Abstract
Classical facility location models can generate solutions that do not maintain con-
sistency in the set of utilized facilities as the number of utilized facilities is varied.
We introduce the concept of nested facility locations, in which the solution utilizing
p facilities is a subset of the solution utilizing q facilities, for all i ≤ p < q ≤ j ,
given some lower limit i and upper limit j on r , the number of facilities that will be
utilized in the future. This approach is demonstrated with application to the p-median
model, with computational testing showing these new models achieve reductions in
both average regret and worst-case regret when r �= p facilities are actually utilized.

Keywords Facility location · Optimization · Practicality of model solutions

1 Introduction

Selecting the locations for a set of facilities to be opened in order to service a set of
customers is one of the most widely studied and applied problems in all of operations
research. Since the foundational work of Hakimi in [10,11], thousands of authors
have published works examining facility location problems, with [10] currently cited
by more than 3000 papers, according to Google Scholar.

However, as with any model, when an operations research analyst attempts to use
results from a facility location problem formulation to influence decision making,
the recommendations must be presented in a manner that is comprehensible to the
decision maker. One aspect of the solutions obtained by traditional facility location
models that can be difficult to communicate to decision makers is a potential lack of
consistency in the set of utilized facilities as the number of utilized facilities is varied.
For example, consider a stylized problem in which each demand point is assigned
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service at its nearest opened facility, where the objective is to minimize the sum of the
distances between each demand point and its assigned facility. Assume that demand
exists at five points located along a unit line segment at locations 0, 0.25, 0.5, 0.75 and
1. Suppose that one new facility could be placed at any of these demand points; in this
case it is apparent that the optimal solution is to place the facility at the line segment’s
midpoint. If two facilities were to be utilized, there are alternative optimal solutions
(e.g., place the facilities at 0 and 0.75, or place the facilities at 0.25 and 0.75), but there
is no optimal solution that places a facility at 0.5, demonstrating an inconsistency in
the model’s recommendations as the number of facilities increases from one to two.

The ability of the analyst to “sell” the modeling solution can be hindered by the
extent to which this inconsistency property, while demonstrably valid from a math-
ematical perspective, is nevertheless at odds with a decision maker’s intuition. The
challenge imposed by this lack of consistency on the implementation of model results
ismost pronouncedwhen the decisionmaker is uncertain about the number of facilities
to be utilized in the future. In response, we introduce the concept of nested facility
locations, defined as follows. A set of facility location solutions are said to be nested
if the solution utilizing p facilities is a subset of the solution utilizing q facilities, for
all i ≤ p < q ≤ j , given some lower limit i and upper limit j on r , the number of
facilities that will be utilized in the future. Observe that such a set of nested solutions
cannot exhibit the inconsistency discussed above. The nested concept is consistent
with a situation in which an initial decision is made to prepare a set of j locations
for potential future use, the decision maker then engages with various constituencies
to discuss the j − i + 1 alternative solutions (and does not wish to demonstrate this
inconsistency during those discussions), and finally the actual number of facilities to
be opened is then determined.

These concepts, applicable to situations in which the future number of facilities
is uncertain, have parallels to the broader class of models for optimization under
uncertainty. More recently, a body of research has arisen examining linkages between
combinatorial optimization (such as the facility location models of [10]) and machine
learning methods, e.g., [12], which explicitly considered facility location problems
as an application area in which machine learning methods could be used to address
uncertainties in input parameters.

Previous works have considered facility location models when the number of
opened facilities is uncertain. The p-median problem with an uncertain number of
future facilities was first examined by [7]. These authors assumed that an initial set of
p facilities must be opened, and that it will subsequently become necessary to open
an additional set of between 0 and q facilities, assuming a minimax regret objective.
While their model ensures that the initial p facilities selected are included in every
future set of p, p + 1, . . . , p + q facilities, these authors do not enforce that the opti-
mal set of p + i facilities are included in the optimal set of p + j facilities where
0 < i < j ≤ q; that is, the solutions are not nested. Later, [5] considered this same
problem, minimizing the expected regret, with a slightly modified mathematical rep-
resentation, and provided heuristic solution methods that were found to be effective
for large problem instances, albeit with a limitation that q = 1. In [16], the authors
considered a problem in which both the number of future facilities is uncertain and
future demand is uncertain, identifying a set of initial facilities to open and a set of
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future relocations that include potentially opening new facilities and closing facilities
opened in the initial time period. Clearly, as this formulation allows for facilities to be
closed, the nested property is not enforced here.

The main contributions of this paper are the introduction of the concept of nested
facility locations and the formulation of the nested p-median problem using two
objective functions, minimizing expected regret and minimizing maximum regret.
The use of a regret-based objective function is common in optimization problems (and
facility location problems specifically) in which the underlying data are assumed to be
uncertain and thedecisionsmade at the outset constrain the recourse decisions available
to the decision maker in the future; see e.g., [1,7,13,14]. We develop two heuristic
approaches, based on Lagrangian relaxation, to efficiently solve the model under each
objective for large problem instances. Our computational results demonstrate both the
novelty of the model compared to a similar approach by [7], and also the improved
performanceof our approachover a classic p-medianmodel under anuncertain number
of facilities.

2 Mathematical model

Consider the following p-median problem in which a set of facilities are opened from
a set of candidate facility locations, and each member of a set of demand points is
assigned to receive service from a single opened facility, such that the total distance
between demand points and their assigned facilities is minimized.
Sets

– I : set of demand points
– J : set of candidate facility locations

Decision variables

– x j : equals one if facility j is opened, equals zero otherwise
– yi j : equals one demand point i is assigned to be served by facility j , equals zero
otherwise

– z: total distance between demandpoints and the facilities towhich they are assigned

Data parameters

– φ: number of facilities to be opened
– γi j : distance between demand point i and facility j

min z =
∑

i

∑

j

γi j yi j (1)

∑

j

x j = φ (2)

∑

j

yi j = 1 ∀i (3)
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yi j ≤ x j ∀i, ∀ j (4)

x j ∈ {0, 1} ∀ j (5)

yi j ≥ 0 ∀i, ∀ j (6)

Constraint (6) is sufficient to limit variable yi j to take only binary values, based on the
model structure [6]. Suppose this p-median model (1)–(6) were solved across a range
of values for φ, denoted as follows:
Sets

– H : set of potential numbers of facilities to be opened

Data parameters

– φ̂h : number of facilities to be opened under set element h ∈ H , ordered such that
φ̂h+1 = φ̂h + 1 ∀h

Let α̂h denote the optimal objective function value obtainedwhen this p-medianmodel
(1)–(6) is solved with φ̂h facilities to be opened.

The nested p-median problem can then be formulated as follows:
Decision variables

– x̂ jh : equals one if facility j is opened when φ̂h facilities are opened, equals zero
otherwise

– ŷi jh : equals one if demand point i is assigned to be served by facility j when φ̂h

facilities are opened, equals zero otherwise
– ẑh : total distance between demand points and the facilities to which they are
assigned when φ̂h facilities are opened

– ŵ maximum relative penalty for the nested solution objective function, across all
elements of set H

min
∑

h

ẑh (7)

min ŵ (8)∑

j

x̂ jh = φ̂h ∀h (9)

∑

j

ŷi jh = 1 ∀i, ∀h (10)

ŷi jh ≤ x̂ jh ∀i, ∀ j, ∀h (11)

x̂ jh ∈ {0, 1} ∀ j, ∀h (12)

ŷi jh ≥ 0 ∀i, ∀ j, ∀h (13)

ẑh =
∑

i

∑

j

γi j ŷi jh ∀h (14)

x̂ jh ≥ x̂ j,(h−1) ∀ j, ∀h > 1 (15)

ŵ ≥ ẑh − α̂h

α̂h
∀h (16)
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Minimizing expected regret is equivalent to (for the p-median problem) minimizing
expected distance across the elements of set H [13]. Therefore, model (7), (9)–(15),
denoted NestedPmedExpectedRegret (NPER), minimizes the expected regret of the
nested model. Alternatively, formulation (8)–(16), denoted NestedPmedMinimaxRe-
gret (NPMR) solves a minimax relative regret objective for the nested model.

The p-median problem is known to be NP-hard [9]. For NPER, if |H | = 1, NPER
reduces to the classical p-median problem, and thus NPER is also NP-hard [14].
Because NPMR is minimax relative regret model for the p-median, NPMR is also
NP-hard [1].

3 Initial computational results: illustrating regret

In this section, we conduct an initial numerical study to demonstrate the regret calcula-
tions, evaluating the performance of the NPER and NPMRmodels using a 30-instance
set of benchmark problems from the online repository [15]. Each instance defines an
ordered list of 100 locations and provides a matrix of the distances between each
pair of locations. For our computational testing, we assume for each instance that
the first 20 locations in the ordered list are candidate facility locations and that the
other 80 locations are demand points. Assume an uncertain number of facilities are to
be opened, ranging from a minimum of one facility to a maximum of four facilities.
Models NPER and NPMR were both coded in GAMS 33.2 and solved using CPLEX
12.10.

3.1 Contrasting results with NOFUN

To help illustrate the difference between these nested models and the “Number Of
Facility Locations Uncertain” (NOFUN) formulation of [7], consider one instance
(number 27) from this test problem set. Models NPER and NOFUN (with an expected
regret objective function) were each solved for this instance. Figure 1 presents an
illustration of this test problem, graphed in the (x,y)-plane. The text boxes appearing
inside the graph indicate forwhich values ofφh a facility is opened at the corresponding
location. For example, the black box located nearest to the lower-left corner of the
figure indicates a facility location that was utilized in the NOFUN solution for φ̂h = 4,
but which was not opened for any other value of φ̂h . Observe that the NPER solution
utilizes a total of four locations, as required by the nested property. The NOFUN
solution, however, utilizes a total of six different locations. Both model solutions are
identical for φ̂h = 1 and φ̂h = 2. Moreover, both models exhibit the nested property
for values of φ̂h between one and three (although the third facility opened is at a
different location for each model). However, observe that the NOFUN solution for
φ̂h = 4 is a significant departure from the NOFUN solution for φ̂h = 3, with only one
location in common between the two solutions.
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Fig. 1 Facility locations opened in NPER and NOFUN solutions, problem instance 27

3.2 Calculating regret

As an illustration of how we calculate regret, consider again instance number 27 from
the test problem data set. Suppose that the p-median model (denoted PMED) were
solved for some value of φ. This PMED model solution could then be utilized as
the basis for a set of nested facility opening recommendations. For example, suppose
that the 2-median solution for a particular test instance opened facilities at locations
j1 and j2. Model NPER could then be run, forcing these two locations to define the
solution for φ̂h = 2, thereby generating an optimized nested facility solution based on
this 2-median solution; denote the solutions obtained from this two-step approach as
Variations on the p-median solution (VpMS). This VpMS presents the best possible
performance that could be achieved, were a p-median solution implemented, but it
later become necessary to add or remove facilities from this solution.

Figure 2 illustrates this test problem instance, with the text boxes appearing inside
the graph again indicatingwhen a facility is opened at the corresponding location.Here,
the PMED solutions are presented for φ ∈ {1, 2, 3}, and are denoted by black boxes.
The V2MS, denoted by red diamonds, is also presented for φ̂h ∈ {1, 2, 3}. Observe
that the V2MS presents a nested solution that is identical to the PMED solution for
φ =2 (by design).

Consider now the different solutions corresponding to one opened facility. Due to
the nested property, the V2MS is limited to selecting one of the two facilities utilized in
the 2-median solution; this 1-facility solution from the V2MS has objective function
value equal to 235,518. Contrast this to the optimal 1-median solution, which has
objective function value (α̂1) equal to 218,369, and utilizes a facility that does not
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Fig. 2 Facility locations opened in V2MS and PMED solutions, problem instance 27

Table 1 Regret calculations for
problem instance 27

φ PMED objective V2MS objective Regret (%)

1 218,369 235,518 7.9

2 155,883 155,883 0

3 125,693 126,314 0.5

4 105,416 110,166 4.5

appear in the 2-median solution. Here, the V2MS has a relative regret equal to 7.9%
when one facility is opened. Similarly, the optimal 3-median solution utilizes a facility
that does not appear in either the 1-median or 2-median solutions, and is thus able to
outperform the nested 3-facility solution obtained from the V2MS. Table 1 presents
the regret calculations for this test problem instance, evaluating the V2MS relative to
the PMED solution when 1, 2, 3 and 4 facilities are to be utilized.

3.3 Comparing solution quality

Models NPER and NPMR were solved across all 30 test instances, with set H =
{1, 2, 3, 4}. To provide a basis for comparison of solution quality, model PMED was
also solved for 1, 2, 3 and 4 facilities for each test instance. Note that this required,
in total, 30 runs of NPER, 30 runs of NPMR, and 120 runs of PMED. Each of these
PMEDmodel solutionswas then utilized as the basis for a set of nested facility opening
recommendations, denotedVpMSas discussed above, and thus requiring an additional
120 runs of NPER. Figure 3 presents the average regret and maximum regret, across
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Fig. 3 Average regret and maximum regret across solutions

the 30 test instances, for each model solution, varying the actual number of facilities
to be opened on the horizontal axis.

Observe that the VpMS solution has zero regret when p facilities are to be opened,
by definition. However, should a p-median solution be implemented, but it subse-
quently become necessary to increase or decrease the number of facilities, the regret
can be quite large. For the V1MS solution, the average regret ranges between 4.3%
(for two opened facilities) and 6.4% (for four opened facilities), with corresponding
maximum regret values of 13.5% and 19.0%. For the V2MS, V3MS and V4MS solu-
tions, the greatest values for both average regret and maximum regret occur at φh=1
opened facility (with average regret values of 7.3%, 9.9% and 11.3%, respectively,
and maximum regret values of 20.6%, 21.6% and 28.0%, respectively).

The NPER and NPMR solutions both significantly reduce the potential exposure
to large values of average regret and maximum regret, relative to the VpMS solutions.
The NPER average regret varies between a minimum value of 1.7% (for two opened
facilities) and a maximum of 3.9% (for four opened facilities), with maximum regret
values ranging between 9.3 and 10.1% (for three and one opened facilities, respec-
tively). Similarly, the NPMR average regret varies between 2.4 and 3.5% (for one and
three opened facilities, respectively), while its maximum regret values range between
8.2% and 9.6% (for two and three opened facilities, respectively).
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4 Solution approach

In this section we develop a heuristic approach based on Lagrangian relaxation (LR) to
solve NPER andNPMR.A commonly used LR approach to solve a standard p-median
problem involves relaxing constraints (3) [8]. This type of constraint appears in NPER
and NPMR in constraints (10). The additional complicating constraints in NPER and
NMPR are the nesting constraints (15). For our LR algorithm, we replace the original
nesting constraints (15) from the NPER and NPMR models with the following set of
constraints:

x̂ j,h ≥ x̂ j,h−h′ ∀ j, ∀h > 1, ∀h′ < h (17)

The constraint set (17) includes constraints (15) as well as other redundant con-
straints, however we find empirically that relaxing constraints (17) enhances the lower
bound.

4.1 Solving NPER using Lagrangian relaxation

Wedefine λih and ν j,h,h′ as the Lagrangemultiplier vectors associatedwith constraints
(10) and (17), respectively. The Lagrangian relaxation L(λ, ν) of NPER with respect
to constraints (10) and (17) is given by

min
x̂,ŷ

∑

h

∑

i

∑

j

γi j ŷi jh +
∑

i

∑

h

λih

⎛

⎝1 −
∑

j

ŷi jh

⎞

⎠

+
∑

j

∑

h>1

∑

h′<h

ν j,h,h′(x̂ j,h−h′ − x̂ j,h), (18)

subject to constraints (9), (11)–(13).
Rearranging terms to isolate the x̂ and ŷ variables, L(λ, ν) is rewritten as

min
x̂,ŷ

∑

i

∑

j

∑

h

(γi j − λih)ŷi jh +
∑

i

∑

h

λih +
∑

j

⎧
⎨

⎩x̂ j,1

|H |∑

h=2

ν j,h,h−1

⎫
⎬

⎭

+
∑

j

⎧
⎨

⎩

|H |−1∑

h=2

x̂ jh

⎧
⎨

⎩

⎛

⎝
|H |∑

h′=h+1

ν j,h′,h′−h

⎞

⎠ −
(

h−1∑

h′=1

ν j,h,h′

)⎫
⎬

⎭

⎫
⎬

⎭

−
∑

j

⎧
⎨

⎩x̂ j,|H |

⎧
⎨

⎩

|H |−1∑

h′=1

ν j,|H |,h′

⎫
⎬

⎭

⎫
⎬

⎭ (19)

subject to constraints (9), (11)–(13).
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4.1.1 Calculating the NPER lower bound

Define ρ jh as the contribution of the (facility j , scenario h)-pair to the objective
function of L(λ, ν). Then, ρ jh can be constructed based on (19) as:

ρ jh =

⎧
⎪⎪⎨

⎪⎪⎩

Δ jh + ∑|H |
h=2 ν j,h,h−1 if h = 1

Δ jh + (
∑|H |

h′=h+1 ν j,h′,h′−h) − (
∑h−1

h′=1 ν j,h,h′) if 1 < h < |H |
Δ jh − ∑|H |−1

h′=1 ν j,|H |,h′ if h = |H |
(20)

where Δ jh = ∑
i min(0, γi j − λih).

For a given set of multipliers λ and ν, the optimal solution for this problem can be
obtained using the following approach. For each scenario h, denote the φ̂h smallest
values of ρ jh as P∗

h = {ρ̂ j1 , ρ̂ j2 , . . . , ρ̂ j
φ̂h

}. Then, for each h, set x̂ jh = 1 for j ∈ P∗
h .

Then set ŷi jh = x̂ jh if γi j − λih < 0, otherwise set ŷi jh to zero. Then calculate the
objective function value of L(λ, ν), denoted as ZL(λ, ν).

Note that since we relax constraints (17), the optimal solution to L(λ, ν) may not
have a nested solution. This motivated our decision to formulate the LR using the
nesting constraints (17), which include many redundant instances, rather than the
more-compact nesting constraints (15). In this way, we would expect to encounter
more frequent nesting in the lower bound solution in later iterations of the algorithm
(which we observed to occur in our computational testing).

4.1.2 Calculating the NPER upper bound

We can find an upper bound to NPER by generating a feasible solution using part
of the lower bound solution to L(λ, ν). The lower bound solution utilizes Φ̃ ≥ φ̂|H |
facilities. We apply Algorithm 1, described below, to find φ̂|H | nested facilities out of
the Φ̃ facilities chosen in the lower bound solution. The idea behind Algorithm 1 is
to use information about a facility’s contribution to L(λ, ν) as a proxy for its value
in an upper bound solution. After values of x̂ jh are determined using Algorithm 1, it
is simple to set the corresponding values for ŷi jh by setting ŷi jh = 1 for the closest
utilized facility j (i.e., x̂ jh = 1)Wemay then calculate the objective function, denoted
as ZU .
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Algorithm 1: Calculating the facility locations for the upper bound
Initialize by calculating ρ jh for all j, h.
for h ← 1 to |H | do

Create a sorted list of ρ jh denoted as S∗
h = {S1j , S2j , . . . , S|J |

j }
for j ← 1 to |J | do

Denote the ordinality of facility j in S∗
h as Ŝ∗

h ( j).
end

end
for j ← 1 to |J | do

if Facility j is utilized in current lower bound solution then
Set SumRank( j) = ∑

h Ŝ
∗
h ( j)

else
Set SumRank( j) = ∞

end
end

Create a sorted list of SumRank( j) denoted as SR = {SR1
j , SR

2
j , . . . , SR

|J |
j }

for j ← 1 to |J | do
Denote the ordinality of facility j in SR as ˆSR( j).

end
for h ← 1 to |H | do

for k ← 1 to |J | do
if ˆSR( j) ≤ φ̂h then

Set x̂ j,h = 1
else

Set x̂ j,h = 0
end

end
end

4.1.3 Subgradient optimization method for NPER

A subgradient method (Algorithm 2) is used to calculate values for the Lagrange
multipliers λih and ν j,h,h′ at each iteration. We use subgradient smoothing to enhance
convergence of the lower bound [2]. The parameters for the subgradient method are
listed in Table 2 below, followed by Algorithm 2.
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Table 2 Subgradient method parameters for solving NPER

n Iteration number

z Current best upper bound

z Current best lower bound

λnih , νnj,h,h′ Lagrange multiplier values at iteration n

θ1, θ2 Step-size coefficient for Lagrange multipliers λih and ν j,h,h′ , respectively
t1, t2 Step size for the Lagrange multipliers λih and ν j,h,h′ , respectively
Γ n

λih
, Γ n

ν j,h,h′ Subgradients for the Lagrange multipliers λih and ν j,h,h′ , respectively, for iteration n

Γ̃ n
λih

, Γ̃ n
ν j,h,h′ Smoothed subgradients for the Lagrange multipliers λih and ν j,h,h′ , respectively, for

iteration n

σ Minimum duality gap termination criteria

σ n Duality gap in iteration n

ζ Exponential smoothing constant

N Maximum number of iterations termination criteria

Algorithm 2: Subgradient optimization algorithm to solve NPER

Initialize by setting z = ∞, z = −∞, λ1ih = 1, ν1j,h,h′ = 0, n = 1

while σ n > σ and n < N do
Step 1. Solve L(λn, νn). Set z = max{z, ZL(λn, νn)}
Step 2. Apply Algorithm 1 to calculate the upper bound solution,
x̂njh, ŷ

n
i jh,∀i, j, h. Set z = min{z, ZU }.

Step 3. Calculate the duality gap: σ n = z−z
z

Step 4. Make the following calculations:
Step 4a. Calculate subgradients
Γ n

λih
= 1 − ∑

j ŷ
n
i jh, ∀i, h

Γ n
ν j,h,h′ = x̂nj,h−h′ − x̂njh,∀h > 1, h′ < h

Step 4b. Calculate step sizes
t1 = θ1(z − z)/

∑
i,h(Γ

n
λih

)2, ∀i, h
t2 = θ2(z − z)/

∑
i,h(Γ

n
ν j,h,h′ )

2,∀h > 1, h′ < h
Step 4c. Calculate smoothed subgradients
if n > 1 then

Γ̃ n
λih

= (1 − ζ )Γ̃ n−1
λih

+ ζΓ n
λih

, ∀i, h
Γ̃ n

ν j,h,h′ = (1 − ζ )Γ̃ n−1
ν j,h,h′ + ζΓ n

ν j,h,h′ ,∀h > 1, h′ < h

else
Γ̃ n

λih
= Γ n

λih
, ∀i, h

Γ̃ n
ν j,h,h′ = Γ n

ν j,h,h′ ,∀h > 1, h′ < h

end
Step 4d. Calculate updated Lagrange multipliers λn+1

ih = λnih + t1Γ̃ n
λih

, ∀i, h
νn+1
j,h,h′ = νnj,h,h′ + t2Γ̃ n

ν j,h,h′ ,∀h > 1, h′ < h

Step 5: Set t = t + 1
end
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4.2 Solving NPMR using Lagrangian relaxation

We re-organize constraint (16) as follows:

0 ≥ ẑh
α̂h

− (1 + ŵ) ∀h (21)

We defineλih , ν j,h,h′ , and δh as the Lagrangemultipliers associatedwith constraints
(10), (17), and (21), respectively.

The Lagrangian relaxation L(λ, v, δ) of NPMR is given by

min
x̂,ŷ,ŵ

ŵ +
∑

i

∑

h

λih

⎛

⎝1 −
∑

j

ŷi jh

⎞

⎠

+
∑

j

∑

h>1

∑

h′<h

ν j,h,h′(x̂ j,h−h′ − x̂ j,h)

+
∑

h

δh

(∑
i
∑

j γi j ŷi jh

α̂h
− 1 − ŵ

)
(22)

subject to constraints (9), (11)–(13).
Rearranging terms to isolate the x̂ , ŷ, and ŵ variables, L(λ, ν, δ) is rewritten as

min
x̂,ŷ,ŵ

∑

i

∑

j

∑

h

(
γi j

α̂h
δh − λih)ŷi jh +

∑

i

∑

h

λih +
∑

j

⎧
⎨

⎩x̂ j,1

|H |∑

h=2

ν j,h,h−1

⎫
⎬

⎭

+
∑

j

⎧
⎨

⎩

|H |−1∑

h=2

x̂ jh

⎧
⎨

⎩

⎛

⎝
|H |∑

h′=h+1

ν j,h′,h′−h

⎞

⎠ −
(

h−1∑

h′=1

ν j,h,h′

)⎫
⎬

⎭

⎫
⎬

⎭

−
∑

j

⎧
⎨

⎩x̂ j,|H |

⎧
⎨

⎩

|H |−1∑

h′=1

ν j,|H |,h′

⎫
⎬

⎭

⎫
⎬

⎭

+ŵ

(
1 −

∑

h

δh

)
(23)

subject to constraints (9), (11)–(13).
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4.2.1 Calculating the lower and upper bounds for NPMR

Define ρ jh as the contribution of the (facility j , scenario h)-pair to the objective
function of L(λ, ν, δ). Then, ρ jh can be constructed based on (23) as:

ρ jh =

⎧
⎪⎪⎨

⎪⎪⎩

Π jh + ∑|H |
h=2 ν j,h,h−1 if h = 1

Π jh + (
∑|H |

h′=h+1 ν j,h′,h′−h) − (
∑h−1

h′=1 ν j,h,h′) if 1 < h < |H |
Π jh − ∑|H |−1

h′=1 ν j,|H |,h′ if h = |H |
(24)

where Π jh = ∑
i min(0, (

γi j
α̂h

δh − λih). For a given set of multipliers λ, ν, and δ,
the optimal solution and objective function value for this problem can be obtained
using the same approach developed for NPER, with one change. That is, the above
formulation will have the following characteristic: In each iteration, if 1− ∑

δh > 0,
then it is optimal to set ŵ = 0. Otherwise, if 1 − ∑

δh < 0, it is optimal to set
ŵ = ∞. Denote the optimal objective function value of the lower bound problem as
ZL(λ, ν, δ). We then calculate the upper bound for NPMR using the same technique
developed for NPER in Algorithm 1, with objective function value ZU equal to the
maximum relative regret value obtained from equation (16).

4.2.2 Subgradient optimization method for NPMR

The parameters for our subgradient method to solve NPMR include the parameters
used in the NPER subgradient method (listed in Table 2) as well as those listed in
Table 3. The details of the method are described in Algorithm 3.

Table 3 Additional subgradient method parameters to solve NPMR

δnh Lagrange multiplier values at iteration n

θ3 Step-size coefficient for Lagrange multipliers δh

t3 Step size for the Lagrange multipliers δh

Γ n
δh

Subgradients for the Lagrange multipliers δh , for iteration n

Γ̃ n
δh

Smoothed subgradients for the Lagrange multipliers δh , for iteration n
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Algorithm 3: Subgradient optimization algorithm to solve NPMR

Initialize by setting z = ∞, z = −∞, λ1ih = 1, ν1j,h,h′ = 0, δh = 0, n = 1

while σ n > σ and n < N do
Step 1. Solve L(λn, νn, δn). Set z = max{z, ZL(λn, νn)}
Step 2. Apply Algorithm 1 to calculate the upper bound solution,
x̂njh, ŷ

n
i jh, ŵ

n
h ,∀i, j, h. Set z = min{z, ZU }.

Step 3. Calculate the duality gap: σ n = z−z
z

Step 4. Make the following calculations:
Step 4a. Calculate subgradients
Γ n

λih
= 1 − ∑

j ŷ
n
i jh, ∀i, h

Γ n
ν j,h,h′ = x̂nj,h−h′ − x̂njh,∀h > 1, h′ < h

Γ n
δh

= ∑
i
∑

j (γi j ŷi jh/α̂h − 1 − ŵ)

Step 4b. Calculate step sizes
t1 = θ1(z − z)/

∑
i,h(Γ

n
λih

)2, ∀i, h
t2 = θ2(z − z)/

∑
i,h(Γ

n
ν j,h,h′ )

2,∀h > 1, h′ < h

t3 = θ3(z − z)/
∑

i,h(Γ
n
δh

)2,∀h
Step 4c. Calculate smoothed subgradients
if n > 1 then

Γ̃ n
λih

= (1 − ζ )Γ̃ n−1
λih

+ ζΓ n
λih

, ∀i, h
Γ̃ n

ν j,h,h′ = (1 − ζ )Γ̃ n−1
ν j,h,h′ + ζΓ n

ν j,h,h′ ,∀h > 1, h′ < h

Γ̃ n
δh

= (1 − ζ )Γ̃ n−1
δh

+ ζΓ n
δh

,∀h
else

Γ̃ n
λih

= Γ n
λih

, ∀i, h
Γ̃ n

ν j,h,h′ = Γ n
ν j,h,h′ ,∀h > 1, h′ < h

Γ̃ n
δh

= Γ n
δh

,∀h
end
Step 4d. Calculate updated Lagrange multipliers λn+1

ih = λnih + t1Γ̃ n
λih

, ∀i, h
νn+1
j,h,h′ = νnj,h,h′ + t2Γ̃ n

ν j,h,h′ ,∀h > 1, h′ < h

δn+1
h = δnh + t3Γ̃ n

δh
,∀h

Step 5: Set t = t + 1
end

5 Computational results

We tested the LR-based solution algorithm for NPER (denoted LR-ER) and NPMR
(denoted LR-MR) on a set of test problems from the online repository [4]. These
problems are drawn from the p-median instances examined in [3]; in our computa-
tional testing we utilize the problem instances containing 400 or more nodes (denoted
pmed16 through pmed40 at [4]). We assume that all nodes are both demand points
and potential facility locations, thus I = J . Models NPER andNPMRwere again both

123



512 R. G. McGarvey, A. Thorsen

Table 4 NPER computational experience

Problem size # instances OTS-ER LR-ER

|I | = |J | Gap (%) Runtime UB Gap (%) Runtime z

400 5 0 413 43,384 0.36 43,425

500 5 20 367 51,450 0.50 46,119

600 5 60 599 57,614 0.38 600 47,312

700 4 100 600 91,829 2.21 51,274

800 3 100 600 75,389 2.61 55,267

900 3 100 600 85,225 2.16 54,772

coded in GAMS 33.2 and solved using CPLEX 12.10, here using nesting constraints
(17) rather than (15), for consistency with LR-ER and LR-MR. The computational
results obtained with this off-the-shelf optimization software will be denoted OTS-ER
(for NPER) and OTS-MR (for NPMR).

In our computational testing we initialized the LR parameters θ1 = θ2 = θ3 = 0.75
and ζ = 0.8. Values for step-size coefficients θ1, θ2 were reduced by 10% after 30
unimproved iterations. The Lagrange multipliers were initialized as λ1ih = ν1j,h,h′ =
δ1h = 2, and the termination criteria were set at σ = 10−6 and N = 1000. For all
instances tested, we assumed set H = {1, 2, 3, 4}.

The results of the computational testing for NPER appear in Table 4. Each value
presented in this table for OTS-ER and LR-ER represents the average value, across
all instances, for each problem size. A maximum run time of 600s was utilized with
GAMS/CPLEX, thus the results for LR-ER present the model’s status at 600s of
run time, to allow for comparison. Column UB presents the best feasible objective
function value obtained by GAMS/CPLEX. Observe that for the smallest problems
(|I | = |J | = 400), OTS-ER was able to obtain a provably optimal solution in all
instances, with an average run time of 413s, outperforming LR-ER. For the problem
size |I | = |J | = 500, OTS-ER was able to obtain a provably optimal solution for 4
of the 5 instances, however in the remaining instance OTS-ER terminated after 600s
with an optimality gap of 100%. Similarly, for the problem size |I | = |J | = 600,
OTS-ER was able to obtain a provably optimal solution for 1 of the 5 instances, in 3
of the remaining instance OTS-ER terminated after 600s with an optimality gap of
100%. For these two problem sizes, LR-ER was able to obtain solution with average
optimality gaps of 0.50% and 0.38%, respectively, for |I | = |J | = 500 and 600. For
all instances of the largest problem sizes (|I | = |J | = 700, 800 and 900), OTS-ER
terminated after 600s with an optimality gap of 100%. Observe that for these large
problem sizes, the best feasible solutions obtained by OTS-ER had objective function
values thatwere 79%, 36%and56%greater, on average, than the best feasible solutions
obtained by LR-ER for |I | = |J | = 700, 800 and 900, respectively.

The results of the computational testing for NPMR appear in Table 5. Each value
presented in this table for OTS-MR and LR-MR represents the average value, across
all instances, for each problem size. Due to its difficulty in obtaining a solution, the
maximum run time was increased to 3600s for GAMS/CPLEX. However, the results
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Table 5 NPMR computational experience

Problem size # instances OTS-MR LR-MR

|I | = |J | Runtime UB (%) Runtime z (%)

400 5 60.9 10.1

500 5 53.6 11.9

600 5 3600 37.1 600 12.3

700 4 65.6 10.8

800 3 42.1 11.5

900 3 51.6 10.6

for LR-MR again present the model’s status at 600s of run time, to emphasize its
performance advantage. For all 25 instances tested,GAMS/CPLEX returned a solution
with an optimality gap of 100% (and an objective function lower bound of −10−4),
thus we do not present the optimality gap in this table. Observe that the best feasible
solutions obtained by OTS-MR are considerably worse than the solutions obtained by
LR-MR (despite OTS-MR being provided six times the run time allowed to LR-MR),
with OTS-MR having objective function values that were 6.0, 4.5, 3.0, 6.1, 3.7 and 4.9
times the best feasible solutions obtained by LR-MR, on average, for |I | = |J | = 400,
500, 600, 700, 800 and 900, respectively.

6 Conclusion

This paper has introduced the concept of nested facility locations, in which the
solution utilizing p facilities is a subset of the solution utilizing q facilities, for all
i ≤ p < q ≤ j , given some lower limit i and upper limit j on r , the number of facili-
ties that will be utilized in the future. Such an approach overcomes a challenge in the
solutions to traditional facility location models, which can generate solutions that do
not maintain consistency in the set of utilized facilities as the number of utilized facil-
ities is varied. The nested facility location concept is demonstrated with application
to the classic p-median model, with computational testing showing these new models
achieve reductions in worst-case regret when r �= p facilities are actually utilized,
relative to the best possible performance that could be achieved, were a p-median
solution implemented, but it later become necessary to add or remove facilities from
this solution.

We develop two heuristic approaches, based on Lagrangian relaxation (denoted
LR-ER and LR-MR, respectively), to efficiently solve the model under each objective
for large problem instances. Computational testing on a set of large problem instances
found LR-ER and LR-MR to perform well, significantly outperforming the commer-
cial solver GAMS/CPLEX on the largest problem instances.

Future extensions to this research could extend the nested concept to other facil-
ity location models, such as the p-center or maximum covering models. The nested
concept could potentially be applied to facility location models that consider a budget
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on future facility opening and closing decisions, as in [16]. It would also be possible
to extend these concepts to continuous facility location models, in which the facility
locations are selected as coordinates in a planar region. Another potential extension
would incorporate the nested concept to situations in which additional aspects of the
model were assumed to be uncertain, such as the distances between demand points
and facilities. The nested facility location concept could also be extended to stochas-
tic optimization approaches, in which uncertainties are characterized by probability
distributions.

Acknowledgements Research reported in this manuscript was supported by the National Institute of Gen-
eralMedical Sciences of theNational Institutes ofHealth underAwardNumber P20GM104417. The content
is solely the responsibility of the authors and does not necessarily represent the official views of the National
Institutes of Health.

References

1. Averbakh, I.: Minmax regret solutions for minimax optimization problems with uncertainty. Oper. Res.
Lett. 27, 57–65 (2000)

2. Baker, B.M., Sheasby, J.: Accelerating the convergence of subgradient optimisation. Eur. J. Oper. Res.
117(1), 136–144 (1999)

3. Beasley, J.E.: A note on solving large p-median problems. Eur. J. Oper. Res. 21, 270–273 (1985)
4. Beasley, J.E.: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html (2004)
5. Berman, O., Drezner, Z.: The p-median problem under uncertainty. Eur. J. Oper. Res. 189, 19–30

(2008)
6. Current, J., Daskin, M.S., Schilling, D.: Discrete network location models. In: Drezner, Z., Hamacher,

H.W. (eds.) Facility Location: Applications and Theory, pp. 81–118. Springer, New York (2002)
7. Current, J., Ratick, S., ReVelle, C.: Dynamic facility location when the total number of facilities is

uncertain: a decision analysis approach. Eur. J. Oper. Res. 110, 597–609 (1997)
8. Daskin, M.S., Maass, K.L.: The p-Median Problem, pp. 21–45. Springer International Publishing,

Cham (2015)
9. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.

W. H. Freeman and Company, New York (1979)
10. Hakimi, S.L.: Optimum locations of switching centers and the absolute centers andmedians of a graph.

Oper. Res. 12(3), 450–459 (1964)
11. Hakimi, S.L.: Optimumdistribution of switching centers in a communication network and some related

graph theoretic problems. Oper. Res. 13(3), 462–475 (1965)
12. Lodi, A., Mossina, L., Rachelson, E.: Learning to handle parameter perturbations in combinatorial

optimization: an application to facility location. EURO J. Transp. Logist. 9(4), 100023 (2020)
13. Snyder, L.V.: Facility location under uncertainty: a review. IIE Trans. 38, 537–554 (2006)
14. Snyder, L.V., Daskin, M.S.: Stochastic p-robust location problems. IIE Trans. 38(11), 971–985 (2006)
15. Sobolev Institute of Mathematics. http://www.math.nsc.ru/AP/benchmarks/UFLP/Engl/uflp_eucl_

eng.html (2018)
16. Sonmez, A.D., Lim, G.J.: A decomposition approach for facility location and relocation problem with

uncertain number of future facilities. Eur. J. Oper. Res. 218, 327–338 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html
http://www.math.nsc.ru/AP/benchmarks/UFLP/Engl/uflp_eucl_eng.html
http://www.math.nsc.ru/AP/benchmarks/UFLP/Engl/uflp_eucl_eng.html

	Nested-solution facility location models
	Abstract
	1 Introduction
	2 Mathematical model
	3 Initial computational results: illustrating regret
	3.1 Contrasting results with NOFUN
	3.2 Calculating regret
	3.3 Comparing solution quality

	4 Solution approach
	4.1 Solving NPER using Lagrangian relaxation
	4.1.1 Calculating the NPER lower bound
	4.1.2 Calculating the NPER upper bound
	4.1.3 Subgradient optimization method for NPER

	4.2 Solving NPMR using Lagrangian relaxation
	4.2.1 Calculating the lower and upper bounds for NPMR
	4.2.2 Subgradient optimization method for NPMR


	5 Computational results
	6 Conclusion
	Acknowledgements
	References




