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Abstract
The problem of setting up an Alternative Fuel (AF) refueling infrastructure along 
traffic networks is gaining more interest as AF powered vehicles are becoming more 
popular due to environmental and economic reasons. This study addresses the refu-
eling station location problem with allowed deviations on a general network. The 
primary objective is to maximize the amount of flow covered by a given number of 
stations. Unlike the common practice of having a predetermined set of candidate sta-
tion locations that may not necessarily hold an optimal solution, this study considers 
the characteristics of the traffic network and vehicle driving range to discretize the 
continuous version of the problem and select a finite set of candidate locations that 
guarantees optimality. This is done by finding the greatest common divisor, g, of the 
lengths of all edges in the network and half of the vehicle driving range. We prove 
that there is always an optimal solution where all refueling stations are located at 
distances that are integer multiples of g from network vertices. This result is used 
to define refueling sets along the network. The endpoints of these sets are then con-
sidered as candidate locations. A secondary objective is introduced to minimize 
the total travel distance of covered flows. This bi-objective approach does not only 
optimize the utility of available resources by maximizing covered flows, but also 
improves convenience, lowers travel cost, and reduces greenhouse gas emissions 
by minimizing the total travel distance. Finally, a numerical example is provided to 
illustrate the proposed methods.
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1  Introduction

In recent decades, science and technology have progressed very rapidly. This pro-
gress positively affected the quality of our lives, boosted the economy, and intro-
duced significant changes to the society. Many of these developments relied on 
fossil fuel as the main source of energy. This energy source has brought great 
benefits for large-scale economic activities, mass production, and global trans-
portation. However, the consumption of fossil fuel generates large quantities of 
Greenhouse Gas (GHG) emissions. Recent studies show that GHG emissions 
from human activities play a major role in climate change [3, 9]. These emissions 
prevent heat from escaping earth’s atmosphere causing extraordinary weather 
conditions including severe storms, floods, droughts, etc. According to the US 
Environmental Protection Agency [24], the transportation sector contributed 
by about 28% of total GHG emissions in the US in 2018. The dangerous conse-
quences of climate change and high GHG emissions produced from transporta-
tion activities directed many governments around the world to incentivize their 
citizens to use vehicles powered by Alternative Fuels (AFs) [22, 27]. In addition 
to environmental benefits, there are many direct economic benefits from transi-
tioning to AFs. Although significant investments are needed to develop AF refu-
eling infrastructure, Ventura et al. [26] showed that the lower operating costs and 
positive economic impact from improving air quality on health, agriculture, etc., 
outweigh the initial investment needed. It is also important to note that a sig-
nificant portion of the conventional fossil fuel used in the US is imported from 
foreign sources. This could be a national security concern and a potential risk for 
economic growth if the supply chain were interrupted.

Despite the significant benefits of transitioning to AF powered vehicles, the 
major challenge remains in the development of the refueling infrastructure that 
is necessary to support the transition. In addition, the limited driving range of 
vehicles powered by certain types of AFs adds to the challenge and increases 
the need to improve the current underdeveloped infrastructure [17]. Even with 
recent technological advancements that have improved the driving range of AF 
powered vehicles, these vehicles eventually need to refuel. Given the underde-
veloped infrastructure, it is likely that some of these vehicles will need to deviate 
from their shortest paths to refuel. This may discourage new drivers from making 
the transition to AF powered vehicles and keep current drivers under a certain 
level of range anxiety [8]. These challenges have encouraged many researchers to 
develop mathematical models and algorithms to locate refueling stations in traffic 
networks taking into consideration the limitations of AF powered vehicles.

Hodgson [10], and Berman, Larson, and Fouska [5] proposed path-based flow-
capturing models where flows are considered to be captured if they pass through 
a node where a refueling station is located. This was a different approach from the 
common practice of considering demand as vertex weights in the network. The 
Flow-Capturing Location Model (FCLM) proposed by Hodgson [10] was solved 
using a simple greedy algorithm. To enable more flexibility in the refueling sta-
tion location problem, Berman, Bertsimas, and Larson [4] allowed vehicles to 
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deviate from their original paths. Averbakh and Berman [2] considered a network 
where the demand is affected by the number of encountered facilities. Nicholas 
and Ogden [21] used the p-median model, to locate refueling stations in a way 
that minimizes the weighted sum of driving time to the closest refueling station.

The Flow Refueling Location Model (FRLM) proposed by Kuby and Lim [16] 
extends the FCLM by considering the vehicle driving range. This is important for 
AF powered vehicles since they tend to have shorter driving ranges compared to 
conventional fossil fuel vehicles. In addition, the underdeveloped AF refueling 
infrastructure puts additional requirements in considering the driving range when 
planning for long trips. Their study proposed an algorithm that determines all pos-
sible combinations of vertices needed to serve a certain round trip and used a mixed-
integer programming model to maximize the total flow covered by a predetermined 
number of stations. The FRLM performed better than the p-median model [23]. The 
FRLM model is computationally expensive due to the need to determine all combi-
nations of vertices that cover round trips. Therefore, Capar and Kuby [6] presented 
a new formulation for the FRLM to eliminate the need to generate all combinations. 
This made the model more applicable for realistic sized networks. Kim and Kuby 
[13, 14] proposed the Deviation-Flow Refueling Location Model (DFRLM) which 
extend the FRLM by allowing deviations from preplanned paths. The model was 
then solved using two heuristic algorithms. Hwang, Kweon, and Ventura [11] pro-
posed a model to locate AF refueling stations on a directed network with stations 
that can only serve vehicles on one side of the road. Ko, Gim, and Guensler [15] 
provided a comprehensive review of the proposed models and applications for locat-
ing AF refueling infrastructure.

Most of the literature reviewed consider the discrete approach to the problem 
with a predetermined set of candidate locations, usually at network vertices. Kuby 
and Lim [17] considered adding candidate locations on the edges of the network 
to expand the set of candidate locations beyond network vertices. The first study 
to consider the continuous approach with an infinite number of candidate loca-
tions was proposed by Ventura, Hwang, and Kweon [25]. The study considered a 
tree network with the objective to maximize the amount of covered flow by a single 
refueling station. The problem was then extended by Kweon, Hwang, and Ventura 
[18] to consider deviations from the shortest path. Abbaas and Ventura [1] proposed 
a polynomial time algorithm, called the Edge Scanning (ES), for the Continuous 
Deviation-Flow Refueling Station Location (CDFRSL) problem. The study first 
considered the continuous approach on a general network starting with the problem 
of locating a single refueling station. Then they extended the methodology to locate 
multiple refueling stations considering a limit on the deviation distance from the 
original shortest path.

As can be seen above, studies that examine the refueling station location problem 
take one of two broad approaches; the first approach considers a predetermined set 
of candidate locations. This set could be network vertices, a set of existing facili-
ties in the network such as service plazas [26], or locations selected based on fac-
tors not necessarily related to the problem. The objective here is to find the best 
combination of these locations to serve the maximum amount of traffic flow. The 
discrete approach may lead to sub-optimal solutions since it only considers a subset 
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of possible refueling station locations. The second approach, called the continuous 
version of the problem, considers all points in the network as candidate locations. 
The continuous approach guarantees optimality because it examines all possible 
locations, but it may be computationally expensive for a large-scale network. Global 
optimality is important due to the significant investment required to build a new AF 
refueling station.

The goal of setting up an AF refueling infrastructure could be either locating a 
predetermined number of refueling stations that maximizes the covered flow or find-
ing the minimum number of refueling stations that is necessary to cover all flows 
in the network. In both cases, finding a global optimal solution is important. In 
particular, when it is necessary to cover all flows, the global optimal solution may 
reduce the required number of refueling stations, which will have significant cost 
savings. Since finding a global optimal solution using the continuous approach may 
be computationally expensive. An approach that guarantees global optimality with a 
reduced search space is needed.

In this study we combine the best of the two approaches. The proposed method-
ology does not start with a predetermined set of candidate locations like in the dis-
crete approach; rather, it uses the network characteristics and vehicle driving range 
to discretize the problem by selecting a finite set of candidate locations that guar-
antees global optimality. Thus, a finite search space is established like in the dis-
crete approach, and global optimality is guaranteed like in the continuous approach. 
After that, the finite set of candidate locations is used in a set covering model to 
solve the problem. In addition, to the best of our knowledge, this is the first study 
that combines global coverage optimality on a general network with the secondary 
objective of minimizing the total travel distance to reach a refueling station. Here, 
the information from the optimal solution regarding the primary objective is used 
in a set covering model to minimize travel distance. This is important in practice as 
it improves convenience, reduces fuel and maintenance cost for vehicles, and most 
importantly reduces GHG emissions.

The proposed methodology assumes that any point in the network is a candidate 
location. This premise is realistic in rural and underdeveloped areas where any piece 
of land can be considered as a candidate location. However, in developed areas this 
conjecture may not be realistic due to budget constraints or existing infrastructure. 
In this case, the proposed approach can be used to find an upper bound for the total 
flow that can be covered. If the gap between the upper bound coverage and the dis-
crete approach coverage is large enough, we may decide to expand the set of candi-
date locations. Finally, large sized networks will contain both developed areas with a 
predetermined set of candidate locations and underdeveloped areas with more flex-
ibility for candidate locations.

The rest of the paper is organized as follows. In Sect. 2 the problem statement, 
assumptions, and preliminary concepts are discussed. The proposed method is intro-
duced in Sect. 3, starting with network discretization, then the Discrete Edge Scan-
ning (DES) algorithm is presented. In Sect. 4, the secondary objective of minimiz-
ing the total travel distance for covered flows is discussed. In Sect.  5 we solve a 
simple numerical example to illustrate the proposed procedure. Finally, conclusions 
and suggestions for future research are presented in Sect 6.
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2 � Problem Statement

In this study, the problem of locating refueling stations on a symmetric (undirected) 
and connected network G(V ,E) is examined, where V  is the set of vertices, |V| = n , 
n ≥ 2 , and E is the set of edges, |E| = e , e ≥ 1 . All trips in G(V ,E) are assumed to 
be round trips that go from an origin vertex vi ∈ V  to a destination vertex vj ∈ V  in 
what is called the original trip, then return from vj to vi in what is called the return 
trip. An origin–destination (O-D) pair is denoted by q

(
vi, vj

)
 , vi, vj ∈ V  . Average 

traffic flow between an O-D pair q
(
vi, vj

)
 (in roundtrips per time unit)is referred to 

as by f
(
vi, vj

)
 . q

(
vi, vj

)
 and f

(
vi, vj

)
 are only defined for i < j , meaning that both 

the flows that start from vi or vj in their original trips are included in f
(
vi, vj

)
 . The 

shortest distance between any two points in the network x1, x2 ∈ G(V ,E) is denoted 
by d

(
x1, x2

)
 . Network edges are identified by their endpoints, an edge connecting 

two adjacent vertices vi, vj ∈ V  is denoted by 
(
vi, vj

)
∈ E . Let x1, x2 ∈ G(V ,E) be 

two points on the same edge in E , the closed line segment connecting x1 and x2 is 
referred to as C

(
x1, x2

)
 , while the open line segment is denoted by intC

(
x1, x2

)
 . The 

length of this line segment is denoted by l
(
x1, x2

)
.

The proposed methodology utilizes the network characteristics and vehicle driv-
ing range to reduce the search space while maintaining guaranteed optimality. The 
set of candidate refueling station locations is not restricted to network vertices or 
artificially added candidate points in the interior of network edges. Nonetheless, 
under certain conditions, the network can be discretized and only a subset of points 
needs to be considered to find an optimal solution. This subset of candidate loca-
tions is then used in a set covering model to maximize the amount of flow that can 
be served by a predetermined number of refueling stations, p . This is the primary 
objective. The secondary objective is to minimize the total travel distance for the 
flows covered in the solution.

Figure 1 shows a high-level flow chart to the proposed methodology along with 
an illustrative network example. From left to right, we start with a network that con-
tains an infinite number of candidate locations. Then, the network is discretized to 

(a) (b) (c) (d) (e)

Fig. 1   Flow chart of the proposed approach
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find a finite set of candidate locations. These locations are called common divisor 
points and are represented by empty circles in Fig. 1b. A subset of the set of com-
mon divisor points, called the set of endpoints, is then created. This subset is guar-
anteed to contain an optimal solution to the primary and secondary objectives. The 
set of endpoints is represented by solid circles in Fig. 1c. The set of endpoints is 
then used in a set covering model to find an optimal solution that maximizes the 
amount of covered flow. The endpoints that are optimal are represented by diamonds 
in Fig. 1d. Then, using the set of optimal endpoints found by the set covering model, 
the complete set of optimal solutions regarding the primary objective can be found. 
This set can be finite or infinite since it may include line segments connecting two 
endpoints that can serve in the optimal solution, as shown in Fig. 1d. Finally, the 
complete set of optimal solutions for the primary objective is used to find the subset 
of points that minimize the total travel distance for the covered flows. The optimal 
endpoints regarding the primary and secondary objectives are represented by the 
stars in Fig. 1e. The detailed steps and the supporting theorems and lemmas are pre-
sented in the following sections.

Following is the set of assumptions used to formulate and solve this problem. 
Except for the integrality assumptions (viii) and (ix), these assumptions are consist-
ent with related literature [16, 25].

Assumptions: 

	 i.	 Refueling stations can serve vehicles driving in both sides of the road with no 
capacity limit.

	 ii.	 Vehicles travel along the network between their O-D pairs, q
(
vi, vj

)
 , vi, vj ∈ V  , 

in round trips.
	 iii.	 Deviations from the shortest path between an O-D pair are allowed for refueling 

purposes. Vehicles take the shortest path that includes a refueling station in 
their one-way trips in both directions.

	 iv.	 Distances in the network are symmetr ic, i .e.,  x1, x2 ∈ G(V ,E) , 
d
(
x1, x2

)
= d

(
x2, x1

)
.

	 v.	 The driving range with a full fuel tank for all vehicles is fixed and denoted by 
R.

	 vi.	 Vehicles are assumed to start their trips at the origin and destination vertices 
with a half full fuel tank. That is, vehicles can drive a distance R∕2 starting 
from their origin and destination vertices before running out of fuel.

	vii.	 Vehicles refuel once in each one-way trip.
	viii.	 The distance R∕2 is a positive integer quantity, R∕2 ∈ ℤ

+.
	 ix.	 All edges in the network have positive integer lengths that are less than or equal 

to R , l
(
vi, vj

)
∈ ℤ

+ , l
(
vi, vj

)
≤ R , for all 

(
vi, vj

)
∈ E.

Assumption (iii) allows vehicles to deviate from their shortest path to refuel. 
Assumptions (i) and (iv) assure that vehicles will follow the same path in oppo-
site directions in their original and return trips. The sixth assumption is common in 
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the literature [16] and gives vehicles the flexibility to refuel away from their origin 
and destination vertices. The seventh assumption means that, although the proposed 
method can be used to locate multiple refueling stations in the network, the flow 
between any O-D pair performs only one refueling operation in each one-way trip. 
This assumption simplifies the analysis and restricts the length of a round trip to 2R. 
However, it allows a wide range of applications both in urban areas and intercity 
transportation. The integrality assumptions (viii) and (ix) facilitate the derivation 
of the results in this study. These assumptions are not far from practice since the 
driving range and edge lengths, if not integer, can be easily rounded to the closest 
integer values. Note that, the symbol ℤ+ is used to denote the set of positive integer 
numbers excluding the zero, while the symbol ℤ0+ will be used later to denote the 
set of non-negative integer numbers including the zero.

Based on assumptions (vi) and (vii), a refueling station location x ∈ G(V ,E) can 
serve an O-D pair q

(
vi, vj

)
 , vi, vj ∈ V  only if point x falls within R∕2 from both ori-

gin and destination vertices. In this case, we say O-D pair q
(
vi, vj

)
 is covered by 

point x . Let S(x) be the set of O-D pairs covered by a point x ∈ G(V ,E) , S(x) is 
defined as follows:

Note that, the distance between the vertices of any O-D pair q
(
vi, vj

)
 covered by 

a point x ∈ G(V ,E) can be at most R . Therefore, if an O-D pair q
(
vi, vj

)
 is separated 

by a distance greater than R , it cannot be covered by a single refueling station as 
required by assumption (vii). Also, if flow f

(
vi, vj

)
= 0 , covering q

(
vi, vj

)
 does not 

improve the quality of the solution. Based on that, let Q be the set of O-D pairs that 
needs to be considered when looking for potential refueling station locations. Math-
ematically, Q is defined as follows:

The total flow covered by a point x ∈ G(V ,E) , can be calculated by adding the 
flows in S(x) as follows:

3 � Discrete edge scanning (DES) algorithm

In this section we introduce a method to reduce the size of the search space in the 
Single Refueling Deviation-Flow Station Allocation (SRDFSA) problem while 
maintaining guaranteed optimality. The method uses integrality assumptions (viii) 
and (ix) to reduce the network by representing distances as integer multiples of a 
Basic Distance Unit (BDU). To achieve the maximum reduction of the search space, 
the BDU will be set equal to the Greatest Common Divisor (GCD), denoted by g , of 

(1)
S(x) =

{
q
(
vi, vj

)
|x ∈ G(V ,E), d

(
vi, x

)
≤ R∕2, d

(
x, vj

)
≤ R∕2, vi, vj ∈ V , and i < j

}
.

(2)Q =
{
q
(
vi, vj

)
|d
(
vi, vj

)
≤ R, f

(
vi, vj

)
> 0, vi, vj ∈ V , and i < j

}
.

(3)F(x) =
∑

q(vi,vj)∈S(x)

f
(
vi, vj

)
.
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the lengths of all edges in the network and the initial driving range R∕2 . A point at 
a distance mg , m ∈ ℤ

0+ , from any network vertex will be referred to as a common 
divisor point. The set of common divisor points is denoted by C and can be defined 
as follows:

Given that the lengths of all edges in E and R∕2 are positive integer distances, g is 
a positive integer, g ∈ ℤ

+ , with a minimum value of 1 . However, m is a non-negative 
integer, i.e., m ∈ ℤ

0+ . Clearly, network vertices fit the definition of common divisor 
points with m = 0 , i.e., V ⊆ C.

After discussing network discretization and reduction, we review an algorithm 
that finds a subset of C that is guaranteed to include an optimal solution. Next, this 
subset is used in a set covering model to find an optimal solution. This solution can 
then be used to find the complete set of optimal solutions.

3.1 � Network discretization

Given that the length of any edge in E is an integer multiple of g , the length of any 
path connecting two different vertices in V  must also be an integer multiple of g . 
Therefore, if a point is at a distance mg , m ∈ ℤ

0+ , from a vertex, it is also at an inte-
ger multiple of g distance from any other vertex in the network.

Deviation from the shortest path between an O-D pair q
(
vi, vj

)
∈ Q is necessary 

when the refueling station is located on an edge 
(
va, vb

)
∈ E that does not belong to 

the shortest path between vi and vj . Generally, there are two types of trips that driv-
ers of an O-D pair q

(
vi, vj

)
∈ Q can follow in both the original and return trips when 

the refueling station is located on an edge 
(
va, vb

)
∈ E [1]. In type 1 trips, drivers 

travel through edge 
(
va, vb

)
 using one vertex as an entry point and the other vertex 

as an exit point. If vertex va is used to enter the edge in the original trip, this trip is 
said to be of type 1 case (a). However, if vertex vb is used to enter edge 

(
va, vb

)
 in the 

original trip, this trip is said to be of type 1 case (b). In type 2 trips, drivers of O-D 
pair q

(
vi, vj

)
 enter edge 

(
va, vb

)
 using one vertex, reach the refueling station location, 

then go back to the same vertex and leave edge 
(
va, vb

)
 . If vertex va is used to enter 

and leave edge 
(
va, vb

)
 , this trip is said to be of type 2 case (a). Otherwise, if vertex 

vb is used, then this trip is said to be of type 2 case (b). These types and cases are 
shown in Fig. 2, dashed arrows represent the routes followed by vehicles in each trip 
type and case. Let points w1 , w2 in the figure be located such that d

(
vi,w1

)
= R∕2 

and d
(
vj,w2

)
= R∕2 . If the two paths from vi to w1 and from vj to w2 intersect on 

edge 
(
va, vb

)
 in some trip types and cases, then any point in the intersection line seg-

ment falls within R∕2 from both vi and vj and can cover the O-D pair q
(
vi, vj

)
 . This 

intersection line segment is called a refueling segment. Given that the lengths of all 
edges in the network and R∕2 are integer multiples of g , the endpoints of all refu-
eling segments must be common divisor points. The set of common divisor points in 
a refueling segment is called a refueling set.

To find the refueling set of O-D pair q
(
vi, vj

)
∈ Q associated with type 1 case 

( r ) trips, r = a, b , on edge 
(
va, vb

)
∈ E , calculate the remaining driving distance to 

(4)C =
{
x|x ∈ G(V ,E), d

(
vi, x

)
= mg,m ∈ ℤ

0+, vi ∈ V
}
.
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refuel for a vehicle travelling between O-D pair q
(
vi, vj

)
 when it reaches the vertices 

of edge 
(
va, vb

)
 as follows:

Note that, a negative �
(
vk;vr, vc

)
 means that a vehicle starting its trip from vk can-

not reach vertex vr before running out of fuel. Therefore, if �
(
vk;vr, vc

)
≥ 0 , type 1 

case (r) refueling set is defined as follows:

Using a similar logic for type 2, case (r) trips, r = a, b , the remining driving dis-
tances and refueling sets are defined as follows:

The combined refueling set for an O-D pair q
(
vi, vj

)
 on edge 

(
va, vb

)
∈ E is 

denoted by RS
(
vi, vj;va, vb

)
 . Also, the set of all common divisor points capable of 

covering O-D pair q
(
vi, vj

)
 in G(V ,E) is denoted by RS

(
vi, vj

)
 . These sets are defined 

as follows:

(5)
�
(
vk;vr, vc

)
= min

{
R∕2 − d

(
vk, vr

)
, l
(
va, vb

)}
, k = i, j; r = a, b; c = a, b; c ≠ r.

(6)

RS
(r)

1

(
vi, vj;va, vb

)
=
{
x ∈

(
va, vb

)
|x ∈ C, l

(
vr, x

)
≤ �

(
vi;vr, vc

)
, and l

(
vc, x

)
≤ �

(
vj;vc, vr

)}
,

r = a, b; c = a, b; c ≠ r.

(7)
�(r)

(
vi, vj;va, vb

)
= min

{
R∕2 −max

{
d
(
vi, vr

)
, d
(
vj, vr

)}
, l
(
va, vb

)}
, r = a, b,

(8)
RS

(r)

2

(
vi, vj;va, vb

)
=
{
x ∈

(
va, vb

)
|x ∈ C, l

(
vr, x

)
≤ �(r)

(
vi, vj;va, vb

)}
, r = a, b.

(a) (b)

(c) (d)

Fig. 2   Types and cases of trips between an O-D pair
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The set RS
(
vi, vj

)
 contains all common divisor points, including endpoints, in 

the refueling segments associated with O-D pair q
(
vi, vj

)
∈ Q . Keep in mind, that 

RS
(
vi, vj

)
 might include endpoints of refueling segments associated with other 

O-D pairs in the network. Each refueling segment of an O-D pair q
(
vi, vj

)
∈ Q on 

an edge 
(
va, vb

)
∈ E associated with a trip type and case can have up to two end-

points; hence, RS
(
vi, vj;va, vb

)
 can have up to eight endpoints denoted by wk

vi,vj;va,vb
 , 

k = 1,… , 8 . The different refueling segments of q
(
vi, vj

)
 on the same edge may 

overlap and form a connected line segment that can cover q
(
vi, vj

)
 . In this case, 

the endpoints inside the connected line segment are ignored. The rest of the end-
points are stored in EP

(
vi, vj;va, vb

)
 . The overall set of endpoints in the network is 

denoted by EP . These sets are defined as follows:

Lemma 1.  Let w1,w2 ∈ C
(
va, vb

)
 , 
(
va, vb

)
∈ E be two adjacent points in EP . Then, 

all points in intC
(
w1,w2

)
 cover the same set of O-D pairs. Additionally, let x be an 

interior point of C
(
w1,w2

)
 , x ∈ intC

(
w1,w2

)
 , x ∉ EP . The set of O-D pairs covered 

by x must also be covered by points w1 and w2 , S(x) ⊆ S
(
w1

)
∩ S

(
w2

)
.

Proof.  Given that w1,w2 are two adjacent points in EP , no refueling segment 
ends in intC

(
w1,w2

)
 . Hence, a refueling segment cannot include an interior point 

x ∈ intC
(
w1,w2

)
 , without including the two adjacent endpoints that surround it. 

Therefore, all interior points of C
(
w1,w2

)
 must cover the same set of O-D pairs, and 

any O-D pair covered by a point x ∈ intC
(
w1,w2

)
 must also be covered by its sur-

rounding adjacent endpoints from EP , namely w1 and w2.	�  ◻

Theorem  1.  Let G(V ,E) be a network with the lengths of all edges in E and the 
initial driving distance R∕2 can be represented as integer multiples of g . There is 
always an optimal solution W∗ to the SRDFSA problem where all refueling stations 
are located at common divisor endpoints, W∗ ⊆ EP.

Proof.  Let X∗ be an optimal solution to the SRDFSA problem where one or more 
refueling stations are located at points that do not belong to EP , let x ∈ G(V ,E) , 
x ∉ EP be one of these points. By definition, any point that covers a non-empty set 
of O-D pairs must belong to a refueling segment. Given that x ∉ EP , then x must 
be an interior point of a refueling segment surrounded by two adjacent endpoints, 

(9)
RS

(
vi, vj;va, vb

)

= RS
(a)

1

(
vi, vj;va, vb

)
∪ RS

(b)

1

(
vi, vj;va, vb

)
∪ RS

(a)

2

(
vi, vj;va, vb

)
∪ RS

(b)

2

(
vi, vj;va, vb

)
,

(10)RS
(
vi, vj

)
= ∪(va,vb)∈ERS

(
vi, vj;va, vb

)
.

(11)
EP

(
vi, vj;va, vb

)
=
{
wk
vi,vj;va,vb

|wk
vi,vj;va,vb

, k = 1,… , 8, are endpoints of RS
(
vi, vj;va, vb

)}
,

(12)EP = ∪(va,vb)∈E ∪q(vi,vj)∈Q EP
(
vi, vj;va, vb

)
.
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w1,w2 ∈ EP . By Lemma 1 the set of O-D pairs covered by x , must also be covered 
by w1 and w2 , S(x) ⊆ S

(
w1

)
∩ S

(
w2

)
 . Therefore, any refueling station located at a 

point that does not belong to EP can be moved to a point in EP that covers at least 
the same set of O-D pairs. Moving all refueling stations to points in EP will produce 
a solution, W∗ , that covers at least the same set of O-D pairs as X∗ . Given that X∗ is 
optimal, then W∗ is also an optimal solution. 	� ◻

It is interesting to note that, both Lemma 1 and Theorem  1 and their proofs 
remain correct if the set of endpoints EP is replaced by the larger set of common 
divisor points C . Theorem 1 enables us to only consider the set of endpoints as 
candidate locations when looking for an optimal solution to the SRDFSA prob-
lem. In addition, using Lemma 1, we can find the complete set of points capable 
of covering any flow in the network. To do that, for each pair of adjacent end-
points w1,w2 ∈ EP , we pick a random point x ∈ intC

(
w1,w2

)
 and find the set of 

O-D pairs covered by x , S(x) . All points in intC
(
w1,w2

)
 cover the same set of O-D 

pairs as x . Any point x ∉ EP that does not belong to a line segment connecting 
two adjacent endpoints in EP on the same edge, cannot cover any flow since it 
does not belong to any refueling segment.

The set of endpoints can be used in a set covering model to find an optimal 
solution. To reduce the size of the set covering problem, rather than considering 
all points in EP as candidate locations, we consider only the points that cover 
unique sets of O-D pairs. Let us denote this set by EP′ . Following is the model 
proposed by Hodgson [10] to maximize the amount of flow covered by a prede-
termined number of refueling stations. First, let us define the necessary notation:

EP′ : Set of candidate locations, EP′ ⊆ EP , that cover unique sets of O-D pairs. 
|EP�| = s.

Q :  Set of O-D pairs, |Q| = h.
A :  ( s × h) binary matrix where element aw,q(vi,vj) = 1 , if O-D pair q

(
vi, vj

)
∈ Q 

can be covered by a refueling station located at endpoint w ∈ EP� ; aw,q(vi,vj) = 0 , 
otherwise.
p : Number of refueling stations to be located.

x :   (s)-vector of binary decision variables, x
w
=

{
1, if a station is located atw ∈ EP

�,

0, otherwise.

y : (h)-vector of binary decision variables, y
q(vi ,vj) =

{
1, if q

(
v
i
, v

j

)
∈ Q is covered,

0, otherwise.

Set covering model:

subject to:

(13)Maximize ∶ F∗
p
=

∑

q(vi,vj)∈Q

f
(
vi, vj

)
yq(vi,vj),
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An iterative approach can be used to determine the set of all optimal solutions 
where refueling stations are located at endpoints in EP′ . Let us define W (u)

p
 as the 

optimal solution from iteration u , u = 1, 2, 3, ... , given that the number of stations to 
be located is p . W (u)

p
 is defined as follows:

Now, to find a new optimal solution in iteration u + 1 , the following set of con-
straints can be added to prevent the prior u solutions from being regenerated:

The set covering algorithm terminates when the maximum flow covered by the 
new solution is less than the maximum flow covered in prior solutions.

After solving the set covering model, if a point w ∈ EP� is selected in the optimal 
solution, any point x ∈ G(V ,E) , such that S(w) ⊆ S(x) , can replace point w in the 
optimal solution.

3.2 � Exact algorithm for the primary objective

In this subsection, an exact polynomial-time algorithm is proposed to find the 
optimal solution to the SRDFSA problem. First, the set of O-D pairs Q is gener-
ated. Then, for each edge 

(
va, vb

)
∈ E , the algorithm considers each O-D pair 

q
(
vi, vj

)
∈ Q and finds the set of endpoints for all refueling segments on this edge. 

All endpoints belong to the set of common divisor points C . The set of endpoints is 
then used in a set covering model to find an optimal solution.

DES Algorithm

Step 1: Establish the set of O-D pairs and the set of common divisor points:

Step 2: For each edge in the network 
(
va, vb

)
∈ E , examine each O-D pair 

q
(
vi, vj

)
∈ Q to find the corresponding refueling sets and sets of endpoints.

(14)
∑

w∈EP�

aw,q(vivj)xw ≥ yq(vi,vj), q
(
vi, vj

)
∈ Q,

(15)
∑

w∈EP�

xw = p,

(16)xw, yq(vi,vj) ∈ {0, 1}, w ∈ EP�, q
(
vi, vj

)
∈ Q.

(17)W (u)
p

= {w|w ∈ EP�, xw = 1 in the optimal solution found in iteration u}.

(18)
∑

w∈W
(k)
p

xw ≤ p − 1, k = 1,… , u.

Q =
{
q
(
vi, vj

)||d
(
vi, vj

)
≤ R, f

(
vi, vj

)
> 0, vi, vj ∈ V , and i < j

}
,

C =
{
x|x ∈ G(V ,E), d

(
vi, x

)
= mg,m ∈ ℤ

0+,∀vi ∈ V
}
.
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Sub-step 2.1: Find the refueling set corresponding to type 1 case (r) , 
r = a, b , trips using:

Sub-step 2.2: Find the refueling set corresponding to type 2 case (r) , 
r = a, b , trips using:

Sub-step 2.3: Determine the refueling set and the set of endpoints for O-D 
pair q

(
vi, vj

)
 on edge 

(
va, vb

)
 using:

Step 3: Combine the refueling sets of each O-D pair q
(
vi, vj

)
∈ Q to establish 

the set RS
(
vi, vj

)
 using:

RS
(
vi, vj

)
= ∪(va,vb)∈ERS

(
vi, vj;va, vb

)
.

Step 4: Determine the set of all endpoints in the network using:
EP = ∪(va,vb)∈E ∪q(vi,vj)∈Q EP

(
vi, vj;va, vb

)
.

Step 5: Determine the set of O-D pairs and total flow covered by each endpoint 
w ∈ EP.

Sub-step 5.1: For each refueling set RS
(
vi, vj

)
 of an O-D pair q

(
vi, vj

)
∈ Q 

only keep the points that belong to the set of endpoints.
RS

(
vi, vj

)
← RS

(
vi, vj

)
∩ EP.

Sub-step 5.2: Let S(w) = � for each endpoint w ∈ EP.
Sub-step 5.3: Consider all sets RS

(
vi, vj

)
 , q

(
vi, vj

)
∈ Q . For each point 

w ∈ RS
(
vi, vj

)
 , let

S(w) ← S(w) ∪ q
(
vi, vj

)
.

Step 6: Use the set of endpoints that cover unique sets of O-D pairs, EP′ , and 
coverage information for each endpoint in the set covering model, Eqs. (13)–
(18), to find an optimal refueling station location solution.

�
(
vk;vr, vc

)
= min

{
R∕2 − d

(
vk, vr

)
, l
(
va, vb

)}
, k = i, j; r = a, b; c = a, b; c ≠ r,

RS
(r)

1

(
vi, vj;va, vb

)

=
{
x ∈

(
va, vb

)
|x ∈ C, l

(
vr, x

)
≤ �

(
vi;vr, vc

)
, and l

(
vc, x

)
≤ �

(
vj;vc, vr

)}
,

r = a, b; c = a, b; c ≠ r.

�(r)
(
vi, vj;va, vb

)
= min

{
R∕2 −max

{
d
(
vi, vr

)
, d
(
vj, vr

)}
, l
(
va, vb

)}
, r = a, b,

RS
(r)

2

(
vi, vj;va, vb

)
=
{
x ∈

(
va, vb

)
|x ∈ C, l

(
vr, x

)
≤ �(r)

(
vi, vj;va, vb

)}
, r = a, b.

RS
(
vi, vj;va, vb

)

= RS
(a)

1

(
vi, vj;va, vb

)
∪ RS

(b)

1

(
vi, vj;va, vb

)
∪ RS

(a)

2

(
vi, vj;va, vb

)
∪ RS

(b)

2

(
vi, vj;va, vb

)
,

EP
(
vi, vj;va, vb

)
=
{
wk
vi,vj;va,vb

|wk
vi,vj;va,vb

, k = 1,… , 8, are endpoints of RS
(
vi, vj;va, vb

)}
.
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Theorem 2.  The computational complexity of the DES algorithm is O
(
en2

)
 , where 

e = |E| and n = |V|.

Proof.  In the preprocessing step, the distances between all pairs of vertices in V  
are found using Johnson’s algorithm in O

(
n2logn + ne

)
 [12]. Step 1 constructs sets 

Q and C . Set Q has at most n(n − 1) O-D pairs. Set C requires finding the GCD 
between the lengths of all edges in E and R∕2 . Since the maximum length of an 
edge in the network is R , finding g takes O

(
elog3(R)

)
 [20]. There are at most eR 

points in C . In Step 2, for each edge 
(
va, vb

)
∈ E, all O-D pairs in Q are considered. 

A constant number of operations is performed to find the refueling sets and the sets 
of endpoints associated with the different trip types and cases, this takes O

(
en2

)
 , 

e for the number of edges, and n2 for the number of O-D pairs in Q . Steps 3 and 4 
combine the refueling sets and the sets of endpoints, they take at most en2 union 
operations. The longest sub-step in Step 5 is Sub-step 5.3, each set RS

(
vi, vj

)
 can 

have up to 8e endpoints, and there can be up to n(n − 1) sets. Therefore, this sub-step 
takes O

(
en2

)
 . After that the set covering model is solved separately using an effi-

cient algorithm like the one proposed in [19].	�  ◻

Although we are not discussing limiting the allowed deviation distance from the 
shortest path between an O-D pair in this study. This could be easily done by modi-
fying Eqs. (5) and (7) to include an upper limit on deviation distance. The rest of the 
algorithm remains the same.

4 � Lexicographic Optimization

The primary objective of our algorithm is to maximize traffic flow (in roundtrips per 
time unit) covered by a predetermined number of refueling stations p . However, to 
further improve the solution, a secondary objective can be introduced to minimize 
the total travel distance for all flows covered by the optimal solution.

We can utilize the properties of flow types discussed in Sect. 3 to find the opti-
mal solution regarding the secondary objective. Assume that all points in a line 
segment C

(
w1,w2

)
 on edge 

(
va, vb

)
∈ E , where w1 , w2 ∈ EP , cover the same non-

empty set of O-D pairs. Recall that, flows covered by the line segment C
(
w1,w2

)
 

that make type 1 trips go naturally through edge 
(
va, vb

)
 from one endpoint to the 

other. Therefore, the specific station location within the line segment makes no dif-
ference regarding travel distance for flows making type 1 trips to reach all points in 
C
(
w1,w2

)
 . Figure 3a shows an example of type 1 flow with two candidate locations 

for a refueling station x1 and x2.
On the other hand, a type 2 trip uses one vertex to enter edge 

(
va, vb

)
 , reaches the 

refueling station location, then makes a U-turn and leaves the edge using the same 
entry vertex. Therefore, the further the refueling station location is from the entry 
vertex, the more distance this flow has to travel within edge 

(
va, vb

)
 as shown in 

Fig. 3b, bent arrows represent the distance to reach points x1 and x2 from vertex va.
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Given the assumption that drivers take the shortest path that includes a refueling 
station between an O-D pair, some flows may change their trip type or case to reach 
different points within the same line segment. We will call these flows type 3 flows. 
Figure 4 shows an example of a type 3 flow. In this example, if a refueling station 
is located near w1 , f

(
vi, vj

)
 will make type 2 case (a) trips. However, if the refueling 

station is located near w2 then f
(
vi, vj

)
 will make type 2 case (b) trips. Finally, if the 

refueling station is located exactly at the middle point of C
(
w1,w2

)
 , f

(
vi, vj

)
 will 

travel the same distance regardless of the trip type and case.
Note that, if the refueling station location is shifted from one endpoint toward the 

other, the travel distance for f
(
vi, vj

)
 would increase linearly until it reaches a maxi-

mum value at the middle point, then it would decrease as the refueling station loca-
tion gets closer to the other endpoint. The middle point of C

(
w1,w2

)
 in this example 

is called the switching point since the flow changes its trip type and/or case at this 
point. This change in travel distance is shown in Fig. 5a. Figure 5b shows another 
example where there is no path between vi and vb that does not go through va . In this 
case, if we shift the refueling station location from w1 toward w2 , f

(
vi, vj

)
 will make 

type 2 case (a) trips at the beginning, then at the middle point the flow will switch 
to type 1 trips for the rest of the refueling segment. Therefore, the travel distance for 
f
(
vi, vj

)
 increases linearly from w1 to the middle point, then remains constant from 

the middle point to w2.

(a) (b)

Fig. 3   Effect of trip type on total travel distance

Fig. 4   Type 3 flow example
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Based on this discussion, we have the following four situations. Situation (1): 
if all flows covered by a line segment C

(
w1,w2

)
 make type 1 trips regardless of 

the specific refueling station location in C
(
w1,w2

)
 , then the total travel distance 

required to reach any point in this refueling segment is the same. Situation (2): 
if there are type 2 flows covered by C

(
w1,w2

)
 but there are no type 3 flows and 

the amount of flow making type 2 case (a) trips is equivalent to that making 
type 2 case (b) trips, then the total travel distance required to reach any point 
in this refueling segment is the same. This is because, if the refueling station 
location is shifted within C

(
w1,w2

)
 , the increase/decrease in travel distance for 

type 2 case (a) flows will be equivalent to the decrease/increase in travel distance 
for type 2 case (b) flows. In this situation, flows are said to be balanced for the 
refueling segment C

(
w1,w2

)
 . Situation (3) is similar to situation (2); however, 

the amount of flow making type 2 case (a) trips is not equivalent to that mak-
ing type 2 case (b) trips. Here, only one of the endpoints minimizes the total 
travel distance within C

(
w1,w2

)
 . An example of situations (2) and (3) is shown 

in Fig.  6. In this example, there are two O-D pairs, Q =
{
q
(
vi, vj

)
, q
(
vk, vl

)}
 , 

covered by line segment C
(
w1,w2

)
 . The flow between O-D pair q

(
vi, vj

)
 makes 

type 2 case (a) trips, while the flow between O-D pair q
(
vk, vl

)
 makes type 2 

case (b) trips. If f
(
vi, vj

)
= f

(
vk, vl

)
 , then this example represents situation (2), 

and the total travel distance to any point in line segment C
(
w1,w2

)
 is the same. 

(a)

(b)

Fig. 5   Changing flow examples
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However, if f
(
vi, vj

)
≠ f

(
vk, vl

)
 , then this example represents situation (3), and 

the total travel distance can be minimized by locating the refueling station at 
one of the endpoints. If f

(
vi, vj

)
> f

(
vk, vl

)
 , then the total travel distance can be 

minimized by locating the refueling station at endpoint w1 ; on the other hand, if 
f
(
vi, vj

)
< f

(
vk, vl

)
 , then locating the refueling station at endpoint w2 minimizes 

the total travel distance. Situation (4) happens when there are type 3 flows cov-
ered by C

(
w1,w2

)
 . Here, only endpoints can minimize the total travel distance 

within C
(
w1,w2

)
 . These results will be formally introduced and proven later in 

this section.
Consider a line segment C

(
wa,wb

)
⊆ C

(
va, vb

)
 , 
(
va, vb

)
∈ E , all points in 

C
(
wa,wb

)
 cover the same non-empty set of O-D pairs. wa,wb ∈ EP , where wa is 

the endpoint closer to va and wb is the endpoint closer to vb . Let d
(
vi, vj;x

)
 be the 

total travel distance for the flow between O-D pair q
(
vi, vj

)
 assuming the flow is cov-

ered by a station located at some point x ∈ C
(
wa,wb

)
 . In addition, let D(x) denote 

the total travel distance for all covered flows by a station located at x ∈ C
(
wa,wb

)
 . 

These distances can be calculated as follows:

The shortest distances between all pairs of vertices are found in the preprocess-
ing step of the DES algorithm, and the remaining distances between va , x , and vb are 
easy to find.

Since drivers take the shortest refuellable path, the total travel distance for the 
different trip types and cases for each O-D pair is needed in order to know which 
trip type and case will be used by the flow between a given O-D pair. The one-
way travel distance for the flow between O-D pair q

(
vi, vj

)
 to reach any point in the 

(19)

d
(
vi, vj;x

)
= 2 × f

(
vi, vj

)
×
[
min

{
d
(
vi, va

)
+ d

(
va, x

)
, d
(
vi, vb

)
+ d

(
vb, x

)}

+min
{
d
(
x, va

)
+ d

(
va, vj

)
, d
(
x, vb

)
+ d

(
vb, vj

)}]
,

(20)D(x) =
∑

q(vi,vj)∈S(x)

d
(
vi, vj;x

)
.

Fig. 6   Situations (2) and (3) example



970	 O. Abbaas, J. A. Ventura 

1 3

line segment C
(
wa,wb

)
 using type 1 trips will be denoted by d1

(
vi, vj;wa,wb

)
 and is 

defined as follows:

For type 2 flows, since the total travel distance depends on the specific location 
within the line segment, we define the maximum and minimum travel distances for a 
flow making type 2 case (a) or (b) trips. The maximum and minimum one-way travel 
distances for the flow between O-D pair q

(
vi, vj

)
 using type 2 case (a) path are denoted 

by d(a)
2,max

(
vi, vj;wa,wb

)
 and d(a)

2,min

(
vi, vj;wa,wb

)
 are respectively defined as follows:

Similarly, the one way maximum and minimum travel distances for type 2 case (b) 
trips d(b)

2,max

(
vi, vj;wa,wb

)
 and d(b)

2,min

(
vi, vj;wa,wb

)
 are respectively defined.

Now, we can define the sets of O-D pairs with flows that follow each trip type to 
reach segment C

(
wa,wb

)
 . Let S1

(
C
(
wa,wb

))
 be the set of O-D pairs with positive traf-

fic flows covered by line segment C
(
wa,wb

)
 that perform type 1 trips to reach any point 

in C
(
wa,wb

)
 . S1

(
C
(
wa,wb

))
 is defined as follows:

Also, let S(a)
2

(
C
(
wa,wb

))
 be the set of O-D pairs with positive traffic flows cov-

ered by line segment C
(
wa,wb

)
 that perform type 2 case (a) trips to reach any point in 

C
(
wa,wb

)
 . This set is defined as follows:

Set S(b)
2

(
C
(
wa,wb

))
 is defined in a similar manner. Finally, the set of type 3 flows is 

defined as follows:

(21)
d1
(
vi, vj;wa,wb

)
= min

{
d
(
vi, va

)
+ d

(
va, vb

)
+ d

(
vb, vj

)
, d
(
vi, vb

)
+ d

(
vb, va

)
+ d

(
va, vj

)}

(22)d
(a)

2,max

(
vi, vj;wa,wb

)
= d

(
vi, va

)
+ 2 × d

(
va,wb

)
+ d

(
va, vj

)
,

(23)d
(a)

2,min

(
vi, vj;wa,wb

)
= d

(
vi, va

)
+ 2 × d

(
va,wa

)
+ d

(
va, vj

)
.

(24)

S1
(
C
(
wa,wb

))
= {q

(
vi, vj

)
|q
(
vi, vj

)
∈ S

(
wa

)
,C

(
wa,wb

)
⊆ C

(
va, vb

)
,
(
va, vb

)
∈ E,

d1
(
vi, vj;wa,wb

)
≤ min

{
d
(a)

2,min

(
vi, vj;wa,wb

)
, d

(b)

2,min

(
vi, vj;wa,wb

)}
,

vi, vj ∈ V , and i < j}.

(25)

S
(a)

2

(
C
(
wa,wb

))
= {q

(
vi, vj

)
|q
(
vi, vj

)
∈ S

(
wa

)
, C

(
wa,wb

)
⊆ C

(
va, vb

)
,
(
va, vb

)
∈ E,

d
(a)

2, max

(
vi, vj;wa,wb

)
< min {d1

(
vi, vj;wa,wb

)
, d

(b)

2,min

(
vi, vj;wa,wb

)
}

, vi, vj ∈ V , and i < j}

(26)

S3
(
C
(
wa,wb

))
= {q

(
vi, vj

)
|q
(
vi, vj

)
∈ S

(
wa

)
, q
(
vi, vj

)
∉

(
S1
(
C
(
wa,wb

))
∪ S

(a)

2

(
C
(
wa,wb

))
∪ S

(b)

2

(
C
(
wa,wb

)))
,C

(
wa,wb

)
⊆

C
(
va, vb

)
,
(
va, vb

)
∈ E, vi, vj ∈ V , and i < j}.



971

1 3

A lexicographic optimization approach to the deviation‑flow…

Note that each O-D pair with positive flow that can reach a station located anywhere 
in C

(
wa,wb

)
 is assigned to only one of these sets depending on the total travel distance.

Now, we can define flow balance using these sets. Let F(r)

2

(
C
(
wa,wb

))
 denote the 

total flow for O-D pairs in S(r)
2

(
C
(
wa,wb

))
 , r = a, b.

The flows covered by C
(
wa,wb

)
 are said to be balanced if S3

(
C
(
w∗
a
,w∗

b

))
= � and 

F
(a)

2

(
C
(
wa,wb

))
= F

(b)

2

(
C
(
wa,wb

))
.

Lemma 2.  Let C
(
wa,wb

)
⊆ C

(
va, vb

)
 , wa,wb ∈ EP , 

(
va, vb

)
∈ E be a line segment, 

such that all of its points cover the same non-empty set of O-D pairs. Then, all points 
in C

(
wa,wb

)
 have the same total travel distance if and only if the flows covered by 

C
(
wa,wb

)
 are balanced.

Proof.  (⇒ ) (By contradiction) Let us assume that all points in C
(
wa,wb

)
 have the 

same total travel distance but the flows covered by C
(
wa,wb

)
 are not balanced. Take 

points x , y ∈ C
(
wa,wb

)
 , x ≠ y . If there is no balance because the amount of flows 

strictly making type 2 case (a) trips is not equivalent to that strictly making type 2 
case (b) trips to reach points x and y , then 
D(x) − D(y) = 2 ×

(
F
(a)

2

(
C
(
wa,wb

))
− F

(b)

2

(
C
(
wa,wb

)))
× d(x, y) . Note that, 

D(x) − D(y) = 0 only if F(a)

2

(
C
(
wa,wb

))
= F

(b)

2

(
C
(
wa,wb

))
 or d(x, y) = 0 . This 

contradicts the assumptions x ≠ y and F(a)

2

(
C
(
wa,wb

))
≠ F

(b)

2

(
C
(
wa,wb

))
 . On the 

other hand, if there is no balance because S3
(
C
(
wa,wb

))
≠ ∅ , then when we shift 

the refueling station location starting from wa to wb , initially the total travel distance 
for all type 3 flows will change with constant rates that are ≥ 0 . Once we reach the 
switching point for any type 3 flow, its total travel distance will change with a con-
stant rate that is ≤ 0 . As we get very close to wb , the total travel distance for all type 
3 flows will be changing with constant rates that are ≤ 0 . The change rate cannot be 
exactly 0 for any type 3 flow for the entire line segment C

(
wa,wb

)
 , because other-

wise it will not change its trip type or case. This contradicts the assumption that all 
points in C

(
wa,wb

)
 have the same total travel distance.

(⇐ ) Since the flow is balanced then S3
(
C
(
wa,wb

))
= � . Let x , y be two points in 

C
(
wa,wb

)
 , such that d

(
va, y

)
= d

(
va, x

)
+ d(x, y) , and d

(
vb, y

)
= d

(
vb, x

)
− d(x, y) . 

In addition, let D(x) and D(y) be the total travel distances to points x and y , respec-
tively. Then,

D(r) = 2 ×
∑

q(vi,vj)∈S1(C(wa,wb))

(
f
(
vi, vj

)
× d1

(
vi, vj;wa,wb

))

+
∑

q(vi,vj)∈S
(a)

2 (C(wa,wb))

d
(
vi, vj;r

)
+

∑

q(vi,vj)∈S
(b)

2 (C(wa,wb))

d
(
vi, vj;r

)
.

The total distance travelled by vehicles making type 1 trips is the same for both 
points x and y ; that is, 2 ×

∑
q(vi,vj)∈S1(C(wa,wb))

�
f
�
vi, vj

�
× d1

�
vi, vj;wa,wb

��
 . How-

ever, the total travel distance for the flows between O-D pair q
(
vi, vj

)
 that make type 

2 case (a) trips when a refueling station is located at point y is:

(27)
F
(r)

2

(
C
(
wa,wb

))
=

∑

q(vi,vj)∈S
(r)

2 (C(wa,wb))

f
(
vi, vj

)
, r = a, b.
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d
(
vi, vj;y

)
= 2 × f

(
vi, vj

)
×
(
d
(
vi, va

)
+ 2 × d

(
va, y

)
+ d

(
va, vj

))
.

Since d
(
va, y

)
= d

(
va, x

)
+ d(x, y) we can rewrite d

(
vi, vj;y

)
 as follows:

d
(
vi, vj;y

)
= d

(
vi, vj;x

)
+ 4 × f

(
vi, vj

)
× d(x, y).

Similarly, the total travel distance for the flows between O-D pair q
(
vi, vj

)
 that 

make type 2 case (b) trips when a refueling station is located at point y can be repre-
sented in terms of d

(
vi, vj;x

)
 using the relation d

(
vb, y

)
= d

(
vb, x

)
− d(x, y) . Hence, 

the total travel distance for point y becomes:

Given that flows are balanced F
(a)

2

(
C
(
wa,wb

))
= F

(b)

2

(
C
(
wa,wb

))
 , then 

D(x) = D(y).	�  ◻

Lemma 2 implies that, if the flows covered by C
(
wa,wb

)
 are balanced and we 

are able to find one point in C
(
wa,wb

)
 that minimizes the total travel distance for 

the flows covered by C
(
wa,wb

)
 , then any point in line segment C

(
wa,wb

)
 also 

minimizes the total travel distance for the flows covered by C
(
wa,wb

)
.

Lemma 3.  Let C
(
wa,wb

)
⊆ C

(
va, vb

)
 , wa,wb ∈ EP , 

(
va, vb

)
∈ E be a line segment, 

such that all of its points cover the same non-empty set of O-D pairs. Then, for any 
point x ∈ intC

(
wa,wb

)
 , there is always a point w ∈

{
wa,wb

}
 where D(w) ≤ D(x).

Proof.  By definition of type 1 trips d
(
vi, vj;wa

)
= d

(
vi, vj;wb

)
= d

(
vi, vj;x

)
 , for 

all x ∈ intC
(
wa,wb

)
 , q

(
vi, vj

)
∈ S1

(
C
(
wa,wb

))
 . On the other hand, flows cov-

ered by C
(
wa,wb

)
 that make type 2 trips case ( r ), r = a, b , travel a distance 

2 × d
(
vr, x

)
 in edge 

(
va, vb

)
 to use a refueling station located at x ∈ intC

(
wa,wb

)
 . 

Since x ∈ intC
(
wa,wb

)
 , vehicles of type 2 flow have to pass by one of the end-

points 
{
wa,wb

}
 before reaching x . Therefore d

(
vi, vj;wr

)
≤ d

(
vi, vj;x

)
 , for all 

x ∈ intC
(
wa,wb

)
 , q

(
vi, vj

)
∈ S

(r)

2

(
C
(
wa,wb

))
 . If the flows covered by C

(
wa,wb

)
 are 

not balanced, the endpoint closer to the entry vertex with higher type 2 flow vol-
ume will have minimum total travel distance. Otherwise, by Lemma 2, if the flows 
covered by C

(
wa,wb

)
 are balanced, then all points in C

(
wa,wb

)
 have the same total 

travel distance. Hence, there is always w ∈
{
wa,wb

}
 where D(w) ≤ D(x). 	�  ◻

Since all points that cover any O-D pairs are either endpoints in EP or belong 
to line segments surrounded by endpoints in EP , then by Theorem 1 and Lemma 
3, there is always an optimal solution regarding both the primary and secondary 
objectives that belongs to the set of endpoints EP.

d
(
vi, vj;y

)
= 2 × f

(
vi, vj

)
×
(
d
(
vi, va

)
+ 2 ×

(
d
(
va, x

)
+ d(x, y)

)
+ d

(
va, vj

))
,

D(y) = 2 ×
∑

q(vi,vj)∈S1(C(wa,wb))

(
f
(
vi, vj

)
× d1

(
vi, vj;wa,wb

))

+
∑

q(vi,vj)∈S
(a)

2 (C(wa,wb))

d
(
vi, vj;x

)
+

∑

q(vi,vj)∈S
(b)

2 (C(wa,wb))

d
(
vi, vj;x

)

+ 4 × F
(a)

2

(
C
(
wa,wb

))
× d(x, y) − 4 × F

(b)

2

(
C
(
wa,wb

))
× d(x, y).
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Solving the problem regarding the primary objective gives us the maximum 
amount of flow that can be covered by p stations, F∗

p
 . This information with the 

complete set of endpoints EP can then be used in the set covering model below 
to minimize the total travel distance. First, let us define some additional notation:

EP : Set of refueling segments endpoints, |EP| = s.
D : ( s × h) distance matrix where dw,q(vi,vj) = d

(
vi,w

)
+ d

(
w, vj

)
 , for a trip 

between O-D pair q
(
vi, vj

)
∈ Q going throught a refueling station located at 

endpoint w ∈ EP.

x : (s)-vector of binary decision variables. x
w
=

{
1, if a station is located atw ∈ EP,

0, otherwise.

z : (s × h)-matrix of binary decision variables.  
z
w,q(vi,vj) = 

{
1, if q

(
v
i
, v

j

)
∈ Q is covered by a refueling station located atw ∈ EP,

0, otherwise.

Set covering model:

subject to:

The model above minimizes the total travel distance given the inputs from the 
primary optimal solution. If a point w1 ∈ EP is selected in an optimal solution W∗ 
regarding the secondary objective, let the set of O-D pairs assigned to be covered 
by w1 in this particular solution be SW∗

(
w1

)
 . Now, if there exists a point w2 ∈ EP 

that does not belong to W∗ , SW∗

(
w1

)
⊆ S

(
w2

)
 , and the total travel distance for 

the flows between O-D pairs in SW∗

(
w1

)
 to refuel at point w2 is the same as the 

distance for point w1 , then w1 in the solution can be replaced by w2 . Moreover, 
if there are two adjacent points w2,w3 ∈ EP that can cover the set of O-D pairs 

(28)Minimize ∶ D∗
p
=

∑

q(vi,vj)∈Q

∑

w∈EP

dw,q(vi,vj)f
(
vi, vj

)
zw,q(vi,vj),

(29)
∑

w∈EP

xw = p,

(30)
∑

w∈EP

aw,q(vi,vj)zw,q(vi,vj) = yq(vi,vj), q
(
vi, vj

)
∈ Q,

(31)
∑

q(vi,vj)∈Q

zw,q(vi,vj) ≤ hxw, w ∈ EP,

(32)
∑

q(vi,vj)∈Q

f
(
vi, vj

)
yq(vi,vj) = F∗

p
,

(33)xw, yq(vi,vj), zw,q(vi,vj) ∈ {0, 1}, w ∈ EP, q
(
vi, vj

)
∈ Q.
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SW∗

(
w1

)
 , the total travel distance for the flows between O-D pairs in SW∗

(
w1

)
 to 

refuel at points w1 , w2 , and w3 is the same, and the flows are balanced in the 
line segment C

(
w2,w3

)
 , then any point in C

(
w2,w3

)
 can replace w1 in the optimal 

solution. Note that, SW∗

(
w1

)
 is not necessarily equal to S

(
w1

)
 , S

(
w2

)
 , or S

(
w3

)
.

5 � Numerical example

In this section, a simple numerical example is solved to illustrate the concepts 
discussed in this paper. Figure 7 shows a traffic network that consists of 8 nodes.
These nodes could be different intersections, zones, or neighborhoods within a 

Fig. 7   Numerical example network

Table 1   Average daily flow 
between O-D pairs

v
j

v
i

1 2 3 4 5 6 7 8

1 0 50 0 100 0 0 200 0
2 0 0 25 30 90 0 20 0
3 0 0 0 0 0 80 10 10
4 0 0 0 0 40 0 0 0
5 0 0 0 0 0 300 45 0
6 0 0 0 0 0 0 50 50
7 0 0 0 0 0 0 0 50
8 0 0 0 0 0 0 0 0
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city. The edges represent the roads connecting these nodes. Average daily flows, 
f (vi, vj) , for each O-D pair q(vi, vj) , i < j , are shown in Table 1. The vehicle driv-
ing range is set to R = 96 distance units. The primary objective is to locate a 
number, p , of AF refueling stations in the network in a way that maximizes total 
covered flow. We will solve the problem with different values of p and compare 
the results. Then we will use the results from the solutions regarding the primary 
objective to minimize the total travel distance for all covered flows.

In Step 1 of the DES algorithm, the set of O-D pairs that needs to be con-
sidered, Q , is constructed. Note that, some of the O-D pairs in Fig.  7 can-
not be in Q . For example, d

(
v3, v7

)
= 108 which is more than R = 96 ; there-

fore, q
(
v3, v7

)
∉ Q . Also, f

(
v1, v5

)
= 0 ; therefore, q

(
v1, v5

)
∉ Q . Set 

Q =
{
q
(
v1, v2

)
, q
(
v1, v4

)
, q
(
v1, v7

)
, q
(
v2, v3

)
, q
(
v2, v4

)
, q
(
v2, v5

)
, q
(
v2, v7

)
, q
(
v3, v6

)
,

q
(
v3, v8

)
, q
(
v4, v5

)
, q
(
v5, v6

)
, q
(
v5, v7

)
, q
(
v6, v7

)
, q
(
v6, v8

)
, q
(
v7, v8

)}
 . The GCD 

here is g = 12 . The set of common divisor points is shown in Fig. 8.
In Step 2, each edge in E is scanned to find refueling sets for all O-D pairs in Q . For 

example, the refueling set of O-D pair q
(
v2, v3

)
 on edge 

(
v5, v6

)
 can be found as fol-

lows: for type 1 case (a) we find the remaining driving distances to refuel when a vehi-
cle starts its trip from vertices v2 and v3 with a half full fuel tank and reaches vertices v5 
and v6 , respectively.

�
(
v2;v5, v6

)
= min

{
R∕2 − d

(
v2, v5

)
, l
(
v5, v6

)}
= min {48 − 24, 36} = 24,

�
(
v3;v6, v5

)
= min

{
R∕2 − d

(
v3, v6

)
, l
(
v5, v6

)}
= min {48 − 24, 36} = 24,

Note that these two line segments overlap in the line segment connecting w20 and 
w21 , as shown in Fig. 9; therefore, RS(5)

1

(
v2, v3;v5, v6

)
= {w20,w21} . However, for type 

1 case (b), d
(
v2, v6

)
= 60 > R∕2 ; hence, a vehicle starting from vertex v2 cannot reach 

vertex v6 before refueling, �
(
v2;v6, v5

)
= −12 . Next, we find the refueling sets corre-

sponding to type 2 cases (a) and (b).

Fig. 8   Common divisor points
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�(5)
(
v2, v3;v5, v6

)
= min

{
R∕2 −max

{
d
(
v2, v5

)
, d
(
v3, v5

)}
, l
(
v5, v6

)}

= min {48 −max {24, 60}, 36} = −12,

RS
(5)

2

(
v2, v3;v5, v6

)
= �,

�(6)
(
v2, v3;v5, v6

)
= min

{
R∕2 −max

{
d
(
v2, v6

)
, d
(
v3, v6

)}
, l
(
v5, v6

)}

= min {48 −max {60, 24}, 36} = −12,

RS
(6)

2

(
v2, v3;v5, v6

)
= �.

Fig. 9   Type 1 case (a) refueling set for O-D pair q
(
v2, v3

)
 on edge 

(
v5, v6

)

Table 2   Refueling sets
q
(
v
i
, v

j

)
RS

(
v
i
, v

j

)

RS
(
v1, v2

) {
w1,w2,w3,w4,w5,w6,w10,w11,w14,w15,w16,w20

}

RS
(
v1, v4

) {
w1,w2,w3,w4,w5,w10,w11,w14,w15,w16,w17,w20

}

RS
(
v1, v7

) {
w15,w16,w17

}

RS
(
v2, v3

) {
w5,w6,w7,w20,w21

}

RS
(
v2, v4

) {
w1,w2,w3,w4,w5,w10,w11,w14,w15,w16,w20,w21

}

RS
(
v2, v5

) {
w1,w2,w3,w4,w5,w10,w11,w14,w15,w16,w20,w21

}

RS
(
v2, v7

) {
w15,w16

}

RS
(
v3, v6

) {
w7,w8,w9,w12,w13,w20,w21,w22,w23

}

RS
(
v3, v8

) {
w9,w12,w13,w20,w21,w22,w23

}

RS
(
v4, v5

) {
w1,w2,w3,w4,w5,w10,w11,w14,w15,w16,w20,w21

}

RS
(
v5, v6

) {
w10,w11,w12,w13,w14,w20,w21,w22

}

RS
(
v5, v7

) {
w15,w16

}

RS
(
v6, v7

) {
w26,w27

}

RS
(
v6, v8

) {
w9,w12,w13,w20,w21,w22,w23,w26,w27

}

RS
(
v7, v8

) {
w24,w25,w26,w27

}
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Based on that, the refueling set of O-D pair q
(
v2, v3

)
 on edge 

(
v5, v6

)
 , 

RS
(
v2, v3;v5, v6

)
=
{
w20,w21

}
 and EP

(
v2, v3;v5, v6

)
=
{
w20,w21

}
 . Tables  2 and 3 

list all refueling sets and the set of O-D pairs covered by each endpoint, respectively. 
Figure 10 shows the set of endpoints in the network.

Next, endpoints that cover unique sets of O-D pairs can be used in Hodgson’s 
model to maximize the amount of flow covered by a certain number of refueling sta-
tions. Table 4 shows optimal solutions regarding the primary objective with different 
values of p.

Table 3   Set of endpoints and their covered O-D pairs

End-
point

S(w)

w1

{
q
(
v1, v2

)
, q
(
v1, v4

)
, q
(
v2, v4

)
, q
(
v2, v5

)
, q
(
v4, v5

)}

w2

{
q
(
v1, v2

)
, q
(
v1, v4

)
, q
(
v2, v4

)
, q
(
v2, v5

)
, q
(
v4, v5

)}

w3

{
q
(
v1, v2

)
, q
(
v1, v4

)
, q
(
v2, v4

)
, q
(
v2, v5

)
, q
(
v4, v5

)}

w5

{
q
(
v1, v2

)
, q
(
v1, v4

)
, q
(
v2, v3

)
, q
(
v2, v4

)
, q
(
v2, v5

)
, q
(
v4, v5

)}

w6

{
q
(
v1, v2

)
, q
(
v2, v3

)}

w7

{
q
(
v2, v3

)
, q
(
v3, v6

)}

w9

{
q
(
v3, v6

)
, q
(
v3, v8

)
, q
(
v6, v8

)}

w10

{
q
(
v1, v2

)
, q
(
v1, v4

)
, q
(
v2, v4

)
, q
(
v2, v5

)
, q
(
v4, v5

)
, q
(
v5, v6

)}

w11

{
q
(
v1, v2

)
, q
(
v1, v4

)
, q
(
v2, v4

)
, q
(
v2, v5

)
, q
(
v4, v5

)
, q
(
v5, v6

)}

w12

{
q
(
v3, v6

)
, q
(
v3, v8

)
, q
(
v5, v6

)
, q
(
v6, v8

)}

w13

{
q
(
v3, v6

)
, q
(
v3, v8

)
, q
(
v5, v6

)
, q
(
v6, v8

)}

w14

{
q
(
v1, v2

)
, q
(
v1, v4

)
, q
(
v2, v4

)
, q
(
v2, v5

)
, q
(
v4, v5

)
, q
(
v5, v6

)}

w15

{
q
(
v1, v2

)
, q
(
v1, v4

)
, q
(
v1, v7

)
, q
(
v2, v4

)
, q
(
v2, v5

)
, q
(
v2, v7

)
, q
(
v4, v5

)
, q
(
v5, v7

)}

w16

{
q
(
v1, v2

)
, q
(
v1, v4

)
, q
(
v1, v7

)
, q
(
v2, v4

)
, q
(
v2, v5

)
, q
(
v2, v7

)
, q
(
v4, v5

)
, q
(
v5, v7

)}

w17

{
q
(
v1, v4

)
, q
(
v1, v7

)}

w20

{
q
(
v1, v2

)
, q
(
v1, v4

)
, q
(
v2, v3

)
, q
(
v2, v4

)
, q
(
v2, v5

)
, q
(
v3, v6

)
, q
(
v3, v8

)
, q
(
v4, v5

)
, q
(
v5, v6

)
, q
(
v6, v8

)}

w21

{
q
(
v2, v3

)
, q
(
v2, v4

)
, q
(
v2, v5

)
, q
(
v3, v6

)
, q
(
v3, v8

)
, q
(
v4, v5

)
, q
(
v5, v6

)
, q
(
v6, v8

)}

w22

{
q
(
v3, v6

)
, q
(
v3, v8

)
, q
(
v5, v6

)
, q
(
v6, v8

)}

w23

{
q
(
v3, v6

)
, q
(
v3, v8

)
, q
(
v6, v8

)}

w24

{
q
(
v7, v8

)}

w26

{
q
(
v6, v7

)
, q
(
v7, v8

)
, q
(
v6, v8

)}

w27

{
q
(
v6, v7

)
, q
(
v7, v8

)
, q
(
v6, v8

)}

Table 4   Solution to the set 
covering model with different 
values of p

p Endpoints Total flow 
covered F∗

p

1 w20 775
2 w16 , w20 1040
3 w16 , w20,w26 1140
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After solving the set covering model, we can look for other optimal solutions 
in the network. For instance, consider the solutions with p = 2 , note that endpoint 
w15 covers the same set of O-D pairs as point w16 . Furthermore, pick any point 
x ∈ intC

(
w15,w16

)
 , point x covers the same set of O-D pairs as points w15 and w16 ; 

hence, by Lemma 1 the entire line segment C
(
w15,w16

)
 covers the same set of O-D 

pairs and any point from C
(
w15,w16

)
 can replace w16 in the optimal solution regard-

ing the primary objective. Furthermore, note that S
(
w20

)
≠ S

(
w21

)
 ; however, the set 

Table 5   Distance minimization solution

Endpoint Covered O-D pairs F(w) Total 
one-way 
distance

w15

{
q
(
v1, v2

)
, q
(
v1, v4

)
, q
(
v1, v7

)
, q
(
v2, v4

)
, q
(
v2, v7

)
, q
(
v4, v5

)
, q
(
v5, v7

)}
485 29,820

w20

{
q
(
v2, v3

)
, q
(
v2, v5

)
, q
(
v3, v6

)
, q
(
v3, v8

)
, q
(
v5, v6

)}
505 23,940

w27

{
q
(
v6, v7

)
, q
(
v6, v8

)
, q
(
v7, v8

)}
150 9600

Total S
(
w15

)
∪ S

(
w20

)
∪ S

(
w27

)
1140 63,360

Table 6   Total one-way travel 
distance comparison between 
optimal solutions regarding the 
primary objective

p Distance single 
objective

Distance bi-
objective

% Difference

1 44220 44220 0.0%

2 61680 56160 9.8%

3 68880 63360 8.7%

Fig. 10   Set of endpoints
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of O-D pairs covered in 
(
S
(
w20

)
∩ S

(
w21

))
∪ S

(
w16

)
= S

(
w20

)
∪ S

(
w16

)
 . Therefore, 

w20 can be replaced by w21 without changing the set of covered flows. Furthermore, 
pick any point x ∈ intC

(
w20,w21

)
 , S(x) = S

(
w20

)
∩ S

(
w21

)
 , and by Lemma 1, all 

points in intC
(
w20,w21

)
 cover the same set of O-D pairs. Therefore, any point in 

C
(
w20,w21

)
 can replace w20 in the optimal solution.

Now, let us consider the secondary objective for the case with p = 3 , 
F∗
p
= 1140 . Model (28)–(33) is solved and the results are shown in Table  5. 

Comparing this solution with the third solution in Table 4, we see that the solu-
tion in Table  5 selected endpoints w15 instead of w16 , w20 , and w27 instead of 
w26 . Let us consider each one of these selections; w15 and w16 cover the same 
set of O-D pairs. Of those pairs q

(
w1,w7

)
 , q

(
w2,w7

)
 , and q

(
w5,w7

)
 make type 

1 trips, so they have the same total travel distance for both endpoints. However, 
the rest of the flows covered by these two endpoints make type 2 trips, enter-
ing edge 

(
v4, v7

)
 using v4 ; therefore, the flows covered by C

(
w15,w16

)
 are not bal-

anced. By Lemma 2, the total travel distance to different points in C
(
w15,w16

)
 is 

not the same; additionally, by Lemma 3, we know that one of the two endpoints 
must minimize the total travel distance for the flows covered by this line seg-
ment, this endpoint is w15 . Next, consider points w20 and w21 ; in this solution, all 
flows assigned to be covered by point w20 can also be covered by point w21 and 
any point in intC

(
w20,w21

)
 . Note that, the amounts of flows making type 2 trips 

cases (a) and (b) to reach a refueling station in line segment C
(
w20,w21

)
 are equal, 

f
(
v2, v5

)
= f

(
v3, v6

)
+ f

(
v3, v8

)
 . The rest of the covered flows make type 1 trips. 

Therefore, the flows covered by C
(
w20,w21

)
 in this solution are balanced, and any 

point in C
(
w20,w21

)
 can replace w20 in the optimal solution. Finally, w26 and w27 

cover the same set of O-D pairs. Given, that q
(
v6, v8

)
 makes type 2 trips using v8 

to enter edge 
(
v7, v8

)
 and that q

(
v6, v7

)
 and q

(
v7, v8

)
 make type 1 trips. The flows 

Fig. 11   Total one-way travel distance comparison between optimal solutions regarding the primary 
objective
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covered by C
(
w26,w27

)
 are not balanced and w27 minimizes the total travel dis-

tance for these flows.
Table  6 and Fig.  11 present a comparison between total one-way travel dis-

tances using the primary objective alone versus the lexicographic bi-objective 
approach. Although, this is a simple example, the variation in total travel distance 
among optimal solutions regarding the primary objective is obvious. In real life 
networks with many O-D pairs and high volumes of flow, any small difference 
makes a significant impact on the total travel distance and consequently on con-
venience, operating cost of vehicles like fuel and maintenance, and most impor-
tantly GHG emissions.

6 � Conclusions and future research

In this paper, we have proposed an algorithm for the SRDFSA problem on a gen-
eral (symmetric) network. Our approach takes advantage of the characteristics of 
the traffic network and vehicle driving range to discretize the network and reduce 
the size of the search space while maintaining guaranteed optimality as in the 
continuous approach. The algorithm starts with finding the GCD g of all edge 
lengths and the initial driving range R∕2 starting from the origin and destination 
vertices. Distances in the network can be represented as integer multiples of g . 
Common divisor points are used to define a refueling set for each O-D pair that 
can be covered in the network. In this study, we prove that there is always an opti-
mal solution to the problem where all refueling stations are located at endpoints 
of refueling sets. Next, a set covering model is used to maximize the amount of 
flow covered by a predetermined number of refueling stations. Using this solu-
tion, the complete set of optimal solutions can be found. After that, a secondary 
objective to minimize the total travel distance for the covered flows is discussed. 
Again, we prove that there is always an optimal solution regarding both objec-
tives where all refueling stations are located at endpoints of refueling sets. There-
fore, the set of endpoints and the results from the optimal solution regarding the 
primary objective are used in a second set covering model to minimize the total 
travel distance. A numerical example is solved to illustrate the proposed methods. 
These two objectives are important for the overall objective of reducing GHG 
emissions and negative environmental impact of transportation activities.

The results of this study can be easily generalized. Although assumptions 
about network symmetry and integrality may seem not realistic, the dominating 
design of traffic networks in the US uses two-way roads. One-way roads are regu-
larly used in urban downtown areas where the distances are relatively short, and 
the difference in lengths between the two one-way trips for each O-D pair can be 
neglected [7]. Also, in traffic networks, rounding a distance to the nearest inte-
ger value is not a significant adjustment when compared to the driving range of 
vehicles. Realistically, drivers tend to underestimate their vehicles driving range 
to allow for a safety buffer, so they do not run out of fuel. Therefore, integrality 
assumptions are not far from being realistic. The obtained global optimal solution 
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from the model can be used directly to locate AF refueling stations in the net-
work, or to define an upper bound on the amount of flow that can be covered by a 
certain number of AF refueling stations. This upper bound can be used to justify 
the additional investment to acquire the recommended locations. Also, if the gap 
between the global optimal solution and a solution based on a predetermined set 
of candidate locations is not large, then it may be acceptable to follow the sub-
optimal solution. Either way, a global optimal solution will help the stakeholders 
to make an informed decision.

Suggested future research topics include relaxing the assumption of one refu-
eling operation per one-way trip. This allows for longer trips and generalizes the 
results in this study. Also, having multiple types of vehicles with different driving 
ranges is more realistic than a fixed driving range for all vehicles.
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