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Abstract
Misinformation detection in Online Social Networks has recently become a critical
topic due to its important role in restraining misinformation. Recent studies have
showed that machine learning methods can be used to detect misinformation/fake
news/rumors by detecting user’s behaviour. However, we can not implement this strat-
egy for all users on a social network due to the limitation of budget. Therefore, it is
critical to optimize the monitor/sensor placement to effectively detect misinformation.
In this paper, we investigateMinimum Budget for Misinformation Detection problem
which aims to find the smallest set of nodes to place monitors in a social network so
that detection function is at least a given threshold. Beside showing the inapproxima-
bility of the problem under the well-known Independent Cascade diffusion model,
we then propose three approximation algorithms including: Greedy, Sampling-based
Misinformation Detection and Importance Sampling-based Misinformation Detec-
tion. Greedy is a deterministic approximation algorithm which utilizes the properties
of monotone and submodular of the detection function. The rest is two randomized
algorithms with provable guarantees based on developing two novel techniques (1)
estimating detection function by using the concepts of influence sample and impor-
tance influence sample with proof of correctness, and (2) an algorithmic framework
to select the solution with theoretical analysis. Experiments on real social networks
show the effectiveness and scalability of our algorithms.
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1 Introduction

Nowadays, Online Social Networks (OSNs) have rapidly developed and become an
effective platform for communication. According to recent surveys, there are about 3
billion users in OSNs and many users considered OSNs as the source of their daily
information [46]. Unfortunately, OSNs are also exploited for the purpose of spread-
ing misinformation, rumors and fake news, which have caused significant economical
and political consequences, see [1,13,30]. Therefore, it is a great practical importance
to effectively detect the propagation of misinformation in the social media before it
causes serious consequences. This task is the motivation for several strategies to pre-
vent misinformation such as blocking users or links [21,38,41,42] and disseminating
good information to correct misinformation [4,39]. Recently, some works have shown
that misinformation and fake news can be automatically detected by machine learn-
ing techniques from temporal, structural, linguistic features of users [23], content of
posts and microblog-specific memes [32–34,44]. We consider all techniques used to
misinformation detection to exploit user’s behaviours as “monitor/sensor” placements.

Based on those studies, some authors have proposed optimal management of
resources approaches to detect misinformation or outbreaks in a social network by
placing the monitors/sensors at some critical nodes, such as, cascade of epidemics
detection with a cost constraint [25], misinformation detection with a size of monitor-
set constraint [52,53], timely misinformation detection by heuristic approaches [54],
etc. However, previous works have been failed to deal with many real scenarios. Sup-
pose that we need to monitor all the users in a group in an OSN, monitor placement
strategies with the cost and size constraints are not feasible because it may not be pos-
sible to monitor all users in the group. In this scenario, a monitor placement strategy
with minimal size to ensure that all nodes in the group can be monitored, is obviously
more efficient than previous strategies.

Motivated by the above phenomenon, in this paper we propose theMinimumBudget
for Misinformation Detection (MBD) problem which aims to find the smallest set
of nodes to place monitors in a social network so that the detection function D(·)
which evaluates information spread from a given set of suspected misinformation
node S, is at least a given threshold γ . The threshold γ can control the scale of
misinformation monitoring strategy. The greater the value of γ is, the much more
users are monitored. MBD is more relevant in practice as we often have to monitor
misinformation throughout a network. The main challenge of this problem comes
from its inapproximability and the complexity for calculating detection function. We
show that the calculation of the objective function is #P-hard and it is NP-hard to
approximate the problem with the ratio of (1 − ε) ln n. To overcome this challenge,
we propose two randomized algorithms with provable guarantees. Our contributions
are summarized as follows:
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– We formulate Minimum Budget for Misinformation Detection (MBD) under the
well-known Independent Cascade (IC) information diffusion model. We show
that the calculation of the objective function is #P-hard and it is NP-hard to
approximate the problem with the ratio of (1 − ε) ln n, for ε > 0 unless NP
∈ DT IME(nO log log n).

– We develop novel techniques to estimate function D(·) by proposing influence
sample (DS) and importance influence sample (IDS) concepts with correctness
proof. Based on that, we show that D(·) is a monotone and submodular function
and propose a Greedy algorithm providing an approximation ratio of 1+ ln(γ /ε)

for any ε > 0. In order to find the solution on large-scale networks, we further
propose two efficient randomized algorithms, named Sampling-basedMisinforma-
tion Detection (SMD) and Importance Sampling-based Misinformation Detection
(ISMD), by utilizing the estimations of detection function from DS and IDS con-
cepts and devising an algorithmic framework to select a near-optimal solution. We
prove that these algorithms return a solution A satisfying |A| ≤ 1+|A∗| · ln γ−γ ε

ε

and D(A) ≥ γ · 1−ε
1+ε

− ε with high probability where ε ∈ (0, 1) is an input and
A∗ is an optimal solution.

– We conduct extensive experiments on real social networks to demonstrate the
effectiveness and scalability of our algorithms. SMD and ISMD not only give an
approximation guarantee, but also can apply to very large-scale networks (Email-
Eu-All network contains 265K nodes and 420K edges) and they outperform state-
of-the-art algorithms in term of quality solution and running time. In addition,
the results also show that ISMD needs fewer the number of required samples and
memories than that of other algorithms.

Organization The rest of the paper is organized as follows. We summarize the related
literature in Sect. 2. Next, we introduce the information diffusion model, problem
definition and its inapproximability in Sect. 3. In Sect. 4 we present our proposed
algorithms. The experiments on several datasets are in Sect. 5. Finally, we conclude
the paper in Sect. 6.

2 Related works

In this section, we are going to review previous works regarding misinformation
detection including: Information Diffusion models and Influence Maximization and
Misinformation Detection.
Information diffusion model and influence maximization Information diffusion
models is the solid background for studying information propagation issues and viral
marketing. Kempe et al. [20] first propose two classical information diffusion models,
named Independent Cascade (IC) andLinear Threshold (LT).Working on thesemodels,
they formulate the Influence Maximization (IM) problem which seeks k nodes that
can influence to the largest number of nodes in an OSN and they devise an (1 −
1/e) approximation algorithm for this problem. Due to great commercial values, a
large number of works have focused on IM problem on proposing scalability and
efficiency algorithms [3,7,8,48,49], studying IM variations [2,19,28,37,43,50]. Some
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works extend the IC model by incorporating time, topic to reflect some real contexts
in viral marketing. Chen et. al. [9] introduce the Independent Cascade with Meeting
events model by adding the time delay aspect of influence diffusion in each link. A
Continuous-time Independent Cascademodel is proposed for influence estimation and
maximization problems with time-sensitive context [14,17]. Several works [2,15,29]
consider the topic-aware influence maximization with the purpose of maximizing
influenced users with a given topic query. In this problem, each edge has multiple
transmission information probabilities that reflect the influence on different topics.
Misinformation detection Misinformation, fake news and rumors can be automat-
ically detected by using text mining techniques from sequential microblog streams
[5,23,31,44]. For example, Qazninian et al. [44] study rumors identifying on the Twit-
ter by developing three categories of features to identify the false tweets (uni gram,
bigrams, and part-of-speech). Kwon et al. [23] introduce a time-series-fitting model
standing on the volume of tweets over time. Ma et al. [31] capture the temporary
characteristics of the time series of rumor’s life-cycle for identifying rumors from
online social media. More recently, several deep neural models have developed for
automatic rumors detection [6,32–35,45].

The outbreak of disease occurs in many different networks. There is a common
strategy to detect outbreaks from many different networks which is to place monitors
or sensors into some important nodes such as water contamination [22] and detection
and contagious outbreaks [10]. Besides, motivated by the fact that misinformation
or rumor can be automatically detected through data mining and machine learning
methods, some authors investigate the problem of placing monitor/sensor into some
nodes to detect misinformation in an OSN [12,12,53,54]. Leskovec et al. investigate
the problem of detection outbreaks in a blog network under the budget constraint,
and devise an (1 − 1/e)/2 approximation algorithms for this problem [25]. Cui et
al. [12] focus on selecting important nodes as sensors to predict the outbreaks with a
data-driven approaching. Zhang et al. [53] investigate the problem of misinformation
detection within (MD) limited budget under IC model. They show that MD problem
can be viewed as IM problem when all nodes have the same probability to be a source
of misinformation but they still fail to deal with the case which nodes have different
probabilities to be a source. Authors in [54] focus on TCMD problem, which finds
minimum-size monitor set so that misinformation can be detected from all nodes in
the network within time constraint and propose a heuristic algorithm for general case.
One drawback of these two studies is that the proposed algorithms do not provide any
approximation guarantee.

Approaching a new view of above studies, in this work, we aim to find set of nodes
with minimal size to place monitors in so that the expected detection probability is
at least a threshold γ . Different from Misinformation Detection problem [53], in this
task, each node u is a source of misinformation with arbitrary probability. Besides,
there is no existing algorithm for our problem, we are going to propose approximation
algorithms that returns near-optimal solutions with high probability.
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Table 1 Table of symbols

Notional Description

n,m The number of nodes and the number of edges in G, respectively

Nin(v), Nout (v) the sets of incoming, and outgoing neighbor nodes of v

S Set of nodes is likely to be the source of misinformation

A Set of monitor nodes

D(A) Detection function of node set A

D̂(A) An estimation of D(A)

Cov(A, R j ) = min{1, |A ∩ R j |}
CovR(A) = ∑

R j∈R Cov(A, R j ), the number of DS sets in R covered by A

Ni (δ, ε)
(2+ 2

3 ε)n

ε2(γ−εγ )
ln(

(n
i
)
/δ)

3 Model and problem definition

In this section, we introduce the network model and a well-known diffusion model
Independent Cascade (IC) [20]. We then formally define the Minimum Budget for
Misinformation Detection (MBD) and present the inapproximability of the problem.
In Table 1, the frequently used notations are summarized.

3.1 Independent cascademodel

Let G = (V , E) be a directed graph representing a social network with a node set V
and a directed edge set E , |V | = n and |E | = m. Let Nin(v) and Nout (v) be the set
of in-neighbors and out-neighbor of a node v, respectively.

In this model, each edge e = (u, v) ∈ E has a probability p(u, v) ∈ (0, 1) that
represents the misinformation transmission from u to v. The diffusion process from S
happen in discrete steps t = 0, 1, 2 . . . as follows:

– At step t = 0, all nodes in S are activated by the misinformation and the others
are inactive.

– At step t ≥ 1, for an activated node u in previous steps, it has a single chance
to activate each inactive neighbour v with the successful probability p(u, v). An
activated node u remains active till the end of the diffusion process.

– The propagation process ends at step t if there is no new activated node in this
step.

3.2 Problem definition

We adopt the Independent Cascade (IC) model to abstract themisinformation diffusion
in a social network. In this problem, we denote S ⊆ V is the suspected set, i.e, the set
of nodes that is likely to be the source of misinformation. Each node u ∈ S is a source
of misinformation with probability ρ(u) ≥ 0.
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In ICmodel, we observe that the activations along edges are mutually independent.
From the perspective of graph theory, the successful transmission from an user to its
neighbors can be represented as an existence of the edges between them. Kempe et
al. [20] show that IC model is equivalent to the reachability in a random graph g,
called live-edge graph or sample graph. Accordingly, we can generate a sample graph
g from original graph G, denoted by g ∼ G, by selecting each edge e = (u, v) ∈
E , independently, with the probability p(u, v), and no select edge (u, v) with the
probability 1 − p(u, v). The probability that a realization g can be generated from G
is:

Pr[g ∼ G] =
∏

e∈E(g)

p(u, v)
∏

e∈E\E(g)

(1 − p(u, v)) (1)

In above equation, E(g) is the set node of g. The number of sample graphs is 2|E |. If
we place a monitor on node v, it will detect misinformation from the nodes that are
connected to it. It takes dg(u, v), the distance from u to v, hops to detect the misin-
formation from u. For a node u ∈ S, the probability that A can detect misinformation
propagated from u is:

D(A, u) =
∑

g∼G

Pr[g ∼ G]R(A, g, u) (2)

where

R(A, g, u) =
{
1, if dg(u, A) < ∞,

0, Otherwise
(3)

and dg(u, A) = minv∈A dg(u, v). Since the probability that u ∈ S is a source of
misinformation node is ρ(u), we define the detection function of A as follows:

D(A) =
∑

u∈S
ρ(u)

∑

g∼G

Pr[g ∼ G]R(A, g, u) (4)

In thiswork,we studyMinimumBudget forMisinformationDetection problem (MBD)
defined as follows:

Definition 1 (MBD problem) Given a graph G = (V , E) under IC model, a suspected
set S ⊆ V and each node u ∈ S is a source of misinformation with probability
ρ(u) ≥ 0. Given a threshold for detection misinformation γ > 0, find the set of nodes
A ⊆ V with minimum-size to place monitors so that D(A) ≥ γ .

When all nodes have same probability to be the misinformation source, Zhang et. al
[53] show that the detection function of a set of nodes A is equal to the influence
spread of A on the reverse graph. Since calculating influence spread is #P-Hard [7],
calculating detection function is also #P-Hard. Besides,we show the inapproximability
of the problem by the following Theorem.
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Theorem 1 (Inapproximability) MBD cannot be approximated within a factor (1 −
ε) ln n unless NP ∈ DT IME(nO log log n).

Proof We consider the decision version of MBD defined as follows: Given a graph
G = (V , E), a suspected set S ⊆ V , a threshold γ , and a positive number k > 0. The
problem asks whether or not the monitor set A of size k so that D(A) ≥ γ ? 
�

We reduce MBD from the Set Cover problem defined as follows:

Definition 2 (Set Cover (SC) problem) Given a positive integer t , an universal set
U = {e1, e2, . . . , eM } and a collection of subsets S = {S1, S2, . . . , SN }. The Set
Cover problem asks whether or not there are t subsets whose union is U?

Reduction Given an instance I = (U ,S, t) of SC problem, we construct an instance
I ′ = (G, S, γ, k) as follows: For each element ei ∈ U , we create a node ui ∈ S,
and set ρ(u) = 1. For each subset S j ∈ S, we add a node v j into S and add an
edge (ui , v j ) if ei ∈ S j and set the probability p(ui , v j ) = 1. For convenience, we
denote sets X = {ui , i = 1, . . . , M}, and Y = {v j , j = 1, . . . , N }. Finally, we set
γ = M + k and t = k. We can see that the reduction can be done in polynomial-time
respect to size of I and I ′.

Suppose that I has a solution S′ ⊆ S. By our reduction, in I ′ we choose a monitor
set A = {v j |S j ∈ S′}.We haveD(A) = M+t = γ . This implies that A to be a solution
of I ′. Conversely, suppose that A ∈ V is the solution of I ′, i.e, D(A) ≥ γ = M + k
and |A| = k. Since each node ui ∈ X can only detect itself, A only contains some
nodes in Y . From |A| = k, we imply that A can detect M node in X . Now, if we
choose S′ = {Si |v j ∈ A}, then S′ is a solution of I.

Suppose that there is an algorithm which can approximate MBD within a ratio of
(1−ε) ln n in polynomial time. By applying this algorithm and using our reduction, we
can approximate SC within a ratio of (1− ε) ln n in polynomial time. This contradicts
to the fact that SC does not have a polynomial- time (1 − ε) ln n -approximation for
any ε > 0 unless NP ∈ DT IME(nO log log n) [16]. 
�

4 Proposed algorithms

In this section, we propose three algorithms for MBD problem including Greedy,
Sampling-based forMisinformationDetection (SMD) and ImportanceSampling-based
for Misinformation Detection (ISMD). Greedy provides an approximation ratio of
1+ ln(γ /ε) but it cannot be applied to medium-networks even using the Monte-Carlo
method to estimate the detection function because of its high complexity. SMD and
ISMD are scalable algorithmswith theoretical guarantees by developing a framework to
select a final solution frommultiple candidate solutions. The main difference between
these algorithms is SMD estimatesD(·) by using the concept of detection sample while
ISMD uses the concept of importance detection sample instead. Also, we show that
ISMD takes lower complexity and uses fewer number of required samples than that of
SMD.
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4.1 Estimator of detection function

We introduce the concept of Detection Sampling (DS) set and use it to estimate D(·).
Definition 3 (DS set) Given a graph G = (V , E) under IC model, let ρ(S) =∑

u∈S ρ(u). A DS set R j is generated from G by:

1. Picking a source node u ∈ V with probability ρ(u)
ρ(S)

.
2. Generating a sample graph g from G, and returning R j as nodes which can be

reached from u in g.

The meaning of the above definition is that each node in a DS set can detect misinfor-
mation spreading from u. Node u in the above definition is called the source of R j ,
denoted by src(R j ) = u. We denote Ω is the probability space of all DS sets in which
the probability of generating aDS set R j having the source node u (denoted by R j (u))
can be computed as follows:

Pr[R j (u) ∼ Ω] = ρ(u)

ρ(S)
·

∑

g∼G:R(R j ,g,u)=1

Pr[g ∼ G] (5)

If we generate multiple DS sets, the nodes that can detect misinformation from many
other nodes will likely appear frequently in the DS sets. Basically, the role of DS is
similar to the Reachable Reverse (RR) set in estimating influence spread function
[3,36,47–49]. We define a random variable X j (A) as follows:

X j (A) =
{
1, If R j ∩ A 
= ∅
0, Otherwise

(6)

Similar to Lemma 2 in [3], Lemma 1 shows that we can use the value of X j (A) to
estimate function D(A).

Lemma 1 For any set of nodes A ⊆ V , let ρ(S) = ∑
u∈S ρ(u) we have:

D(A) = ρ(S) · E[X j (A)] (7)

Proof Since the source node u is chosen with probability ρ(u)
ρ(S)

, we have:

D(A) =
∑

u∈V
ρ(u)

∑

g∼G

Pr[g ∼ G]R(A, g, u) (8)

=
∑

g∼G

∑

u∈V
ρ(u)R(A, g, u)Pr[g ∼ G] (9)

=
∑

g∼G

ρ(S)
∑

u∈V
R(A, g, u)Pr[g ∼ G]ρ(u)

ρ(S)
(10)

= ρ(S)
∑

g∼G

∑

u∈V
Cov(Rg

j (u), A)Pr[g ∼ G]Pr[u is the source node] (11)
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= ρ(S) · E[X j (A)] (12)

where Rg
j (u) is a DS corresponding to the sample graph g and the source node u. 
�

4.2 Greedy algorithm

We introduce Greedy algorithm that provides an approximation ratio of 1 + ln(γ /ε)

based on the submodular and monotone properties of the D(·) function, i.e, for A ⊆
T ⊆ V , v /∈ T D(A + {v}) − D(A) ≥ D(T + {v}) − D(T ).

Lemma 2 The function D(A) is monotone and submodular.

Proof Rewrite Eq. (11), we have:

D(A) =
∑

g∼G

∑

u∈V
Pr[g ∼ G]ρ(u)Cov(Rg

j (u), A) (13)

the above equation shows that the detection functionD(A) is equivalent to theweighted
coverage function of a set cover system in which: every R j is an element in the set of
all DS set and each node in V is a subset and V is a collection of subsets. Each node
v covers set R j if v belongs to R j . The value of Pr[g ∼ G]ρ(u) is the weight of an
element Rg

j (u). Since the weighted coverage function is monotone and submodular,
it has the same properties with D(A). 
�

Lemma 2 help us design an (1+ln γ
ε
)-approximation algorithm by applyingGreedy

algorithm in [18] (Algorithm 1), where ε ∈ (0, γ ) is an input.
At the beginning, this algorithm initiates a solution A as an empty set. The main

phase of the algorithmoperates inmultiple iterators (line 2-5). In each iterator, it simply
chooses a node u that provides the largest incremental detection function, defined as
follows:

δ(A, u) = min(D(A ∪ {u}), γ ) − D(A) (14)

untilD(A) ≥ γ − ε. However, we can not implement Greedy even for small networks
because calculating the detection function is #P-hard. To address this challenge, we
can use the Monte Carlo simulation method to estimate the detection function. Let R
be the maximum time needed to estimate the D(·) by using Mote-Carlo simulation
method, Greedy takes O(Rnk) time complexity, where k is the number of iterators in
algorithm.

4.3 Sampling-based for misinformation detection algorithm

This algorithm combines two novel techniques: (1) generating a collection of DS sets
that is enough to estimate the detection function by applying martingale theory and
(2) a new framework for generating candidate solutions and checking their quality to
select the final solution. Denote CovR(A) = ∑

R j∈Rmin{1, |A∩ R j |} as the number
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Algorithm 1: Greedy algorithm
Input: A graph G = (V , E), a suspected set S ⊆ V , a threshold γ , ε ∈ (0, γ )

Output: A set node A
1. A ← ∅
2. while D(A) < γ − ε do
3. u ← argmaxv∈V \S(min(D(A ∪ {v}), γ ) − D(A))

4. A ← A ∪ {u}
5. end
6. return A;

of DS sets inR covered by A. From Lemma 1 we obtain an estimation of D(A) from
R as follows:

D̂(A) = ρ(S)

|R| CovR(A) (15)

Since CovR(·) is monotone and submodular, D̂(·) is also monotone and submodular.
Detection sampling algorithmWe first devise an algorithm for generating a DSwhich
is inspired by the Breath-First-Search (BFS) algorithm, formally described below as
Algorithm 2. It first selects a source node u with probability ρ(u)

ρ(S)
(line 1), then uses

a queue Q to store the visited nodes and initiates a DS set R j = {u}. The rest of this
algorithm operates in several iterators. At each iterator, it picks a node u from Q and
adds u into R j , then selects each neighbor node v (not belong to Q) with probability
p(u, v) according to the live-edge model (line 8). If v is selected, it is put into Q.
Otherwise, the algorithmmoves to next iterator. This process repeats until Q becomes
an empty set.

Algorithm 2: Detection Sampling algorithm
Input: A graph G = (V , E), a suspected set S ⊆ V
Output: A DS set R j

1. Select a node u ∈ V with probability Pr[u] = ρ(u)
ρ(S)

2. Queue Q ← {u};
3. while Q is not empty do
4. u ← Q.pop()
5. R j ← R j ∪ {u}
6. foreach v ∈ Nout (u) \ R j do
7. if v /∈ Q then
8. Select v with probability p(u, v)

9. if (v is selected) then
10. Q.push(v)

11. end
12. end
13. end
14. end
15. return R j ;
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4.3.1 Description of SMD algorithm

Algorithm 3: Sampling-based Misinformation Detection (SMD) algorithm
Input: A graph G = (V , E), a suspested set S ⊆ V , a threshold γ > 0, ε, δ ∈ (0, 1)
Output: A set node A

1. N ← (2+ 2
3 ε)ρ(S)

ε2(γ−εγ )
ln(n/δ)

2. Generate set R containing N DS sets by Alg. 2
3. A ← ∅
4. while True do

5. u ← argmaxv∈V \A
(
D̂(A ∪ v) − D̂(A)

)
; // D̂(A) is calculated by Eq. (15)

6. A ← A ∪ {u}
7. if D̂(A) ≥ (γ − εγ ) − ε then
8. return A
9. else
10. i ← |A| + 1

11. Ni ← (2+ 2
3 ε)ρ(S)

ε2(γ−εγ )
ln(

(n
i
)
/δ)

12. if N < Ni then
13. Generate more Ni − N DS sets and add them intoR
14. N ← Ni
15. A ← ∅
16. end
17. end
18. end
19. return A;

This algorithm first generates a set R containing N = (2+ 2
3 ε)ρ(S)

ε2(γ−εγ )
ln(n/δ) DS sets

which ensures (δ, ε)-approximation for optimal solution A∗ (Lemma 4), i.e,

Pr[(1 + ε)D(A∗) ≥ D̂(A∗) ≥ (1 − ε)D(A∗)] ≥ 1 − δ (16)

The algorithm initiates an empty candidate solution A and its main phase happens
in several iterators (line 4-18) to select the final solution from multiple candidate
solutions.

Firstly, we observe that the candidate solutions may have different sizes and we do
not know the size of the final solution. Therefore, in each iterator i , we maintain a set
R with the size at least:

Ni (δ, ε) = (2 + 2
3ε)n

ε2(γ − εγ )
ln(

(
n

i

)

/δ)

which guarantees the bi-criterion approximation (Theorem 2) for the candidate solu-
tion Awith size |A| = i . The algorithm then selects node u, which provides the largest
incremental of estimation of detection function δ̂(A, v) = D̂(A ∪ v) − D̂(A) into the
candidate solution A (line 5).
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The algorithm then checks the quality of the candidate solution A in line 7. If the
set A satisfies D̂(A) ≥ γ − εγ − ε then the algorithm returns A. If not, it checks
whether the current number of samples is enough or not for the next iterator (the size
of candidate solution increasing by 1) (line 12). If yes, it moves to next iterators. If not,
it generatesmore Ni −N DS sets, adds them intoR (line 13) and resets current solution
A, i.e, it sets A as an empty set (line 15). The algorithm moves to next iterator and
constructs an another candidate solution from an empty set. The algorithm terminates
only when it meets the condition D̂(A) ≥ γ − εγ − ε.

4.3.2 Theoretical analysis

We now analyze the approximation guarantee of SMD using themartingale theory [11]
which is used for studying information propagation problems [36–38,47,49].

Definition 4 (Martingale) A sequence of random variable T1, T2, T3, . . . , Tl is a mar-
tingale, if only if E[Ti ] ≤ +∞ and E[Ti |T1, T2, T3, . . . , Ti−1] = Ti−1 for any
i = 2 . . . l.

The following concentration inequality [11] for martingales that have similar flavor to
the Chernoff bounds.

Lemma 3 ([11], Theorem 6.1) If T1, T2, . . . , Tl be a form of martingale satisfying

1) |T1| ≤ a, |Tj − Tj−1| ≤ a, for 1 ≤ j ≤ l
2) Var[Tj |T1, T2, . . . , Tj−1] ≤ σ 2

i , for 1 ≤ j ≤ l

where Var[·] denotes the variance of a random variable. Then, for any λ, we have:

Pr[Ti − E[Ti ] ≥ λ] ≥ exp

(

− λ2

2
3aλ + 2

∑l
i=1 σ 2

i

)

(17)

Given a collection of DS sets R, we consider a sequence of the random variables
{X j (A)}, j = 1, . . . , |R|. We observe that X j (A) ∈ [0, 1], let a random variable
Mi = ∑i

j=1(X j (A) − μX ),∀i ≥ 1, where μX = E[X j ]. For a sequence of random
variables M1, M2, . . . , M|R|, we have

E[Mi |M1, . . . , Mi−1] = E[Mi−1] + E[Xi (A) − μX ] = E[Mi−1],∀i = 2, . . . , |R|

Hence, M1, M2, . . . , M|R| be a form of martingale [11]. Apply Lemma 3 with a = 1,
Var[Mj |M1, M2, . . . , Mj−1] = Var[X j (A) − μX ] = Var[X j (A)] ≤ 1, l = |R| and
λ = ε|R|μX we have

Pr[
|R|∑

j=1

X j (A) ≥ (1 + ε)μX |R|] ≤ exp

(
−ε2|R|μX

2 + 2
3ε

)

(18)
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Similarly, −M1, . . . ,−Mi , . . . ,−M|R| also form a martingale and applying Lemma
3 will gives the following probabilistic inequality.

Pr[
|R|∑

j=1

X j (A) ≤ (1 − ε)μX |R|] ≤ exp

(−ε2|R|μX

2

)

(19)

By applying two inequalities above, we obtain the following Lemma indicating a
importance property of the optimal solution.

Lemma 4 Given ε, δ ∈ (0, 1). If |R| ≥ (2+ 2
3 ε)ρ(S)

ε2(γ−εγ )
ln 1

δ
, we have

Pr[D̂(A∗) ≥ γ − εγ ] ≥ 1 − δ (20)

where D̂(A∗) is calculated by Eq. (15) and A∗ is an optimal solution.

Proof Denote μ = D(A∗)/ρ(S), μ̂ = D̂(A∗)/ρ(S), apply (19) we have

Pr[D̂(A∗) ≤ γ − εγ ] ≤ Pr[D̂(A∗) ≤ (1 − ε)D(A∗)] (21)

= Pr[μ̂ ≤ (1 − ε)μ] ≤ exp

(−ε2|R|μ
2

)

(22)

≤ exp

(−ε2|R|μ̂
2(1 − ε)

)

(23)

≤ exp

(

− (2 + 2
3ε)D̂(A∗)

2(1 − ε)(γ − εγ )
ln

1

δ

)

≤ δ (24)

This completes the proof 
�
Theorem 2 Given ε, δ ∈ (0, 1), the Algorithm 3 returns a solution A with

a) Pr[|A| ≤ 1 + |A∗| · ln γ−γ ε
ε

] ≥ 1 − δ
n .

b) Pr
(
D(A) ≥ γ · 1−ε

1+ε
− ε

)
≥ 1 − δ.

Proof We consider the case when while-loop (line 4-18) terminates. Assume that the
algorithm returns a solution A = {a1, a2, . . . , ap}, denote Ai = {a1, a2, . . . , ai }, i ≤
p, we have the number of samples |R| = (2+ 2

3 ε)ρ(S)

ε2(γ−εγ )
ln(

( n
imax

)
/δ), where

imax = arg max
i :1...p

(2 + 2
3ε)ρ(S)

ε2(γ − εγ )
ln

(n
i

)

δ
(25)

Proof a)Let B = {b1, b2, . . . , bl} be a set of minimum size satisfying D̂(B) ≥ γ −εγ ,
we have:

γ − εγ − D̂(Ai ) ≤ D̂(Ai ∪ B) − D̂(Ai )
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=
l∑

j=1

(
D̂(Ai ∪ {b1, b2, . . . , b j }) − D̂(Ai ∪ {b1, b2, . . . , b j−1})

)

≤
l∑

j=1

(D̂(Ai ∪ {b j }) − D̂(Ai )) (Since D̂(·) is submodular)

≤ l · (D̂(Ai ) − D̂(Ai−1))

Therefore,

γ − εγ − D̂(Ai ) ≤ (1 − 1

l
)
(
γ − γ ε − D̂(Ai−1)

)
(26)

=
(

1 − 1

l

)i

(γ − γ ε) ≤ e−i/l(γ − γ ε) (27)

Because the candidate solution A meets condition in line 7, and by the definition of
Ai , we have D̂(Ap) ≥ γ − εγ − ε and D̂(Ap−1) < γ − εγ − ε. Combine with (27),
we have:

(γ − γ ε)e
−p−1

l ≥ (γ − γ ε) − D̂(Ap−1) ≥ (γ − εγ ) − (γ − εγ − ε) = ε

(28)

�⇒ p ≤ 1 + l · ln γ − γ ε

ε
(29)

From Lemma 4, we have Pr[D̂(A∗) ≥ γ − εγ ] ≥ 1 − δ/
( n
imax

)
. Due to the definition

of B, the following event happens with the probability at least 1 − δ/
( n
imax

)

|A| ≤ 1 + |B| ln γ − γ ε

ε
≤ 1 + |A∗| ln γ − γ ε

ε
(30)

Hence, Pr[|A| ≤ 1 + |A∗| · ln γ−γ ε
ε

] ≥ 1 − δ/
( n
imax

) ≥ 1 − δ/n.

Proof b) Since D̂(A) ≥ γ − εγ − ε where A is a solution returned by Algorithm 3.
Therefore,

Pr

(

D(A) ≤ γ
1 − ε

1 + ε
− ε

)

≤ Pr

(

D(A) ≤ γ − γ ε − ε

1 + ε

)

≤ Pr

(

D(A) ≤ D̂(A)

1 + ε

)

= Pr[D̂(A) ≥ (1 + ε)D(A)] = Pr[μ̂ ≥ (1 + ε)μ]

≤ exp

(
−ε2|R|μ
2 + 2

3ε

)

≤ exp

(
−ε2|R|μ̂

(2 + 2
3ε)(1 + ε)

)

= exp

⎛

⎝− ln
( n
imax)
δ

(1 + ε)

⎞

⎠ ≤ δ
( n
imax

) ≤ δ
(n
p

)
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Since |A| = p, there are at most
(n
p

)
possible solutions. Therefore,

Pr

(

∃A,D(A) ≤ γ · 1 − ε

1 + ε
− ε

)

≤ δ (31)

Hence,

Pr

(

∀A,D(A) ≥ γ · 1 − ε

1 + ε
− ε

)

≥ 1 − δ (32)

The proof is completed 
�

Complexity of SMD algorithm The number of required samples in the worst-case
(2+ 2

3 ε)ρ(S)

ε2(γ−εγ )
ln(

( n
imax

)
/δ) = O(ρ(S) ln(

( n
imax

)
/δ)ε−2).DenoteM is the expected running

time for generating one sample, the time complexity of Algorithm 3 is

O

(

imaxρ(S) ln(

(
n

imax

)

/δ)ε−2M

)

4.4 Importance sampling-basedmisinformation detection algorithm

We next introduce the ISMD algorithm, an improved version of SMD, which provides
the same approximation guarantee with SMD but requires fewer samples than SMD.
The main idea of this algorithm is that we propose an importance detection sample
(IDS) concept to estimate D(·) function instead of DS.

4.4.1 Importance detection sampling

We observe that DS sets contain only one node contributing insignificantly in calcu-
lating the detection function. Therefore, we only consider the generation of DS sets
that contain more than one node, called IDS sets. We show that the detection function
can be estimated through the IDS sets (Lemma 5).

We now describe how to generate an IDS. For a source node u, Ωu denotes the set
of all DS sets that have a source u. We divide Ωu into two components:

– Trivial samples: the set contains only a source node u, called Ω0
u .

– Importance samples: Ω i
u = Ωu \ Ω0

u .

For a source node u, let E0 be the event that none of nodes in Nout (u) is activated by
u, we have:

Pr[E0] =
∏

v∈Nout (u)

(1 − p(u, v)) (33)
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The probability that at least a node in Nout (u) is influenced by u is equal to the
probability of generating an importance detection sample from u:

ϕ(u) = 1 − Pr[E0] = 1 −
∏

u∈Nout (u)

(1 − p(u, v)) (34)

To generate a IDS set, we construct Ω i
u according to following analysis. Assume that

Nout (u) = {v1, v2, . . . , vl(u)} with |Nout (v)| = l(u), suppose Ei as the event that vi
is the first node in Nout (u) which is influenced by u, we have:

Pr[Ei ] = p(u, vi ) ·
i−1∏

j=1

(1 − p(u, vi )) (35)

By definition of Ei , we have:

l(u)∑

i=1

Pr[Ei ]/ϕ(u) = 1 end Ei ∩ E j = ∅ (36)

Ωn denotes the probability spaces of all IDS samples. The probability that an IDS set
R j with the source node u generated from Ωn is

Pr[R j (u) ∼ Ωn] = 1

ϕ(u)
Pr[R j (u) ∼ Ω] (37)

The probability that a node u is a source node of an IDS R j in Ω is ρ(u)
ρ(S)

ϕ(u). By
normalizing factor to fulfill a probability distribution of all IDS samples, the probability
that u is the source node of a IDS R j in Ωn is:

Pr[src(R j ) = u] = ρ(u)ϕ(u)
∑

v∈V ρ(v)ϕ(v)
= ρ(u)ϕ(u)

Φ
(38)

Where Φ = ∑
v∈V ρ(v)ϕ(v). For any IDS set R j , we have:

Pr[R j ∼ Ω] =
∑

u∈V
Pr[u is source of R j in Ω]Pr[R j (u) ∼ Ω] (39)

=
∑

u∈V

ρ(u)

ρ(S)
· ϕ(u)Pr[R j (u) ∼ Ωn] (40)

= Φ

ρ(S)
·
∑

u∈V

ρ(u)ϕ(u)

Φ
Pr[R j (u) ∼ Ωn] (41)

= Φ

ρ(S)
·
∑

u∈V
Pr[u is source of R j in Ωn]Pr[R j (u) ∼ Ωn] (42)
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= Φ

ρ(S)
· Pr[R j ∼ Ωn] (43)

We define two random variables Z j (A) and Y j (A) as follows:

Z j (A) =
{
1, If R j ∩ A 
= ∅
0, Otherwise

(44)

And,

Y j (A) = Φ · Z j (A) + ∑
v∈A(1 − ϕ(v))ρ(v)

ρ(S)
(45)

We have Y j (A) ∈ [Ymin,Ymax ], with Ymin =
∑

v∈A(1−ϕ(v))ρ(v)

ρ(S)
, Ymax =

Φ+∑
v∈A(1−ϕ(v))ρ(v)

ρ(S)
, we have following Lemma:

Lemma 5 For any set of nodes A ⊆ V , we have:

D(A) = Φ · E[Z j (A)] +
∑

v∈A

(1 − ϕ(v))ρ(v) = ρ(S) · E[Y j (A)] (46)

Proof From Lemma 1, we have

D(A) = ρ(S) ·
∑

R j∈Ω

Pr[R j ∼ Ω]X j (A) (47)

= ρ(S) ·
⎛

⎝
∑

R j∈Ω0

Pr[R j ∼ Ω]X j (A) +
∑

R j∈Ωn

Pr[R j ∼ Ω]X j (A)

⎞

⎠ (48)

Since each R j ∈ Ω0 contains only a source node, we have:

Pr[R j ∼ Ω] = ρ(u)

ρ(S)
(1 − ϕ(u))

where u = src(R j ). Put it into (48), we have:

D(A) = ρ(S)
∑

u∈A

ρ(u)

ρ(S)
(1 − ϕ(u)) + ρ(S)

∑

R j∈Ωn

Pr[R j ∼ Ω]Cov(A, R j )

=
∑

u∈A

ρ(u)(1 − ϕ(u)) + ρ(S)
∑

R j∈Ωn

Φ

ρ(S)
Pr[R j ∼ Ωn]Cov(A, R j )

=
∑

u∈A

ρ(u)(1 − ϕ(u)) + Φ
∑

R j∈Ωn

Pr[R j ∼ Ωn]Z j (A)
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=
∑

u∈A

ρ(u)(1 − ϕ(u)) + ΦE[Z j (A)]

= ρ(S) · E[Y j (A)] (Due to the definition of Y j (A))

which competes the proof. 
�

From Lemma 5, we have another estimation of D(A) by utilizing a set of IDS R:

D̂(A) = Φ

|R|
∑

R j∈R
Cov(A, R j ) +

∑

v∈A

(1 − ϕ(v))ρ(v) (49)

From the above analysis, we propose an Importance Detection Sampling algorithm
to generate an IDS set by modifying Algorithm 2. The details of this algorithm are
described in Algorithm 4.

The algorithm first selects a source of IDSwith the probability according to e.q (38)
(line 1). Then, it calculates probabilities Pr[Ei ], i = 1 . . . , l(u) and selects a first out-
neighbour ui in Nout (u) with probability Pr[Ei ]/ϕ(u) (line 3). This guarantees that at
least one of the out-neighbors of u will be selected. Similar to Alg. 2, this algorithm
also uses a queue Q to store the visited nodes and initiates an IDS R j = {u}. At this
time, Q = R j = {u, vi } (line 4-5). The nodes v1, v2, . . . , v j−1 are ignored and nodes
vi+1, . . . , vl are then selected independently with probability p(u, v j ), j = i +1 . . . l
(line 7) and added into Q and R j (line 9). The rest of this algorithm is similar to the
while-loop (line 3-14) in Alg. 2 because of the similarity between IDS and DS from
this step.

4.4.2 Description of ISMD algorithm

The details of ISMD is presented in Algorithm 5. This algorithm works similarly to
SMD algorithm, themain difference between these two algorithms lies in the following
two factors. Firstly, ISMD generates IDS sets instead of DS (line 2) and uses them
for estimating the detection function by Eq. (49). Secondly, the number of required
samples of ISMD in each iterator is lower than that of SMD. Specifically, ISMD needs
q(2+ 2

3 ε)ρ(S)

ε2(γ−εγ )
ln(

(n
i

)
/δ), (q < 1) samples, which is fewer than that of SMD a factor of

q, (q < 1).

4.4.3 Theoretical analysis

We show that ISMD has the same approximation guarantee with SMD but ISMD needs
fewer samples than SMD. From that on, we also point out that the complexity of ISMD
is less than that of SMD. Firstly, by applying Lemma 3, we have following Lemma
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Algorithm 4: Importance Detection Sampling algorithm
Data: Graph G = (V , E), suspected set S ⊆ V
Result: an IDS set R j

1. Select a node u ∈ V with probability Pr[u] = ϕ(u)ρ(u)
Φ

2. Calulate Pr[Ei ], i = 1 . . . l(u) by Eq. (35).

3. Select one node vi ∈ Nout (u) with probability Pr[Ei ]
ϕ(u)

4. R j ← {u, vi };
5. Queue Q ← {vi };
6. for j = i + 1 to l do
7. Select v j with propability p(u, v j );
8. if (v j is selected) then
9. Q.push(v j ), R j ← R j ∪ {v j }
10. end
11. end
12. while Q is not empty do
13. u ← Q.pop()
14. foreach v ∈ Nout (u) \ R j do
15. if v /∈ Q then
16. Select v with probability p(u, v)

17. if (v is selected) then
18. Q.push(v)

19. R j ← R j ∪ {v}
20. end
21. end
22. end
23. end
24. return R j ;

Lemma 6 For any T = |R| > 0, λ > 0, μ is the mean of Y j (A), and an estimation of

μ is μ̂ =
∑T

i=1 Y j (A)

T . Let q = Ymax − Ymin = Φ
ρ(S)

, we have:

Pr
[ T∑

j=1

Y j (A) − T · μ ≥ λ
]

≤ exp

(

− λ2

2
3qλ + 2qμT

)

(50)

Pr
[ T∑

j=1

Y j (A) − T · μ ≥ −λ
]

≤ exp

(

− λ2

2qμT

)

(51)

Proof For any set A ⊆ V , since Y j (A) ∈ [Ymin,Ymax ] we have

Var[Y j (A)] ≤ (μ − Ymin)(Ymax − μ) ≤ (Ymax − Ymin)μ = q · μ (52)

Choose randomly variable Mi = ∑i
j=1(Y j (A) − μ),∀i ≥ 1, where μ = E[Y j ]. We

can easily show that M1, M2, . . . is a form of martingale [11]. Applying Lemma 3,
with a = q, Var[Mj |M1, M2, . . . , Mj−1] = Var[Y j (A) − μ] = Var[Y j (A)] ≤ q,
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Algorithm 5: Importance Sampling-Based for Misinformation Detection (ISMD)
algorithm
Input: A graph G = (V , E), a suspested set S ⊆ V , a threshold γ > 0, ε, δ ∈ (0, 1)
Output: A set node A

1. N ← q(2+ 2
3 ε)ρ(S)

ε2(γ−εγ )
ln(n/δ)

2. Generate set R containing N IDS set
3. A ← ∅
4. while True do

5. u ← argmaxv∈V \A
(
D̂(A ∪ v) − D̂(A)

)
; // D̂(A) is calculated by Eq. (49)

6. A ← A ∪ {u}
7. if D̂(A) ≥ γ − εγ − ε then
8. return A
9. else

10. end
11. i ← |A| + 1

12. Ni ← q(2+ 2
3 ε)ρ(S)

ε2(γ−εγ )
ln(

(n
i
)
/δ)

13. if N < Ni then
14. Generate more Ni − N IDS sets and add them intoR
15. N ← Ni
16. A ← ∅
17. end
18. end
19. return A;

T = l and λ = εTμX we have

Var[M1] +
i∑

j=2

Var[Mj |M1, M2, . . . , Mj−1] =
T∑

j=1

Var[Tj (A)] ≤ qμT (53)

Applying Lemma 3 with a = q and b = Tqμ, and put back into (17) we obtain (50).
Similarly,−M1, . . . ,−Mi , . . . also form amartingale and by applying (17), we obtain
(51). 
�

Lemma 7 Given ε, δ ∈ (0, 1). If |R| ≥ q(2+ 2
3 ε)ρ(S)

ε2(γ−εγ )
ln 1

δ
, we have Pr[D̂(A∗) ≥ γ −

εγ ] ≥ 1 − δ where D̂(A) is calculated by (49).

Proof Applying Lemma 6, with λ = εTμ, q = Φ
ρ(S)

we have

Pr[D̂(A∗) ≤ γ − εγ ] ≤ Pr[D̂(A∗) ≤ (1 − ε)D(A∗)] (54)

= Pr[μ̂ ≤ (1 − ε)μ] ≤ exp

(−ε2|R|μ
2q

)

(55)

≤ exp

(

− (2 + 2
3ε)D̂(A∗)

2(1 − ε)(γ − εγ )
ln

1

δ

)

≤ δ (56)
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Table 2 Datasets

Dataset Nodes Edges Type Avg. degree

Email-Eu-Core [24,51] 1005 25,571 Directed 25.44

Wiki-Vote [26,27] 7115 103,689 Directed 14.57

CA-HepPh [24] 12,008 118,521 Undirected 9.87

CA-AstroPh [24] 18,722 198,110 Undirected 10.58

Email-Eu-All [24] 265,214 420,045 Directed 1.58

The proof is completed. 
�
Theorem 3 Given ε, δ ∈ (0, 1), the Algorithm 5 returns a solution A satisfying:

a) Pr[|A| ≤ 1 + |A∗| · ln γ−γ ε
ε

] ≥ 1 − δ
n .

b) Pr
(
D(A) ≥ γ · 1−ε

1+ε
− ε

)
≥ 1 − δ.

The proof of Theorem 3 applies Lemma 7 and is similar to the proof of Theorem 2.
Complexity of ISMD algorithmDenote M is the expected running time for generating

a IDS set, Algorithm 5 requires q
(2+ 2

3 ε)ρ(S)

ε2(γ−εγ )
ln(

( n
imax

)
/δ) in the worst-case and thus the

complexity of Algorithm 5 is:

O

(

qimaxρ(S) ln(

(
n

imax

)

/δ)ε−2)M

)

The ISMD and SMD algorithms provide the same theoretical result, however, the
sample complexity of ISMD is smaller than that of SMD by a factor of q, (q < 1),
which leads to the fact that the running time of ISMD is less than that of SMD. This
observation is consistent with the experiment results on the real social networks in
Sect. 5.

5 Experiment

In this section, we conduct comprehensive experiments to compare the performance of
our proposed algorithms to the state-of-the-art ones on three aspects: solution quality
(size of monitor set), running time and memory usage.

5.1 Experimental settings

Datasets For the comprehensive experimental purpose, we select a diverse set of 5
datasets with different sizes. The description of those datasets is provided in Table 2.

– Email-Eu-Core The network was generated using email data from a large Euro-
pean research institution. The e-mails only represent communication between
institution members (the core), and the dataset does not contain incomming and
outgoing messages outside the institution.
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– Wiki-Vote The network contains all the Wikipedia voting data from the inception
of Wikipedia until January 2008. Nodes in the network represent wikipedia users
and a directed edge from node i to node j represents that user i voted on user j.

– CA-HepPhArxivHEP-PH (HighEnergy Physics - Phenomenology) collaboration
network is from the e-print arXiv.org and covers scientific collaborations between
authors’ papers submitted to High Energy Physics - Phenomenology category. The
data covers papers in the period from January 1993 to April 2003 (124 months).

– CA-AstroPh Arxiv ASTRO-PH (Astro Physics) collaboration network is from
the e-print arXiv.org and covers scientific collaborations between authors’ papers
submitted to Astro Physics category. The data also covers papers in the period
from January 1993 to April 2003 (124 months).

– Email-Eu-All The network was generated using email data from a large European
research institution. For a period from October 2003 to May 2005 (18 months)
they have anonymized information about all incoming and outgoing email of the
research institution.

Algorithms compared We compare Greedy, SMD, and ISMD with OPIM [47], the
state-of-the-art Reverse Reachable (RR) sampling algorithm for Influence Maximiza-
tion problem and several common baselines for investigating information diffusion
problem [7,20,42,53,54]. In baseline algorithms, we use Monte Carlo method with
10,000 times to estimate of detection function. For each algorithm, we run 10 times
to get the average results. Details of these algorithms are described as follows:

– OPIM [47]: This is the current state-of-the-art algorithm that use the sample tech-
nique to solve the IM problem, where the number of seeds k is an input. Because
of the similarity between DS and RR set, we use OPIM for the MBD problem in
comparison with our algorithms. Besides, since our problem asks to minimize the
number of monitor nodes, this algorithm cannot be applied directly. Therefore,
we adapt this algorithm with some modifications by performing a binary search
on k in the interval [1, n]. We choose this approach over starting at k = 1 and at
each iterator of the binary search, OPIM utilizes the value of k in question until the
algorithm finds the minimum k so that the estimation of the value of D is at least
γ . There are at most log2 n iterators.

– Degree: The heuristic algorithm based on the measurement of degree. We select
nodes with the highest degree and we keep on adding the highest-degree nodes
until detection function of the selection of nodes exceeds γ .

– Random: We randomly select nodes until detection function of the selection of
nodes exceeds γ .

– PageRank [40]: A link analysis algorithm to rank the importance of pages in a
Web graph. We implement the power method with a damping factor of 0.85 and
keep on adding the highest-rank node until detection function exceeds γ .

Weight settings We use Trivalency model [7,20,36,55] to choose the weight of the
edges. In this model, instead of assuming all nodes are equally influential, influence
probabilities are drawn uniformly at random from a predetermined set of probabilities,
here we used {0.001, 0.01, 0.1}. The idea of this model is that nodes whose (outgoing)
influence is 0.001 can be thought of low influence nodes, with 0.01 corresponding to
medium influence and 0.1 to high influence.
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Table 3 Values of Υ and ε for
each network

Dataset ρ(S) Ψ ε

Email-Eu-Core 249.33 1.0 0.01

Wiki-Vote 1784.78 0.2 0.01

CA-HepPh 3009.29 0.2 0.01

CA-AstroPh 4726.66 0.4 0.1

Email-Eu-All 171,217 0.1 0.1

Parameters In all the experiments, we keep δ = 1/n as a general setting [36,47–49].
Suspected nodes are randomly chosen with the size n/2 and the probability ρ(u) is
randomly chosen in [0, 1]. We choose ε and γ depending on the size of the network.
Denote Ψ = γ /ρ(S) reflect the relation between γ and ρ(S). The values of these
parameters are described in Table 3. The running time of each algorithm is limited
within 24 hours.
Environment All our experiments are carried out using a Linux machine with a 2 x
Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz 8 x 16 GB DIMM ECC DDR4 @
2400MHz. Our implementation is written in C++ and compiled with GCC 4.7. We
use OPENMP library for parallel programming.

5.2 Experiment results

Solution quality We first compare the quality solutions of algorithms which are mea-
sured by the size of monitor set. The results is presented in Fig. 1 in which the better
algorithm returns the smaller-size monitor set. We observe that SMD and ISMD have
the same performance in all cases, which outperform other algorithms by a large gap.
The bigger value of Ψ is, the greater gap between our proposed algorithms and other
algorithms is. Specificity, with the same value of Ψ , SMD and ISMD are up to 3.9
times better than OPIM, 2.3 times better than Greedy. Our algorithms also are sev-
eral times better than baseline methods. This proves that the proposed framework
algorithm for SMD and ISMD is more efficient than the other algorithms. It not only
selects the smaller-size set of nodes but also ensures the approximation guarantees of
the solutions. OPIM selects too many vertices because the framework of binary search
may not work well in the circumstance MBD problem. In addition, the estimation of
the detection function by DS and IDS concepts gives better and more efficient results
than Monte-Carlo simulation method in Greedy algorithm.
Running time Figure 2 reveals the running time of the tested algorithms. In overall,
both SMD and ISMD significantly outperform the rest of the algorithms in terms of
running time. Our algorithms are faster than OPIM on the most of networks (up to
1.5 times faster), OPIM only gives a better time on Email-Eu-Core network. This is
because OPIM takes a long time for binary search to get the good solution. Compare
with Greedy, SMD is up to 10.2 times faster than Greedy and ISMD is up to 12.4 times
faster than Greedy. For the large networks such as Email-Eu-All, CA-AstroPh, Greedy
can not finish within limited time while SMD and ISMD algorithms still work and give
good results. This indicates that the estimation of detection function by DS and IDS
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Fig. 1 Size of solutions of algorithms

is faster than using traditional Monte Carlo simulation method of Greedy. Compare
SMD to ISMD, the average running time of ISMD is up to 1.4 faster than SMD. The
main reason is that the number of required samples of ISMD is lower than that of SMD.
Unsurprisingly, the baseline algorithms have small running time since they are simple
heuristic algorithms with low complexity.
Memory usage and number of samples The results on memory usage of the SMD
and ISMD algorithms are shown in Table. 4, and the number of samples generated by
them is shown in the Fig. 3. We do not represent the memory usage of Greedy and
baseline algorithms because their memories are small and fixed regardless of changing
Ψ . SMD, ISMD and OPIM consume more memories than the other because of wasting
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Fig. 2 Running time of the algorithms

memories for storing samples. The results show that the number of required samples
and memories usage of ISMD is the smallest. The number of required samples of
ISMD is up to 5.14 and 8.6 times smaller than that of SMD and OPIM, respectively.
Also, these results confirm our theoretical establishment in Sect. 4 that the sample
complexity of ISMD is less than that of SMD by a factor of q < 1. OPIM needs more
samples than our algorithms because it does not reuse samples generated in previous
steps. Certainly, thememory usage by ISMD is lower than that SMD ofOPIM. However,
the gap between SMD and ISMD is negligible. This is because of the number of nodes
of an IDS samples is larger than that of a DS, so we need a more memory to store an
IDS sample. This result, besides the size of monitor set and the running time, clearly
shows the superiority and efficiency of ISMD compared with SMD and OPIM.
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Fig. 3 Comparison number of number of samples generated by SMD, ISMD and OPIM

Table 4 Memory usage (× 1000 MB) of SMD, ISMD and OPIM

Algo. Email-Eu-Core Wiki-Vote CA-Hep. CA-Astro. Email-Eu-All
(Ψ = 1) (Ψ = 0.2) (Ψ = 0.2) (Ψ = 0.4) (Ψ = 0.1)

SMD 14.2 41.3 28.8 14.7 25.5

ISMD 13.7 37.2 28.4 13.9 25.4

OPIM 13.9 52.6 62.3 35.1 30.2
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6 Conclusion

In this paper, we proposeMBD problemwhich aims at finding the smallest set of nodes
to place monitors in a social network to detect misinformation from suspected nodes
so that the expected detection function is greater than or equal to a threshold γ > 0.
Besides showing challenge for solving MBD, we propose three algorithms including:
Greedy, SMD and ISMD, in which SMD and ISMD are randomized approximation
algorithms that outperform other algorithms. In the future, we will further improve
the running time of these algorithmsmaking them applicable to billion-scale networks.
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