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Abstract
In this paper, we study the recently introduced Traveling Car Renter Problem. This
latter is a generalization of the well-known traveling salesman problem, where a solu-
tion is a set of paths of different colors as well as an orientation of each path in such a
way that the union forms a directed Hamiltonian circuit. Considering costs associated
with all edges and all ordered pairs of nodes for each color, the cost of a solution is the
sum of the costs of its colored oriented paths, the cost of these later being the sum of
the edge costs plus the costs of the arcs from their destination to their origin. We also
consider the Quota version of this problem where a weight is associated with every
node and the circuit formed by a solution may not be Hamiltonian but must cover a
subset of nodes whose sum of weights should be greater than or equal to a fixed value.
We propose integer linear programming formulations for these problems. We also
propose some valid inequalities for strengthening the models and we devise branch-
and-cut algorithms for solving these formulations. The computational results show
the efficiency of our formulations as we solve to optimality almost all the instances of
the literature, and outperform by an order of magnitude all published approaches.

Keywords Vehicle routing · Traveling salesman problem · Integer linear
programming formulation · Branch-and-cut
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1 Introduction

In this paper,we consider theTravelingCarRenterProblem (CARS). An instance of the
CARS is given by an undirected graph G = (V , E) where V = {1, . . . , n} indicates
a set of nodes and i j ∈ E is an edge between nodes i and j . A set K = {1, . . . , o}
of colors is also given. Moreover, for every color k ∈ K , a cost dke is associated with
each edge e ∈ E and a cost cki, j is associated with each ordered pair (i, j) ∈ V × V
(note that c is asymmetric whereas d is symmetric). A solution to the CARS is a set
of paths of different colors as well as an orientation of each path in such a way that
the union forms a directed Hamiltonian circuit. The cost of a solution is defined as the
sum of the costs of the colored oriented paths, where the cost of a st-path P with color
k oriented from s to t is defined as

∑
e∈P dke + cks,t . The CARS consists of finding a

solution of minimum cost.
The CARS was introduced by Goldbarg et al. [9], and it is directed to the viewpoint

of vehicle rental customers. In general, a user of rented vehicles aims at traveling a
specific route by minimizing the rental cost. Nowadays, there are several available
vehicles, which means that a user may choose the most attractive vehicle for traveling
different parts of the intended route. Nevertheless, an extra fee must be paid whenever
a vehicle is delivered to a city different from the one it was rented. Hence, this problem
corresponds to the CARS: each vehicle corresponds to a color k ∈ K and a st-path
P of color k oriented from s to t in a solution corresponds to renting the vehicle k at
city s, traveling with this vehicle through P and delivering it at city t . The total rental
cost of a trip is given by the travel cost

∑
e∈P dke plus the extra fee cks,t of returning

the vehicle from t to s. Note that in this context, a specific node corresponding to the
initial position of the customer is generally set, and an initial rental is required at this
node.

TheQuota CARS (QCARS) is a variant of the CARSwhere a weight qi is associated
with each node i ∈ V , and a quota Q is given, representing the minimum amount of
weight that should be collected. In the QCARS, it is not anymore mandatory to visit
all the nodes. Indeed, the algorithm can select the subset of nodes it visits under the
constraint to reach at least the threshold Q. Therefore, the QCARS aims at finding at
minimum cost a set of paths of different colors with orientations in such a way that the
union forms a directed circuit covering a subset of nodes U satisfying

∑
i∈U qi ≥ Q.

TheQCARSwas introduced in [4] tomodel the variant of the CARSwhere the user,
a tourist, wants to visit a subset of touristic places to reach a level of satisfaction. The
QCARS also models a specific case of the Rapid Transit Networks Design problems
that consist of embedding a set of interconnected transit lines within an undirected
network. The nodes correspond to population centroids in a city, while the edges
correspond to potential connections to be built between node pairs. Let qi be the
population associated with node i , usually defined as the population living within a
reasonable walking distance of the node. Let dki j be the cost of constructing a link of

type k between i and j and let cki, j indicate the cost of constructing a depot at the
beginning (i.e., node i) and a depot at the ending (i.e., node j) of the transit line of
type k. This cost is asymmetric due to the difference in real-estate price in i and j
and the different size of the starting and ending depots. Moreover, the cost could be
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different since the lines could be of different types, such as: buses, metros, lightmetros,
tramways, or fully overground light-rail systems. An objective of a rapid transit system
is to minimize the cost while deserving a certain amount of population [11]. In this
case, the model locates the stations chosen among a subset of nodes, determines the
connections between the stations, and partitions them into different lines. Under the
hypotheses that there is only one line of each type and the lines should create a circuit,
this is precisely the QCARS.

The traveling salesman problem (TSP) is a particular case of the CARS where only
one car is considered, and since the TSP is NP-hard, so is the CARS. However, from
a computational point of view, the TSP can be solved up to thousands of nodes [1],
whereas the exact existing methods can only solve instances of the CARS with up to
20 nodes and five colors. In this paper, we provide a new integer linear programming
formulation for the CARS, and devise a branch-and-cut algorithm able to solve in
an exact way almost all the instances of Goldbarg et al. [9], even those containing
hundreds of nodes and more than four colors.

Moreover, the proposed formulation and the branch-and-cut algorithm have been
adapted to the QCARS, solving to optimality all the instances generated in [4], the
vast majority being solved in less than a second.

2 Literature review

Mathematical programming models and approaches for solving the CARS have been
scarcely explored. The first formulations for modeling the CARS have been proposed
in [7] and in [3]. As pointed out by Rios et al. [13], the formulation in [3] actually
models the CARS without an initial rental required on a specific node. Nevertheless,
an incomplete integer programming formulation containing nonlinear constraints was
previously proposed in the literature [6]. In [8], three different mathematical formu-
lations are proposed and computationally compared. The first model has a quadratic
objective function and is based on the TSP formulation viewed as a particular case of
the quadratic assignment problem. The assignment variables represent the positions of
the nodes in the Hamiltonian circuit. The second model also has a quadratic objective
function, but it is based on the Gavish-Grave’s formulation for the TSP. The last pro-
posed model is based on the Dantzig–Fulkerson–Johnson’s formulation for the TSP
[1] and has quadratic constraints. An experimental comparison of the three linearized
formulations is performed. Instances with up to 52 nodes and three colors are solved to
optimality. However, when the number of colors increases, the performance worsens
dramatically: with five colors, only instances with less than 20 nodes are solved to
optimality.

Pedrosa et al. [12] study the CARS for which the rental costs cks,t are all equal
for any s, t ∈ V and any color k ∈ K . They propose an O(log n)−approximation
algorithm for the problem based on the randomized rounding of an exponentially large
linear relaxation.

Different metaheuristics have been devised for the CARS. Goldbarg et al. [9]
devise two greedy randomized adaptive search procedures with variable neighbor-
hood descent. Several evolutionary algorithms have also been developed: memetic

123



1908 M. Lacroix et al.

algorithms [4,9], transgenetic algorithms [2,6] and scientific algorithm [5]. Two hybrid
algorithms have also been proposed [3,13].

The QCARS has also been considered in the literature. Two integer linear program-
ming formulations for the QCARS are presented in [4,7]. Both formulations are based
on the same nonlinear constraints, but differ by the linearization techniques applied.
By using these formulations, instances with up to 16 nodes are solved to optimality.
da Silva Menezes et al. [4] and Goldbarg et al. [7] also devise evolutionary algorithms
to solve the QCARS. Computational experiments based on instances with up to 100
nodes are reported.

A related problem to the CARS is the colorful traveling salesman problem [10,16],
where edges are colored, and the objective is to find a Hamiltonian circuit with the
minimum number of distinct colors. The different colors must not be contiguous, and
there are no rental costs as in the CARS. Another problem close to the CARS is the
traveling salesman problem with flexible coloring [14]. In this problem, nodes belong
to various color classes, and the aim is to assign a color to each node to find the
shortest Hamiltonian circuit with the particularity that all nodes of the same color
must be visited consecutively.

3 Integer linear programming formulations

In this section, we introduce new formulations for the CARS and the QCARS.
Moreover, we present valid inequalities to strengthen the formulations and devise
branch-and-cut algorithms to solve these formulations. We also discuss some variants
of the problems.

To compare our approach with those in the literature (except the one proposed by
da Silva and Ochi [3]), we take into account the same assumption: node one must be
the extremity of a path. This assumption stems from the fact that a tourist arrives at a
specific city (node one) and starts its trip by renting a vehicle.

3.1 CARS formulation

In our formulation the orientation of a st-path of color k is represented by the arc from
s to t with color k. Then a solution with several colors consists of a union of undirected
colored paths and by a directed circuit composed of the orientations of the paths. Note
that if the solution contains only one color, then we do not have an orientation of the
associated circuit. Figure 1 represents a solution on 14 nodes with three colored paths:
one with extremities 1 and 8, one with extremities 8 and 11, and the last one with
extremities 11 and 1. The first path is oriented from 1 to 8, the second from 8 to 11,
and the last one from 11 to 1.

The proposed formulation contains four types of variables. The binary variable xke
equals one when the edge e ∈ E belongs to the path having color k ∈ K . The binary
variable yki, j equals one when the solution contains a path of color k ∈ K that has i
and j as extremities and that is oriented from i to j , for all i �= j ∈ V ×V . The binary
variable zki equals 1 if node i ∈ V is adjacent to an edge of color k ∈ K . The binary
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Fig. 1 An example of a solution
of an instance of 14 nodes which
uses three colors: red, blue and
black (color figure online)
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variable wk equals 1 if color k ∈ K is the only color used in the solution. Therefore
the CARS can be formulated as follows where δ(i) is the set of edges of E incident
to a node i ∈ V , E[S] is the set of edges having both extremities in a node set S ⊆ V
and xk(F) = ∑

e∈F xke for F ⊆ E .

(CARS) min
∑

k∈K

∑

e∈E
dke x

k
e +

∑

k∈K

∑

i �= j∈V
cki, j y

k
i, j +

∑

k∈K
ck1,1w

k (1)

s.t .
∑

k∈K
xk(δ(i)) = 2 i ∈ V (2)

∑

k∈K
xk(E[S]) ≤ |S| − 1 S ⊆ V , 2 ≤ |S| ≤ �n

2
� (3)

xk(δ(i)) +
∑

j∈V \{i}

(
ykj,i + yki, j

)
= 2zki k ∈ K , i ∈ V (4)

∑

i �= j∈V
yki, j +

∑

�∈K
w� ≤ 1 k ∈ K (5)

xk(δ(1)) = zk1 + wk k ∈ K (6)
∑

k∈K

∑

j∈V \{i}
yki, j −

∑

k∈K

∑

j∈V \{i}
ykj,i = 0 i ∈ V (7)

wk, xke , y
k
i, j , z

k
i ∈ {0, 1}

The objective function (1) minimizes the travel cost of the Hamiltonian circuit and
the sum of the rental costs. Equations (2) are the degree constraints that force the
tour to visit each node once. Constraints (3) are the well-known subtour elimination
constraints stating that for each node subset S � V the number of edges in the solution
having both extremities in S must be less than |S|. By (4), if a node i is colored with
k ∈ K (that is zki = 1) then it is incident to two edges of the path of color k or it is one
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of its extremities. Inequalities (5) imply that there is at most one path of each color if
the solution contains several colors (i.e.,

∑
k∈K wk = 0) and if the solution contains

only one color (wk = 1 for some k ∈ K ), its colored path is a circuit (i.e., yki, j = 0
for all i �= j ∈ V , k ∈ K ). Equation (6) specifies that node 1 is adjacent to two edges
of a same color k ∈ K only if k is the only color in the solution. Equations (7) are
the flow conservation constraints associated with variables y. Consider a binary point
w̄, x̄, ȳ, z̄ satisfying constraints (2)–(7). By (2) and (3), the set of edges satisfying∑

k∈K x̄ke = 1 corresponds to a Hamiltonian circuit, say C . For a color k ∈ K , let Sk

be the set of nodes i ∈ V with z̄ki = 1, Ek be the set of edges e ∈ E with x̄ ke = 1
and Ak be the set of arcs (i, j) such that ȳki, j = 1. By (4), Ek ⊆ E[Sk] and i, j ∈ Sk

for all (i, j) ∈ Ak . Moreover, |Ek | + |Ak | = |Sk |. If wk = 1 for some k ∈ K , then
Ak = ∅ by (5) and Ek �= ∅ by (6). Since |Ek | = |Sk |, constraints (3) imply that
Sk = V and the solution is a Hamiltonian circuit of color k. Suppose now thatwk = 0
for all k ∈ K . For each k ∈ K , Ek is not a Hamiltonian circuit by (6). Hence, by
(3), |Ek | ≤ |Sk | − 1. This implies that Ak = {(sk, tk)} and |Ek | = |Sk | − 1 by (5).
Constraints (2), (3) and (4) ensure that Ek is a sktk-path covering Sk which means
that C is a union of different colored paths. By (7), their orientation forms a directed
Hamiltonian circuit, proving the validity of the formulation.

3.2 QCARS formulation

Recall that for this version of the CARS, some nodes may not be visited. Indeed, the
model determines the nodes to visit to reach the quota Q at the least cost. Thus, we
modify the previous model by introducing additional binary variables: the variable ui
equals one if the node i ∈ V is visited. To ensure that the collected profit reaches the
quota, we consider the following constraint:

∑

i∈V
qiui ≥ Q (8)

We also need to modify inequalities (2) and (3). Equations (2) are replaced by the
following: ∑

k∈K
xk(δ(i)) = 2ui i ∈ V (9)

These equations impose that the circuit formed by {e ∈ E : ∑
k∈K xke = 1} covers i

if and only if i is visited (i.e., ui = 1).
The colored paths may form a circuit that is not Hamiltonian but covers node 1

since some of the other nodes may not be visited. Hence, inequalities (3) are no more
valid. We must either restrict inequalities (3) to node subsets not containing node 1 or
replace these inequalities by the following generalized subtour inequalities introduced
by Wolsey [15]:

∑

k∈K
xk(E[S]) ≤

∑

j∈S\{i}
u j , S ⊆ V such that 1 /∈ S, i ∈ S. (10)
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3.3 Strengthening the linear programming relaxations

In this section, we reinforce the linear relaxations of the CARS and QCARS formu-
lations by strengthening the lower and upper bounds of each variable zki with three
inequalities. The efficiency of these new inequalities is experimentally showed in
Sect. 4.

The first family gives an upper bound on variables z by ensuring that a node i is
adjacent to an edge of color k (i.e., zki = 1) only if there exists a path or a circuit of
color k (i.e.,

∑
u �=v∈V yku,v + wk = 1):

zki ≤
∑

u �=v∈V
yku,v + wk i ∈ V , k ∈ K (11)

Note that inequalities (5) imply that inequalities (11) dominate z ≤ 1.
The other two families of constraints give a lower bound on variables z. The second

family imposes that an edge e = i j is of color k (i.e., xke = 1) only if its extremities
are incident to an edge of color k (i.e., zki = 1 and zkj = 1).

xke ≤ zki i ∈ V , e ∈ δ(i), k ∈ K . (12)

The last family implies that a node i ∈ V \ {1} is the extremity of the path of color
k (i.e.,

∑
j∈V \{i}(yki, j + ykj,i ) = 1) only if it is incident to an edge of color k (i.e.,

zki = 1).

wk +
∑

j∈V \{i}

(
yki, j + ykj,i

)
≤ zki i ∈ V \ {1}, k ∈ K . (13)

Note that inequalities (13) are not defined for node 1 since it is redundant with
respect to the Eq. (4) associated with node 1 and Eq. (6).

3.4 Branch-and-cut algorithms

In the previous sections, we proposed integer linear formulations for the CARS and its
quota variant. Both formulations contain an exponential number of inequalities in order
to prevent the formation of subtours: the subtour elimination constraints (3) for the
CARS and the generalized subtour elimination constraints (10) for the QCARS. Note
that the other constraints, even those introduced in Sect. 3.3 for strengthening the linear
relaxations, are in polynomial number. These formulations cannot be directly solved
outside very small instances due to this exponential number of constraints. Hence,
we solve these formulations using branch-and-cut algorithms where the (generalized)
subtour elimination constraints (3) and (10) are added in a lazy way.

CARS The formulation obtained by adding the strengthening inequalities of Sect. 3.3,
but removing the subtour elimination constraints (3), that is, the formulation given
by inequalities (2), (4)–(7), (11), (12) and (13) is solved using a branch-and-bound
procedure. Each time an integer solution is found, the algorithm checks whether it is
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feasible for theCARS, that is, whether it satisfies all the subtour elimination constraints
(3). If not, the integer point is discarded and a constraint (3) violated by this point is
added to the current linear relaxation.

This ckeck procedure, called separation problem associated with the subtour elim-
ination constraints, is performed in linear time using a breadth-first search. When
subtours are encountered, only the inequality associated with the smallest subtour is
added to the current linear relaxation1.

QCARS The formulation solved using a branch-and-bound is given by inequalities
(4)–(9), (11), (12) and (13). An integer solution of this formulation is feasible for the
QCARS if it satisfies all the generalized subtour elimination constraints (10).

The separation problem associated with the generalized subtour elimination con-
straints is performed in linear time using a breadth-first search. If the solution contains
subtours, let S be the smallest subset of nodes inducing a subtour and not containing
node 1. In this case, the |S| violated inequalities (10) associated with S are added to
the current linear relaxation.

3.5 Variants

The formulations introduced below can be slightlymodified to tackle different variants
of the CARS and QCARS.

Depot The proposed formulations are based on the assumption that node one is the
extremity of a path or the starting node of the Hamiltonian circuit with only one color.
However, this assumption may be relaxed by modifying the cost ck1,1 to mini∈V cki,i
and by replacing constraints (6) by inequalities (11). Indeed, the modification of the
cost ensures that the associated rental cost is minimum when a solution contains only
one color. Constraints (11) ensure that if color k ∈ K is the only used color (i.e.,
wk = 1), no other color is used (i.e., z�i = 0 for all i ∈ V , � ∈ K \ {k}).

Remark that for the QCARS, node one must still be covered by the circuit.

Symmetric vs. asymmetric costs Accordingly to the instances proposed in the lit-
erature, we consider in this paper that the cost matrix c is asymmetric, whereas d is
symmetric. However, the proposed formulations can be adapted to all the other cases.
If c is symmetric, the formulations may be changed by only using variables yki, j with
i < j and removing equations (7). If d is asymmetric, one needs to consider directed
variables xki, j and x

k
j,i for all i j ∈ E and k ∈ K and add flow conservation constraints

similar to (7) for the x variables.

Paths with the same color In a solution to the CARS and QCARS, the paths have
different colors. This hypothesis is quite restrictive, and one may consider a variant
where several paths with the same color are allowed. This variant can be tackled by
adding the following inequalities:

1 We tested the variant where instead of adding one inequality, we added the inequalities associated with all
the encountered subtours, but it is less efficient probably because many more constraints have to be handled
at each node.
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∑

i∈W

∑

j /∈W

(
yki, j + ykj,i

)
≤ xk(δ(W )) k ∈ K , ∅ �= W � V . (14)

and replacing (5) by

yki, j +
∑

�∈K
w� ≤ 1 k ∈ K , i �= j ∈ V . (15)

Inequalities (14) impose that the number of paths of a color k ∈ K having one
extremity in W is no more than the number of edges of color k in the cut δ(W ), for
every ∅ �= W � V . The validity of these inequalities stems from the fact that the
paths a the same color are disjoint since the union of all the colored paths forms a
Hamiltonian circuit. Note that the complexity of the separation problem associated
with inequalities (14) is unknown, but such a model may be solved within a branch-
and-cut algorithm by separating these inequalities in a lazy way (that is, for binary
points only).

4 Computational study

In this section, we present the computational results we obtain for the CARS and the
QCARS by using the branch-and-cut algorithms given in Sect. 3.4. We describe the
instances of the literature on which our algorithms have been applied and then, we
discuss the experimental results we obtain. The instances, the codes and the detailed
results can be found in https://doi.org/10.6084/m9.figshare.11959287.

Implementation details The branch-and-cut algorithms presented in Sect. 3.4 were
implemented in C++, solved with Gurobi 8.01 with the default parameters, and exe-
cuted on a MacPro with 3.5 GHz 6-Core Intel Xeon E5 and 32 GB of RAM. The time
limit for solving each instance is of 10,000s, as proposed by Goldbarg et al. [8].

4.1 Instances

CARS We use the benchmark proposed in Goldbarg et al. [8], which is composed of
100 different instances based on complete graphs, divided into two sets of 50 instances
each: the Euclidean instances and the non-Euclidean instances. These two sets differ
by the way the distance matrices dk , k ∈ K , are obtained.

The symmetric costmatrices dk are computed froman initial n×n symmetricmatrix
d̄. This matrix d̄ stems from a TSP instance, or it is generated either by considering
real distances between some arbitrarily chosen cities or by taking random values.

In the Euclidean instances, d̄ is Euclidean and a positive integer Lk
i is randomly

generated for all i ∈ V and for all k ∈ K . The matrix dk , k ∈ K , is then given by

dki j = 2Lk
i +3Lk

j
3 + d̄i j for all i < j . In the non-Euclidean instances, for each k ∈ K ,

the matrix dk is given by dki j = ωk
i j d̄i j for all i < j , where ωk

i j is a random value

between [1.4, 2]. In all instances, the asymmetric cost matrices ck are generated as
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follows. A positive integer αk
i is randomly chosen for all i ∈ V and for all k ∈ K and

cki, j = 6αk
i + 2αk

j for all i �= j .
QCARS We use the benchmark proposed in Goldbarg et al. [7]. These instances
are some CARS instances adapted to the QCARS. For this, an integer weight qi is
generated uniformly from [0,100] for all i ∈ V and the quota is Q = 0.8

∑
i∈V qi .

There are 34 Euclidean instances and 33 non-Euclidean.

4.2 Discussion of results

In Tables 1, 2 and 4, we compare the results we obtain with our algorithms with
the best exact and heuristic approaches of the literature2. All tables contain four sets
of columns. The first one describes the instances, and the second reports the results
we obtain with our formulation. The last two sets report the best results among the
exact and heuristic approaches proposed in the literature, respectively. The first set
contains the instance name, the number of nodes |V |, and the number of different
colors |K |. For all methods, the column entitled “Sol.” reports the best solution value
found, and the column entitled “Time” denotes the computational time in seconds.
For exact methods, the column entitled “Gap”3 reports the percentage relative gap
between the upper and lower bounds. Column “Col.” indicates the number of colors
in the best solution found by our algorithm. Finally, we always report to which paper
of the literature we refer to. When it is clear since there is only one paper, we report it
as a label over the set of columns. When there are several of them, we add a column
entitled “Model” for the exact approach or “Algo” for the heuristic one.

Empty values for a row in any of the last two sets of columns indicate that we could
not find computational results for the instance with the corresponding approach. Note
that for both CARS and QCARS, there are many instances for which there are neither
exact nor heuristic computational results in the literature, to the best of our knowledge.

In all the tables solution values in bold font correspond to the best found solution.

4.2.1 CARS results

We compare our CARS model with the best approaches found in the literature. For
exact approaches, DFJ and GG refer to the formulations given in [8] based on the
Dantzig-Fulkerson-Johnson’s and Gavish-Grave’s formulations for the TSP, respec-
tively. Since in their paper, the authors run experiments with both Cplex 12.6.3.0 and
Gurobi 6.5.2 on a PC with an Intel Core i7 3.45GHz x 8 and 32 Gb of RAM, we
precise the solver by adding the letter C (DFJ-C and GG-C) or G (DFJ-G and GG-G)
when the result is obtained using Cplex or Gurobi, respectively.

Concerning the heuristics, TA and MA refer to the transgenetic heuristic and
memetic algorithm proposed by Goldbarg et al. [6] and implemented on an Intel Xeon
QuadCore W3520 2.8 GHz, 8 GB RAM, running Scientific Linux 5.5 with 64 bits
and coded in C++. EALSP reports the result achieved by the evolutionary algorithm

2 The comparisons about running times in Tables 1, 2 and 4 give an order of magnitude, but it is not precise
since the algorithms run on different computers.
3 The gap is computed as 100(best solution found − best lower bound)/best lower bound.
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hybridized with an adaptive local search procedure presented in [3] on a notebookwith
i7 3630-QM 2.4 GHz processor, 8GB RAM and Windows 8.0 64-bits using CPLEX
12.6.1.

Finally, ScS+ALSP gives the result obtained with the scientific heuristic also
hybridized with the adaptive local search procedure proposed by Rios et al. [13] and
tested on a PC with an Intel Core i5-2450M, CPU 2.50GHz x4, 3.8 Gb of RAMwhich
ran Ubuntu.

Table 1 reports the computational results for the CARS on Euclidean instances. Our
approach is able to solve to optimality all the instances except three. Moreover, 86%
of the instances are solved to optimality in less than a minute. Note that the proposed
approach outperforms the best exact ones by at least one order of magnitude of com-
putational time. Moreover, it is competitive with heuristics in terms of computational
time. Our algorithm is outperformed by the heuristics for only two instances. However,
it improves the best known solution for five instances.

Table 2 reports the results obtained for the non-Euclidean instances for the CARS.
Our algorithm solves all the instances except the one with 300 nodes and five colors.
Moreover, 79% of the instances are solved to optimality in less than a minute. Note
that our exact approach is in general at least one order of magnitude faster than the
algorithms proposed in the literature including the heuristics. For 14 instances, our
algorithm finds a solution better than the best solution reported in the literature.

4.2.2 QCARS results

In Tables 3 and 4 we compare our QCARS model with the exact formulation and
the evolutionary algorithm proposed in [7]. One instance presents inconsistencies
(reported by I in the table) in the solution (the heuristic finds a solution whose value is
better than the optimum). Table 3 summarizes the results obtained for the QCARS on
the Euclidean instances. All instances except one are solved in less than 9s. The latter
one is solved in 182s, but it seems to be a hard instance since the model proposed in
Goldbarg et al. [7] finds a gap of 38.12% after 80,000s while for all the others the
gap is less than 0.3%. Table 4 summarizes the results obtained for the QCARS on the
non-Euclidean instances. All instances are solved in less than 4s except one which is
solved in less than 8s.

The proposed algorithm is really more efficient than the exact approach proposed in
[7]. Some instances that were unsolved in 80,000s are now solved within few seconds.
Moreover, our algorithm is faster than their heuristic approach. However, note that it is
difficult to compare our running times with those of the literature since the algorithms
have been executed on different environments. In particular, the mathematical solver
used in [7] is not competitive with the state of the art.

It is worth notice that the percentage of used colors by the QCARS solutions is
around 55% of the available ones, which is less than for the CARS instances. This
result is probably due to the fact that not all the nodes are chosen in the optimal
solution.
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4.2.3 Further analysis of the results

In Tables 5 and 6 we evaluate the impact of inequalities (11), (12), and (13) in our
formulations for the CARS and the QCARS, respectively. We have solved all the
instances of the CARS and the QCARS with every combination of these families of
inequalities.

The first column of Tables 5 and 6 indicates whether the results are reported for
Euclidean instances (first eight lines marked with “E”) or non-Euclidean instances
(last eight lines marked with “NE”). Thus, each line of the table shows the average
results over the 50 instances for the CARS and over 34 or 33 for the QCARS. The
three following columns labeled with (11), (12), and (13) are check-marked if the
corresponding family of inequalities is considered in themodel. Columns entitled “Gap
%”, “Nodes”, and “Time” (in s) are the average values of those retrieved at the end of
the branch-and-cut algorithm of the integer linear solver Gurobi. The “Lazy callbacks”
column reports the average number of subtour elimination constraints added to the
model. The “Root” column reports the average value of the continuous relaxations
without subtour elimination constraints. The column “Int. S. %”, gives the percentage
of instances for which a feasible solution could be found by the solver. Note that
the instances for which the solver could not find an integer solution within the time
limit are not included in the computation of the gap. The last column indicates the
percentage of instances solved to optimality within the time limit. Bold values are the
best ones.

The results reported in Table 5 confirm the quality of the model without valid
inequalities presented in Sect. 3.1 which correspond to the rows of the table without
check-marks. Indeed, we are able to solve to optimality 80% of the instances, and
the running time is around 1200s for the Euclidean instances and 3000s for the Non-
Euclidean. However, when inequalities (11), (12), and (13) are added for strengthening
the model, the number of instances solved to optimality increases up to 96 % and the
computational time is almost divided by two for the Euclidean instances and by 10
for the Non-Euclidean. These results show, experimentally, the usefulness of these
strengthening inequalities. More precisely, inequalities (11) have the most significant
impact, since alone, they are able to divide the computational time by at least 1.7 for the
Euclidean instances and around 10 times for the non-Euclidean instances. Similarly,
the number of nodes of the branch-and-cut tree is divided by 2 and by more than 300,
respectively. Note that for the Euclidean instances considering inequalities (11) and
(13) to strengthen the model is the best configuration since the computational time
is the smallest, the number of instances solved to optimality is the greatest and last,
but not least, the solver is able to find at least a feasible solution for all instances.
The best configuration for the non-Euclidean instances is when the three families of
inequalities are added. Even if there is one instance in this configuration for which no
feasible solution is found, the running time is better than in any other configuration as
well as the linear relaxation. Remark that if inequalities (11) have the most significant
impact, it is not this family that increases the most the value of the linear relaxation
for the Euclidean instances. Indeed, inequalities (12) is the family impacting the most
the value of the linear relaxation for these instances. Finally, note that the number
of added lazy violated subtour inequalities behaves similarly to the number of nodes
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in the branch-and-cut tree. Without the three families of valid inequalities, several
instances could not be solved. There are ten instances where the optimum cannot
be found without the three families of valid inequalities in 10,000s. When the valid
inequalities enforce the model, nine out of ten are solved to optimality in less than
600s. For example, the Euclidean instance Belem300e reaches the time limit without
having found a feasible solutionwhen solvedwith themodel without the strengthening
inequalities, but it is solved to optimality in ten minutes with them.

The results reported in Table 6 confirm that the model reported in Sect. 3.2 is useful
for solving the QCARS, since it is able to solve to optimality 58 instances over 68 with
an average running time of 3000s. Moreover, when inequalities (11), (12), and (13)
are added for strengthening the model, the number of instances solved to optimality
increases up 100%, the computational time is divided by 500, and the number of
nodes by more than 300. These results show, experimentally, the usefulness of these
strengthening inequalities. The results reported in Table 6 confirms the importance of
valid inequality (11) also for the QCARS instances. Indeed the computational time for
non-Euclidean instances is four orders of magnitudes higher when inequalities (11)
are not included. Notice that for the Euclidean instances, the combination of (11), (12)
and (13) is the most effective, while for non-Euclidean instances the most effective
combination is of (11) with (13).

5 Conclusions

In this paper, we have proposed two integer linear programming formulations for
the CARS and the QCARS. We have reinforced these formulations using a polyno-
mial number of inequalities and have devised branch-and-cut algorithms for solving
these formulations. The experimental results show the effectiveness of our approach
to solve these problems. We were able to solve to optimality all the instances found in
the literature but four, and our algorithms clearly outperform the existing approaches.
Moreover, the experimental results also show the usefulness of reinforcing the mod-
els. The efficiency of our model and its strengthening inequalities deeply relies on
the assumption that there exists at most one path of each color in a solution. The
variant without this assumption seems far more difficult. However, it is more realistic
from an application point of view, especially in the rapid transit network design field,
and deserves to be studied. A starting point could be to evaluate the quality of the
formulation we propose for this variant.
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