
Optimization Letters (2021) 15:2181–2199
https://doi.org/10.1007/s11590-020-01678-w

ORIG INAL PAPER

Explicit extragradient-like method with adaptive stepsizes
for pseudomonotone variational inequalities

Duong Viet Thong1 · Jun Yang2 · Yeol Je Cho3,4 · Themistocles M. Rassias5

Received: 20 July 2019 / Accepted: 2 December 2020 / Published online: 2 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
The purpose of this paper is to introduce a new modified subgradient extragradient
method for finding an element in the set of solutions of the variational inequality prob-
lem for a pseudomonotone and Lipschitz continuous mapping in real Hilbert spaces.
It is well known that for the existing subgradient extragradient methods, the step
size requires the line-search process or the knowledge of the Lipschitz constant of
the mapping, which restrict the applications of the method. To overcome this barrier,
in this work we present a modified subgradient extragradient method with adaptive
stepsizes and do not require extra projection or value of the mapping. The advantages
of the proposed method only use one projection to compute and the strong conver-
gence proved without the prior knowledge of the Lipschitz constant of the inequality
variational mapping. Numerical experiments illustrate the performances of our new
algorithm and provide a comparison with related algorithms.
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1 Introduction

In this paper, we consider the classical variational inequality problem (VI) of Fichera
[15,16] and Stampacchia [37] (see also Kinderlehrer and Stampacchia [21]) in real
Hilbert spaces. The (VI) is formulated as follows:

Find a point x∗ ∈ C such that 〈Ax∗, x − x∗〉 ≥ 0 for all x ∈ C,

where C is a nonempty closed convex subset in a real Hilbert space H , A : H → H
is a single-valued mapping, 〈·, ·〉 and ‖ · ‖ are the inner product and the norm in H ,
respectively. Let us denote V I (C, A) by the solution set of the problem (VI).

In the last years, the techniques for the variational inequality problem have been
applied to a variety of diverse areas, such as, operations research, nonlinear equa-
tions, and network equilibrium problems, see, for instance, [2,3,5,14,21,24–28] and
the extensive list of references therein.

Many authors have proposed and analyzed several methods for solving the problem
(VI). One of the most popular methods is the extragradient method introduced by
Korpelevich [23] which was called the extragradient method:

x0 ∈ C, yn = PC (xn − λAxn), xn+1 = PC (xn − λAyn),

where the mapping A : C → H is monotone and L-Lipschitz continuous, λ ∈
(
0,

1

L

)
. The algorithm converges to an element of V I (C, A) provided that V I (C, A)

is nonempty.
In recent years, the extragradient method has been received great attention by many

authors in various ways (see, for example, [6,9–12,19,29,30,36,39,43] and the refer-
ences therein).

Censor et al. [10,11] proposed the subgradient extragradient method:

x0 ∈ H , yn = PC (xn − λAxn), xn+1 = PTn (xn − λAyn), (1)

where Tn = {x ∈ H |〈xn − λAxn − yn, x − yn〉 ≤ 0}, the mapping A : H → H

is monotone and L-Lipschitz continuous, λ ∈ (
0,

1

L

)
. This method replaces two

projections onto C by one projection onto C and one onto a half-space. Since the
projection onto the half-space Tn can be explicitly calculated, the subgradient extra-
gradient requires only one projection per iteration. For this, recently, the subgradient
extragradient method [10,11] has been received great attention by many authors, they
improved and extended it in various ways to obtain the weak and strong convergence
of this method (see [8,12,22,34,35,38,39,41,42] and the references therein).

Inspired by the results in [10,11],KraikaewandSaejung [22] introduced theHalpern
subgradient extragradient method for solving monotone variational inequalities as
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follows:

x0 ∈ H , yn = PC (xn − λAxn), xn+1 = γnx0 + (1 − γn)PTn (xn − λAyn), (2)

where Tn = {x ∈ H : 〈xn − λAxn − yn, x − yn〉 ≤ 0}, the mapping A : H → H is
monotone and L-Lipschitz continuous andλ ∈ (0, 1

L ), {γn} ⊂ (0, 1), limn→∞ γn = 0,∑∞
n=1 γn = +∞, and they proved that the sequence {xn} is generated by (2) converges

strongly to a point x∗, where x∗ = PVI(C,A)x0.
It is worth pointing out that the main shortcoming of algorithms (1) and (2) is that

it requires to know the Lipschitz constant or at least to know some estimation of it.
Very recently, in [42], motivated and inspired by the algorithms in [10,11], they intro-
duced a modified subgradient extragradient method for solving monotone variational
inequalities with a new step size. It is worth pointing out that the convergence analysis
of the algorithm in [42] doesn’t require either the prior knowledge of the Lipschitz
constant of the variational inequality mapping or any additional evaluation of PC .

The pseudomonotone mappings in the sense of Karamardian were introduced in
[20] as a generalization of themonotonemappings. The notion of the pseudomonotone
mapping has found many applications in variational inequalities and economics.

It is a known fact that, in [12], Censor et al. showed that the subgradient extragra-
dient method can be successfully applied for solving the pseudomonotone variational
inequality in a finite dimensional Euclidean space. Since, in infinite dimensional
spaces, the norm convergence is often more desirable, a natural question raises as
follows:

How to design and extend the result of Censor et al. in [12] such that strong
convergence is obtained in infinite dimensional Hilbert spaces?

To answer this question, in this paper, we develop a new version of the subgradient
extragradient method with the technique of choosing stepsizes in [42] for finding
an element of the set of solutions of a pseudomonotone and Lipschitz-continuous
variational inequality problem in Hilbert spaces and prove that the sequence generated
by the proposed algorithm converges strongly to a solution of the pseudomonotone
variational inequality.

This paper is organized as follows: In Sect. 2, we recall some definitions and
preliminary results for further use. In Sect. 3, we deal with analyzing the convergence
of the proposed algorithm. Finally, in Sect. 4, we give several numerical experiments
to illustrate the convergence of the proposed algorithm and compare it with previously
known algorithms.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H . The
weak convergence of {xn} to x is denoted by xn⇀x as n → ∞, while the strong
convergence of {xn} to x is written as xn → x as n → ∞. For each x, y, z ∈ H , we
have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (3)
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‖αx + β y + γ z‖2 = α‖x‖2 + β‖y‖2
+ γ ‖z‖2 − αβ‖x − y‖2 − αγ ‖x − z‖2 − βγ ‖y − z‖2 (4)

for all α, β, γ ∈ [0; 1] with α + β + γ = 1.

Definition 2.1 Let T : H → H be a mapping. Then we have the following:

(1) T is called L-Lipschitz continuous with L > 0 if

‖T x − T y‖ ≤ L‖x − y‖, ∀x, y ∈ H .

(2) T is called monotone if

〈T x − T y, x − y〉 ≥ 0, ∀x, y ∈ H .

(3) T is called pseudomonotone if

〈T x, y − x〉 ≥ 0 ⇒ 〈T y, y − x〉 ≥ 0, ∀x, y ∈ H .

(4) T is called sequentially weakly continuous if, for each sequence {xn} in H with
xn⇀x as n → ∞, T xn⇀T x .

It is easy to see that everymonotone operator T is pseudomonotone, but the converse
is not true.

Now, we present an academic example of the variational inequality problem in an
infinite dimensional space, where the cost function A is pseudomonotone, L-Lipschitz
continuous and sequentially weakly continuous on C , but A fails to be a monotone
mapping on H .

Example 1 Consider a Hilbert space defined as follows:

H = l2 :=
{

u = (u1, u2, . . . , ui , . . .) :
∞∑

i=1

|ui |2 < +∞
}

equipped with the inner product and the induced norm on H :

〈u, v〉 =
∞∑

i=1

uivi , ‖u‖ = √〈u, u〉

for any u = (u1, u2, . . . , ui , . . .), v = (v1, v2, . . . , vi , . . .) ∈ H , respectively. Let

α, β ∈ R such that β > α >
β

2
> 2 and consider the set and the mapping:

C =
{
u = (u1, u2, . . . , ui , . . .) ∈ H : |ui | ≤ 1

i
, ∀i ≥ 1

}
, Au = (β − ‖u‖)u.
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Then it is easy to see that V I (C, A) �= ∅ since 0 ∈ V I (C, A). Moreover, let

Cα := {u ∈ H : ‖u‖ ≤ α}.

It is known that A is pseudomonotone, (β + 2α)-Lipschitz continuous on Cα and A
fails to be a monotone mapping on H (see [18, Example 4.1]).

Now, we show that C ⊂ Cα . Indeed, let u = (u1, u2, . . . , ui , . . .) ∈ C . Then we
have

‖u‖2 =
∞∑

i=1

|ui |2 ≤
∞∑

i=1

1

i2
= 1 +

∞∑

i=2

1

i2
≤ 1 +

∞∑

i=2

1

i2 − 1
= 1 + 3

4
= 7

4
,

which implies that ‖u‖ ≤ α, that is, u ∈ Cα and so C ⊂ Cα .
Further, since C ⊂ Cα , it follows that A is pseudomonotone and β + 2α-Lipschitz

continuous on C . On the other hand, since C is compact and A is continuous on H , A
is sequentially weakly continuous on C .

Remark 2.1 (1) It should be noted here that the mapping A is not sequentially weakly
continuous on Cα since Cα is not compact on H .

(2) An example on noncompact sets can be found in [4, Example 2.1], where
the mapping A is pseudomonotone, Lipschitz continuous and sequentially weakly
continuous.

For all point x ∈ H , there exists a unique nearest point in C , denoted by PCx , such
that

‖x − PCx‖ ≤ ‖x − y‖, ∀y ∈ C .

Then PC is called the metric projection of H onto C . It is known that PC is nonex-
pansive.

Lemma 2.1 ([17]) Let C be a nonempty closed convex subset of a real Hilbert space
H . Then, for any x ∈ H and z ∈ C,

z = PCx ⇐⇒ 〈x − z, z − y〉 ≥ 0, ∀y ∈ C .

Lemma 2.2 ([7]) For any x ∈ H and v ∈ H with v �= 0, let T =
{z ∈ H : 〈v, z − x〉 ≤ 0}. Then, for all u ∈ H, the projection PT (u) is defined by

PT (u) = u − max

{
0,

〈v, u − x〉
||v||2

}
v.

In particular, if u /∈ T , then we have

PT (u) = u − 〈v, u − x〉
||v||2 v.
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Lemma 2.2 gives us an explicit formula of the projection of any point onto a half-
space. For more some properties of the metric projection, the interested reader can
refer to Sect. 3 in [17] and Chapter 4 in [7].

The following lemmas are useful for the convergence of our proposed method:

Lemma 2.3 ([13, Lemma 2.1]) Consider the solution set V I (C, A) of the problem
(VI), where C is a nonempty closed convex subset of a real Hilbert space H and
A : C → H is pseudomonotone and continuous. Then x∗ ∈ V I (C, A) if and only if

〈Ax, x − x∗〉 ≥ 0, ∀x ∈ C .

Lemma 2.4 ( [33]) Let {an} be a sequence of nonnegative real numbers, {γn} be a
sequence of real numbers in (0, 1) with

∑∞
n=1 γn = ∞ and {bn} be a sequence of real

numbers. Assume that

an+1 ≤ (1 − γn)an + γnbn, ∀n ≥ 1.

If lim supk→∞ bnk ≤ 0 for every subsequence {ank } of {an} satisfying

lim inf
k→∞ (ank+1 − ank ) ≥ 0,

then limn→∞ an = 0.

3 Main results

In this section,we introduce amodified subgradient extragradient algorithm for solving
the pseudomonotone variational inequality problem. Under mild assumptions, the
sequence generated by the proposed method converges strongly to x∗ ∈ V I (C, A),
where

‖x∗‖ = min{‖z‖ : z ∈ V I (C, A)}.

First, the following conditions are assumed for the convergence of the method:

Condition 1 The feasible set C is a nonempty closed convex subset of a real Hilbert
space H.

Condition 2 The mapping A : H → H is L-Lipschitz continuous, pseudomonotone
on H and the mapping A : H → H satisfies the following condition

whenever {xn} ⊂ C, xn⇀z, one has ‖Az‖ ≤ lim inf
n→∞ ‖Axn‖. (5)

Condition 3 The solution set of the problem (VI) is nonempty, that is, V I (C, A) �= ∅.
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Condition 4 Assume that {γn} and {βn} are two real sequences in (0, 1) such that
{βn} ⊂ (a, 1 − γn) for some a > 0 and

lim
n→∞ γn = 0,

∞∑

n=1

γn = ∞.

Now, we present our algorithm.

Algorithm 3.1

Initialization: Given λ0 > 0, μ ∈ (0, 1). Let x0 ∈ H be arbitrary

Iterative Steps: Calculate xn+1 as follows:

Step 1. Compute
yn = PC (xn − λn Axn),

If xn = yn or Ayn = 0 then stop and yn is a solution of the problem (VI). Otherwise,
Step 2. Compute

wn = PTn (xn − λn Ayn),

where Tn := {x ∈ H : 〈xn − λn Axn − yn, x − yn〉 ≤ 0}.
Step 3. Compute

xn+1 = (1 − γn − βn)xn + βnwn,

and update

λn+1 =
⎧
⎨

⎩
min{μ‖xn − yn‖2 + ‖wn − yn‖2

2〈Axn − Ayn, wn − yn〉 , λn} if 〈Axn − Ayn, wn − yn〉 > 0,

λn otherwise.
(6)

Set n := n + 1 and go to Step 1.

Remark 3.2 It is easy to show that condition (5) isweaker than the sequentialweak con-
tinuity of the mapping A (see [1,32]), which is frequently assumed in recent works on
pseudomonotone variational inequality problems, (see, [40]). Indeed, if A is sequen-
tially weakly continuous, then due to the weak lower semicontinuity of the norm,
condition (5) is fulfilled. Conversely, let Ax = ‖x ||x and suppose that xn⇀x . Due to
the weak lower continuiuty of the norm, one has ‖x‖ ≤ lim infn→∞ ‖xn‖, hence,

‖Ax‖ = ‖x‖2 ≤ (lim inf
n→∞ ‖xn‖)2 ≤ lim inf

n→∞ ‖xn‖2 = lim inf
n→∞ ‖Axn‖,

Thus, condition (5) is satisfied. However, A is not sequentially weakly continuous.
Indeed, let xn = en + e1, where {en} is an orthonormal system in H . Then xn⇀e1.
For n > 1, Axn = √

2(en + e1)⇀
√
2e1 �= A(e1) = e1.
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Lemma 3.5 ([42])Assume thatConditions 1–3hold. Then the sequence {λn}generated
by (6) is a non-increasing sequence and

lim
n→∞ λn = λ ≥ min

{
λ0,

μ

L

}
.

The following lemmas are quite helpful to analyze the convergence of algorithm:

Lemma 3.6 Assume that Conditions 1–3 hold. Let {wn} be a sequence generated by
Algorithm 3.1 Then we have

‖wn − x∗‖2 ≤ ‖xn − x∗‖2 −
(
1 − μ

λn

λn+1

)
‖yn − xn‖2 −

(
1 − μ

λn

λn+1

)
‖wn − yn‖2

(7)

for all x∗ ∈ V I (C, A).

Proof First, it is easy to see that, by the definition of {λn},

2〈Axn − Ayn, wn − yn〉 ≤ μ

λn+1
‖xn − yn‖2 + μ

λn+1
‖wn − yn‖2, ∀n ≥ 1. (8)

Indeed, if 〈Axn − Ayn, wn − yn〉 < 0, then the inequality (8) holds. Otherwise,
from (6), we have

λn+1 = min

{
μ

‖xn − yn‖2 + ‖wn − yn‖2
2〈Axn − Ayn, wn − yn〉 , λn

}
≤ μ

‖xn − yn‖2 + ‖wn − yn‖2
2〈Axn − Ayn, wn − yn〉 .

This implies that

2〈Axn − Ayn, wn − yn〉 ≤ μ

λn+1
‖xn − yn‖2 + μ

λn+1
‖wn − yn‖2.

Therefore, the inequality (8) holds. Now, using the inequality (8) and x∗ ∈
V I (C, A) ⊂ C ⊂ Tn , we prove that the inequality (7) holds. Indeed, we have

‖wn − x∗‖2 = ‖PTn (xn − λn Ayn) − PTn x
∗‖2 ≤ 〈wn − x∗, xn − λn Ayn − x∗〉

= 1

2
‖wn − x∗‖2 + 1

2
‖xn − λn Ayn − x∗‖2 − 1

2
‖wn − xn + λn Ayn‖2

= 1

2
‖wn − x∗‖2 + 1

2
‖xn − x∗‖2 + 1

2
λ2n‖Ayn‖2 − 〈xn − x∗, λn Ayn〉

− 1

2
‖wn − xn‖2 − 1

2
λ2n‖Ayn‖2 − 〈wn − xn, λn Ayn〉

= 1

2
‖wn − x∗‖2 + 1

2
‖xn − x∗‖2 − 1

2
‖wn − xn‖2 − 〈wn − x∗, λn Ayn〉.

This implies that

‖wn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖wn − xn‖2 − 2〈wn − x∗, λn Ayn〉. (9)
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Since x∗ is the solution of the problem (VI), we have 〈Ax∗, x − x∗〉 ≥ 0 for all x ∈ C .
By the pseudomontonicity of A onC , we have 〈Ax, x − x∗〉 ≥ 0 for all x ∈ C . Taking
x := yn ∈ C , we get

〈Ayn, x∗ − yn〉 ≤ 0.

Thus we have

〈Ayn, x∗ − wn〉 =〈Ayn, x∗ − yn〉 + 〈Ayn, yn − wn〉 ≤ 〈Ayn, yn − wn〉. (10)

From (9) and (10), it follows that

‖wn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖wn − xn‖2 + 2λn〈Ayn, yn − wn〉
= ‖xn − x∗‖2 − ‖wn − yn‖2 − ‖yn − xn‖2

− 2〈wn − yn, yn − xn〉 + 2λn〈Ayn, yn − wn〉
= ‖xn − x∗‖2 − ‖wn − yn‖2 − ‖yn − xn‖2 + 2〈xn − λn Ayn − yn, wn − yn〉. (11)

Since yn = PTn (xn − λn Axn) and wn ∈ Tn , we have

2〈xn − λn Ayn − yn, wn − yn〉
= 2〈xn − λn Axn − yn, wn − yn〉 + 2λn〈Axn − Ayn, wn − yn〉
≤ 2λn〈Axn − Ayn, wn − yn〉, (12)

which, together with (8), implies that

2〈xn − λn Ayn − yn, wn − yn〉 ≤ μ
λn

λn+1
‖xn − yn‖2 + μ

λ

λn+1
‖wn − yn‖2

From (11) and (12), we get

‖wn − x∗‖2 ≤‖xn − x∗‖2 −
(
1 − μ

λn

λn+1

)
‖yn − xn‖2 −

(
1 − μ

λn

λn+1

)
‖wn − yn‖2.

This completes the proof. ��
Remark 3.3 Unlike the proof in [42], our Lemma 3.6 is provedwhen A is pseudomono-
tone instead of the fact that A is monotone.

We adapt the technique developed in [40] to obtain the following result.

Lemma 3.7 Assume that Conditions 1–3 hold and {xn} is a sequence generated by
Algorithm 3.1. If there exists a subsequence {xnk } convergent weakly to z ∈ H and

lim
k→∞ ‖xnk − ynk‖ = 0,

then z ∈ V I (C, A).
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Proof We have

〈xnk − λnk Axnk − ynk , x − ynk 〉 ≤ 0, ∀x ∈ C .

or, equivalently,

1

λnk
〈xnk − ynk , x − ynk 〉 ≤ 〈Axnk , x − ynk 〉, ∀x ∈ C .

Consequently, we have

1

λnk
〈xnk − ynk , x − ynk 〉 + 〈Axnk , ynk − xnk 〉 ≤ 〈Axnk , x − xnk 〉, ∀x ∈ C . (13)

Since {xnk } is weakly convergent, {xnk } is bounded. Then, by the Lipschitz continuity
of A, {Axnk } is bounded. Since ‖xnk − ynk‖ → 0, {ynk } is also bounded and, according
to Lemma 3.5, we have

λnk ≥ min
{
λ0,

μ

L

}
.

Passing (13) to limit as k → ∞, we get

lim inf
k→∞ 〈Axnk , x − xnk 〉 ≥ 0, ∀x ∈ C . (14)

Moreover, we have

〈Aynk , x − ynk 〉 = 〈Aynk − Axnk , x − xnk 〉 + 〈Axnk , x − xnk 〉 + 〈Aynk , xnk − ynk 〉.
(15)

Since limk→∞ ‖xnk − ynk‖ = 0 and A is L-Lipschitz continuous on H , we get

lim
k→∞ ‖Axnk − Aynk‖ = 0,

which, together with (14) and (15), implies that

lim inf
k→∞ 〈Aynk , x − ynk 〉 ≥ 0, ∀x ∈ C .

Next, we show that z ∈ V I (C, A). We choose a sequence {εk} of positive numbers
such that {εk} is decreasing and convergent to 0. For each k ≥ 1, we denote by nNk

the smallest positive integer such that

〈Ayn j , x − yn j 〉 + εk ≥ 0, ∀ j ≥ nNk . (16)
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Since {εk} is decreasing, it is easy to see that the sequence {nNk } is increasing. Fur-
thermore, for each k ≥ 1, since {ynNk } ⊂ C , we have AynNk �= 0 and, setting

vnNk
= AynNk

‖AynNk ‖2
,

we have 〈AynNk , vnNk 〉 = 1 for each k ≥ 1. Now, it follows from (16) that, for each
k ≥ 1,

〈AynNk , x + εkvnNk
− ynNk 〉 ≥ 0.

Since A is pseudomonotone on H , we get

〈A(x + εkvnNk
), x + εkvnNk

− ynNk 〉 ≥ 0.

This implies that

〈Ax, x−ynNk 〉 ≥ 〈Ax−A(x+εkvnNk
), x+εkvnNk

−ynNk 〉 − εk〈Ax, vnNk 〉. (17)

Now, we show that limk→∞ εkvnNk
= 0. Indeed, since xnk⇀z and limk→∞ ‖xnk −

ynk‖ = 0, we obtain yNk⇀z as k → ∞. Since {yn} ⊂ C , we have z ∈ C . We can
suppose that Az �= 0 (otherwise, z is a solution). Since the mapping A satisfies the
condition (5), we obtain

0 < ‖Az‖ ≤ lim inf
k→∞ ‖Aynk‖.

Since {ynNk } ⊂ {ynk } and εk → 0 as k → ∞, we obtain

0 ≤ lim sup
k→∞

‖εkvnNk ‖ = lim sup
k→∞

( εk

‖Aynk‖
)

≤ lim supk→∞ εk

lim infk→∞ ‖Aynk‖
= 0,

which implies that limk→∞ εkvnNk
= 0. Now, letting k → ∞, the right hand side

of (17) tends to zero since A is Lipschitz continuous, {xnNk }, {vnNk } are bounded and
limk→∞ εkvnNk

= 0. Thus we get

lim inf
k→∞ 〈Ax, x − ynNk 〉 ≥ 0.

Hence, for all x ∈ C , we have

〈Ax, x − z〉 = lim
k→∞〈Ax, x − ynNk 〉 = lim inf

k→∞ 〈Ax, x − ynNk 〉 ≥ 0.

Therefore, by Lemma 2.3, z ∈ V I (C, A). This completes the proof. ��
Remark 3.4 When A is monotone, it is not necessary to impose the sequential weak
continuity of A, see [8].
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Theorem 3.1 Assume that Conditions 1–4 hold. Then the sequence {xn} generated by
Algorithm 3.1 converges strongly to x∗ ∈ V I (C, A), where

‖x∗‖ = min{‖z‖ : z ∈ V I (C, A)}.

Proof Since limn→∞
(
1 − μ

λn

λn+1

)
= 1 − μ > 0, there exists n0 ∈ N such that

1 − μ
λn

λn+1
> 0, ∀n ≥ n0. (18)

Combining (7) and (18), we get

‖wn − x∗‖ ≤ ‖xn − x∗‖, ∀n ≥ n0. (19)

Claim 1. The sequence {xn} is bounded. It follows from (19) that

‖xn+1 − x∗‖ = ‖(1 − γn − βn)xn + βnwn − x∗‖
= ‖(1 − γn − βn)(xn − x∗) + βn(wn − x∗) − γnx

∗‖
≤ ‖(1 − γn − βn)(xn − x∗) + βn(wn − x∗)‖ + γn‖x∗‖
≤ (1 − γn − βn)‖xn − x∗‖ + βn‖wn − x∗‖ + γn‖x∗‖
≤ (1 − γn − βn)‖xn − x∗‖ + βn‖xn − x∗‖ + γn‖x∗‖ ∀n ≥ n0
= (1 − γn)‖xn − x∗‖ + γn‖x∗‖ ∀n ≥ n0
≤ max{‖xn − x∗‖, ‖x∗‖}| ∀n ≥ n0
≤ max{‖xn0 − x∗‖, ‖x∗‖}.

That is, the sequence {xn} is bounded and {wn} is also. Claim 2. Note that

a
(
1 − μ

λn

λn+1

)
‖xn − yn‖2

+ a
(
1 − μ

λn

λn+1

)
‖yn − wn‖2

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + γn‖x∗‖2.

Indeed, using (4), we have

‖xn+1 − x∗‖2 = ‖(1 − γn − βn)xn + βnwn − x∗‖2
= ‖(1 − γn − βn)(xn − x∗) + βn(wn − x∗) + γn(−x∗)‖2
= (1 − γn − βn)‖xn − x∗‖2 + βn‖wn − x∗‖2

+ γn‖x∗‖2 − βn(1 − γn − βn)‖xn − wn‖2
− γn(1 − γn − βn)‖xn‖2 − γnβn‖wn‖2

≤ (1 − γn − βn)‖xn − x∗‖2 + βn‖wn − x∗‖2 + γn‖x∗‖2. (20)
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It follows from (7) and (20) that

‖xn+1 − x∗‖2 ≤ (1 − γn − βn)‖xn − x∗‖2 + βn‖xn − x∗‖2

− βn

(
1 − μ

λn

λn+1

)
‖xn − yn‖2

− βn

(
1 − μ

λn

λn+1

)
‖yn − wn‖2 + γn‖x∗‖2

= (1 − γn)‖xn − x∗‖2 − βn

(
1 − μ

λn

λn+1

)
‖xn − yn‖2

− βn

(
1 − μ

λn

λn+1

)
‖yn − wn‖2 + γn‖x∗‖2

≤ ‖xn − x∗‖2 − βn

(
1 − μ

λn

λn+1

)
‖xn − yn‖2

− βn

(
1 − μ

λn

λn+1

)
‖yn − wn‖2 + γn‖x∗‖2.

Thus we get

βn

(
1 − μ

λn

λn+1

)
‖xn − yn‖2

+ βn

(
1 − μ

λn

λn+1

)
‖yn − wn‖2

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + γn‖x∗‖2.

Moreover, since βn ≥ a for all n ≥ 1, we obtain

a
(
1 − μ

λn

λn+1

)
‖xn − yn‖2

+ a
(
1 − μ

λn

λn+1

)
‖yn − wn‖2

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + γn‖x∗‖2.

Claim 3. Note that

‖xn+1 − x∗‖2 ≤ (1 − γn)‖xn − x∗‖2 + γn[2βn‖xn − wn‖‖xn+1 − x∗‖
+ 2〈x∗, x∗ − xn+1〉], ∀n ≥ n0.

Indeed, setting tn = (1 − βn)xn + βnwn for each n ≥ 1, we have

‖tn − x∗‖ = ‖(1 − βn)(xn − x∗) + βn(wn − x∗)‖
≤ (1 − βn)‖xn − x∗‖ + βn‖wn − x∗‖
≤ (1 − βn)‖xn − x∗‖ + βn‖xn − x∗‖ = ‖xn − x∗‖, ∀n ≥ n0, (21)
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and

‖tn − xn‖ = βn‖xn − wn‖. (22)

Using (21) and (22), we get

‖xn+1 − x∗‖2 = ‖(1 − γn − βn)xn + βnwn − x∗‖2
= ‖(1 − βn)xn + βnwn − γnxn − x∗‖2
= ‖(1 − γn)(tn − x∗) − γn(xn − tn) − γnx

∗‖2. (23)

Now, using the inequality (3), we get

‖(1 − γn)(tn − x∗) − γn(xn − tn) − γnx
∗‖2

≤ (1 − γn)
2‖tn − x∗‖2 − 2〈γn(xn − tn) + γnx

∗, xn+1 − x∗〉. (24)

Combining (23) and (24), we obtain

‖xn+1 − x∗‖2 ≤ (1 − γn)
2‖tn − x∗‖2

+ 2γn〈xn − tn, x
∗ − xn+1〉 + 2γn〈x∗, x∗ − xn+1〉

≤ (1 − γn)‖tn − x∗‖2 + 2γn‖xn − tn‖‖xn+1 − x∗‖
+ 2γn〈x∗, x∗ − xn+1〉

≤ (1 − γn)‖xn − x∗‖2 + γn[2βn‖xn − wn‖‖xn+1 − x∗‖
+ 2〈x∗, x∗ − xn+1〉], ∀n ≥ n0.

Claim 4. {‖xn − x∗‖2} converges to zero. Indeed, for each n ≥ 0, set

an := ‖xn − x∗‖2 and bn := 2βn‖xn − wn‖‖xn+1 − x∗‖ + 2〈x∗, x∗ − xn+1〉.

Then, Claim 3 can be rewritten as follows:

an+1 ≤ (1 − γn)an + γnbn .

By Lemma 2.4, it is sufficient to show that lim supk→∞ bnk ≤ 0 for every subsequence
{ank } of {an} satisfying

lim inf
k→∞ (ank+1 − ank ) ≥ 0.

This is equivalently to that we need to show lim supk→∞〈x∗, x∗ − xnk+1〉 ≤ 0 and
lim supk→∞ ‖xnk − wnk‖ ≤ 0 for every subsequence {‖xnk − x∗‖} of {‖xn − x∗‖}
satisfying
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lim inf
k→∞ (‖xnk+1 − x∗‖ − ‖xnk − x∗‖) ≥ 0.

Suppose that {‖xnk − x∗‖} is a subsequence of {‖xn − x∗‖} such that

lim inf
k→∞ (‖xnk+1 − x∗‖ − ‖xnk − x∗‖) ≥ 0.

Then, we have

lim inf
k→∞ (‖xnk+1 − x∗‖2 − ‖xnk − x∗‖2)

= lim inf
k→∞ [(‖xnk+1 − x∗‖ − ‖xnk − x∗‖)(‖xnk+1 − x∗‖ + ‖xnk − x∗‖)]

≥ 0.

By Claim 2, we obtain

lim sup
k→∞

[
a
(
1 − μ

λnk

λnk+1

)
‖xnk − ynk‖2 + a

(
1 − μ

λnk

λnk+1

)
‖ynk − wnk‖2

]

≤ lim sup
k→∞

[‖xnk − x∗‖2 − ‖xnk+1 − x∗‖2 + γnk‖x∗‖2]

≤ lim sup
k→∞

[‖xnk − x∗‖2 − ‖xnk+1 − x∗‖2] + lim sup
k→∞

γnk‖x∗‖2

= − lim inf
k→∞ [‖xnk+1 − x∗‖2 − ‖xnk − x∗‖2]

≤ 0.

This implies that

lim
k→∞ ‖xnk − ynk‖ = 0, lim

k→∞ ‖ynk − wnk‖ = 0.

Thus we have

‖xnk − wnk‖ ≤ ‖xnk − ynk‖ + ‖ynk − wnk‖ → 0 as k → ∞.

On the other hand, we have

‖xnk+1 − xnk‖ ≤ γnk‖xnk‖ + βnk‖xnk − wnk‖ → 0 as k → ∞. (25)

Since the sequence {xnk } is bounded, it follows that there exists a subsequence {xnk j }
of {xnk }, which converges weakly to some z ∈ H , such that

lim sup
k→∞

〈x∗, x∗ − xnk 〉 = lim
j→∞〈x∗, x∗ − xnk j 〉 = 〈x∗, x∗ − z〉. (26)

From limk→∞ ‖xnk − ynk‖ = 0 and Lemma 3.7, we have z ∈ V I (C, A) and, from
(26) and the definition of x∗ = PV I (C,A)0, we have

lim sup
k→∞

〈x∗, x∗ − xnk 〉 = 〈x∗, x∗ − z〉 ≤ 0. (27)
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Combining (25) and (27), we have

lim sup
k→∞

〈x∗, x∗ − xnk+1〉 ≤ lim sup
k→∞

〈x∗, x∗ − xnk 〉 = 〈x∗, x∗ − z〉 ≤ 0. (28)

Hence it follows from (28), limk→∞ ‖xnk − wnk‖ = 0, Claim 3 and Lemma 2.4 that

lim
n→∞ ‖xn − x∗‖ = 0.

This completes the proof. ��
Remark 3.5 Our result generalizes some related results in the literature and hence
might be applied to a wider class of nonlinear mappings. For example, in the next
section, we presented the advantages of our method compared with the recent results
[22, Theorem 3.1], [34, Theorem 3.3], [41, Theorem 3.1] and [42, Theorem 3.7] as
follows:

(1) In Theorem 3.1, we replaced the monotonicity by the pseudomonotonicity and
sequentially weakly continuity of A.

(2) We also obtained the strong convergence without using the viscosity technique.

4 Numerical illustrations

In this section, we present numerical experiments relative to the problem (VI). The
first example, we compare Algorithm 3.1 with Algorithm 2 of Yang et al. in [42].
The second example, we illustrate the convergence of Algorithms 3.1 and compare
them with three well-known algorithms including Algorithm 2 of Yang et al. in [42],
Algorithm 1 of Censor et al. in [10] and Algorithm 3.1 of Kraikaew et al. in [22]. All
the numerical experiments are performed on a HP laptop with Intel(R) Core(TM)i5-
6200U CPU 2.3GHz with 4 GB RAM. All the programs are written in Matlab2015a.

Problem 1 The first problem is the Example 2.1 in [4]. Assume that A : Rm → R
m

is defined by

Ax = (e−xT Qx + β)(Px + q)

where Q is a positive definite matrix, P is a positive semidefinite matrix, q ∈ R
m and

β > 0. Observe that A is differentiable and there existsM > 0 such that ‖∇Ax‖ ≤ M ,
x ∈ R

m . Therefore, by the Mean Value Theorem A is Lipschitz continuous. Also, A
is pseudo-monotone but not monotone.

Let C := {x ∈ R
m |Bx ≤ b}, where B is a matrix of size l × m and b ∈ R

l+ with
l = 10.

For all tests, we take β = 0.01, P = RT R, Q = UTU with all entries of matrices
R,U ∈ R

m×m and vector q ∈ R
m are generated randomly from a normal distribution

withmean zero and unit variance. B is a randommatrix and random vector b ∈ R
l with

non-negative entries. The starting points are x0 = (1, 1, . . . , 1) ∈ R
m and λ0 = 0.5
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Table 1 Numerical results obtained by other algorithms

Methods m =100 m=150 m=200

Sec. Iter. Sec. Iter. Sec. Iter.

Proposed Alg. 3.1 2.4327 24 4.1211 27 5.5196 40

Yang et al. Alg. 2 5.0123 116 9.9642 156 11.6552 216

Table 2 Numerical results of all algorithms with different x0

Methods x0 = (sin(−3∗t)+cos(−10∗t))
300 x0 = (t2−exp(−t))

200

Sec. Iter. Error. Sec. Iter. Error.

Proposed Alg. 3.1 0.1 100 9.9065e-05 0.0694 77 9.9488e-05

Yang et al. Alg. 2 0.45 500 0.0034 0.45 500 0.0026

Censor et al. Alg. 1 0.3 500 0.0034 0.3 500 0.0026

Kraikaew et al. Alg. 3.1 0.32 500 0.0034 0.32 500 0.0026

for Algorithms. To terminate Algorithms, we use the condition ‖xn − yn‖ ≤ ε with
ε = 10−3 .We chooseγn = 1

(n+3) andμ = 0.05 for all algorithms andβn = 1
10 (1−γn)

for Algorithm 3.1. The numerical results are described in Table 1

Problem 2 Let H = L2([0, 1])with the norm ‖·‖ and the inner product 〈x, y〉 defined
by

‖x‖ = (

∫ 1

0
|x(t)|2dt) 1

2 , 〈x, y〉 =
∫ 1

0
x(t)y(t)dt, ∀x, y ∈ H ,

respectively. The operator A : H → H is defined by

Ax(t) = max{0, x(t)}, ∀x ∈ H , t ∈ [0, 1].

It can be easily verified that A is 1-Lipschitz-continuous and monotone. The feasible
set C := {x ∈ H : ‖x‖ ≤ 1} be the unit ball. Observe that 0 ∈ V I (C, A) and so
V I (C, A) �= ∅. For all tests, we take λ = λ0 = 0.5 for all algorithms. We choose
γn = 1

(n+3) , μ = 0.05 for Algorithm 2 of Yang et al. Algorithms 3.1 and γn = 1
(n+3)

for Algorithm 3.1 of Kraikaew et al. βn = 1
10 (1−γn) for Algorithms 3.1. To terminate

Algorithms, we use the condition ‖xn − 0‖ ≤ ε with ε = 10−4 or iterations ≥ 500.
The numerical results are described in Table 2.
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5 Conclusions

We proposed a new modified subgradient extragradient method for solving the pseu-
domonotone variational inequality problem in real Hilbert spaces. To obtain the strong
convergence theorem, we combined by the subgradient extragradient method and the
Mann type method [31]. The advantages of the proposed algorithm don’t need any
requirement of additional projections and the knowledge of the Lipschitz constant of
the mapping. Further, we gave several numerical experiments to illustrate the perfor-
mance of the proposed algorithm with the known algorithms.

Acknowledgements The authors would like to thank two anonymous reviewers for their comments on the
manuscript which helped us very much in improving and presenting the original version of this paper.
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