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Jack Brimberg3 · Nenad Mladenović 4 · Raca Todosijević1

Received: 31 May 2020 / Accepted: 19 November 2020 / Published online: 28 November 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
This paper examines a new model for hub location known as the hub location routing
problem. The problem shares similarities with the well studied uncapacitated single
allocation p-hub median problem except that the hubs are now connected to each
other by a cyclical path (or tour) known as the global route, each cluster of non-
hub nodes and assigned hub is also connected by a single tour known as a local
route, and the length of the local routes is constrained to a maximum number of
nodes. Thus, aside from the normal tasks of hub selection and allocation of non-
hub nodes, up to p + 1 travelling salesman problems need to be solved. A heuristic
based on the general variable neighborhood search framework is proposed here to
solve this very complicated problem. The improvement phase of the algorithm uses
a sequential variable neighborhood descent with multiple neighborhoods required to
suit the complex nature of the problem. A best sequencing of the neighborhoods is
established through empirical testing. The perturbation phase known as the shaking
procedure also uses awell-structured selection of neighborhoods in order to effectively
diversify the search to different regions of the solution space. Extensive computational
testing shows that the new heuristic significantly outperforms the state-of-the-art. Out
of 912 test instances from the literature, we are able to obtain 691 new best known
solutions. Not only are the improvements in objective values quite impressive, but
also these new solutions are obtained in a small fraction of the time required by the
competing algorithms.

Keywords p-hub · Hub location-routing problem · Heuristics · General variable
neighborhood search

1 Introduction

The aimof a transportation/communication network is to facilitate transport/communi-
cation between all origin–destination (O–D) pairs. Establishing direct transport/
communication between all O–D pairs may be unreasonable for many reasons espe-
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cially from the economic (or cost) perspective. As an alternative approach, the idea
of hub networks has been proposed. The main feature of a hub network that differ-
entiates it from other types is the existence of special nodes (hubs) designated to
enable the connection between O–D pairs. Namely, instead of having a direct path
between each pair of nodes, nodes communicate via hubs. For example, if we have
an origin node O and a destination D, a valid path between them may have the form
O − hub1 − hub2 − D. More precisely, the flow from O to D is first collected at
hub1 then transferred to hub2 and finally delivered to node D. So, the main principle
of hub networks is that direct connection between non-hub nodes is not possible, and
instead, all transport/communication is performed via hub nodes. Hub nodes have a
role to collect, consolidate and transfer, and finally distribute the flow in a hub network.
Note that on a path O − hub1 − hub2 − D, hub nodes hub1 and hub2 may be the
same. In this case the same hub is used for collection, consolidation and transfer, and
distribution purposes,.

During the past years, many variants of the hub location problem, including those
with andwithout capacity constraints, orwith different allocation strategies, topologies
and objective functions, have been studied. For more details on the classification,
solution approaches and applications of hub location problems, we refer the reader to
[1,3–6,8–11,14–17,21–23,29–31,34–36].

In this paper, we study a relatively new type of hub location problem known as the
hub location routing problem. The main feature that differentiates this variant is the
existence of local and global routes. A local route starts and ends at a hub that serves
one or more non-hub nodes, while the global route is used to interconnect hub nodes,
and its main purpose is to transfer the flow between hubs (see Fig. 1).

Theproblemstudied in this paper consists of designating p nodes on agivennetwork
to serve as hubs, assigning each non-hub node to exactly one hub, connecting non-hub

Fig. 1 A solution of a hub
location routing problem
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nodes assigned to the same hub by a route and linking hub nodes by a route so that
the total routing cost is minimized. A constraint is placed on the maximum length of
the local routes by specifying the maximum number of non-hub nodes allowed on a
route. There is neither a capacity limitation imposed on the hubs nor a cost for hub
installation. However, as in other hub location problems, a discount factor, 0 ≤ α ≤ 1,
is applied when calculating the cost of the global route. The problem studied in this
paper is referred to as the p-hub location routing problem (pHLRP).

The problem is formally defined on a graph G = (V , E), where V is a given set of
nodes and E = {(i, j)|i, j ∈ V } is the set of edges that connect them. A non-negative
cost ce is associated with each edge e ∈ E representing the routing cost along that
edge. A feasible solution of the problem provides p nodes from set V to serve as hubs.
Each of these hubs is the root point of a local route starting and ending at it. Each local
route is composed of non-hub nodes, and may contain at most C nodes including the
hub. If we denote the chosen hubs as hub1, hub2, . . . , hubp and corresponding local
routes as r1, r2, . . . , rp, where ri is an ordered list of nodes, then r1∪r2∪· · ·∪rp = V ,
and ri ∩ r j = ∅, i �= j . In other words, each non-hub node is assigned to exactly one
hub. If we suppose that ri = {hubi , ni1, . . . , nik, hubi , } then the cost of the route is
calculated as

cost(ri ) = c(hubi ,ni1)
+

k−1∑

m=1

c(n
i
m, nim+1) + c(nik ,hubi )

.

If we suppose that the cost of a tour linking the hubs is cost(hub_tour) then the overall
cost of the solution defined by hubs hub1, hub2, . . . , hubp and, corresponding local
routes r1, r2, . . . , rp, is calculated as:

∑p
i=1 cost(ri ) + αcost(hub_tour). Note that

the length of route ri , with the above notation is, lengthi = k + 1. Note also that a
route ri may contain no non-hub nodes at all. In this case the length of the local route
is 1, i.e., it contains the trip from hub hubi to itself.

Applications of the pHLRP may be found, for example, in public and urban trans-
portation systems such as subway and train lines. For example, in subway and train
transportation, the inter-hub route consists of platforms that are used to consolidate
passengers from many origins and allow their delivery to many destinations. In addi-
tion, some of these platforms are served by bus lines which are actually local routes
that connect the passengers to the platforms. Another application of this problem arises
when designing distributed data networks.

Regarding solution approaches for the problem, there are three heuristic meth-
ods available so far [20]: (i) a multi-start variable neighborhood descent, (ii) a
Biased Random-Key Genetic Algorithm (BRKGA), and (iii) Local Solver version 6.0.
According to the documentation, Local Solver combines different search techniques,
constraint propagation, and linear mixed-integer as well as nonlinear programming.
The multi-start variable neighborhood descent, in each iteration, applies a variable
neighborhood descent (VND) on a random initial solution. Two different variable
neighborhood descents (VND) are proposed in [20]. They both explore the same
neighborhood structures defined by inserting non-hub nodes from one tour to another;
exchanging two non-hub nodes; and changing a hub node. In addition both use the
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Lin-Kernighan heuristic to improve tours. As search strategies, both VNDs use nei-
ther a first nor best improvement search strategy, but execute a random improvement
move. However, they differ in the way the exploration of neighborhoods is organized.
The first one uses a nested VND scheme, while the other performs consecutive nested
Neighborhood Search (CNS). The multi-start VND based on nested VND is denoted
byM-VND,while the one usingCNS is denoted asM-CNS.BothM-VNDandM-CNS
exhibit better performance than BRKGA.

In this paper we propose a general variable neighborhood search (GVNS) based
approach. GVNS also employs VND as a local search but does not use a completely
random re-start to resolve local optimum traps as is the case in M-VND and M-CNS.
Instead, it modifies the current solution to varying degrees in order to resolve a local
optimum trap. In addition, our GVNS differs from M-VND and M-CNS in the VND
procedure. The difference comes from the number of neighborhood structures, the
way the neighborhoods are organized in VND, and the search strategy.More precisely,
our VND explores seven neighborhood structures in a sequential way using the first
improvement strategy. This is a completely different approach from that used in [20].
In addition, our VND does not use the Lin-Kernighan heuristic, but adopts instead
other neighborhood structures applicable to the traveling salesman problem (TSP).

The proposed GVNS approach is validated on benchmark instances, and its perfor-
mance demonstrates both a superior efficiency and effectiveness. Namely, our GVNS
succeeds to establish a large number of new best-known solutions. In addition, it turns
out to be very efficient in solving large problem instances in a short time. Namely, in
almost all large instances it provides significantly better solutions than previous ones
in a fraction of the time. Hence, the contributions of the paper may be summarized as:

– A new heuristic for pHLRP is proposed and tested. It is based on exploring seven
neighborhoods within a GVNS framework.

– The proposed approach outperforms the previous ones from the literature to a great
extent, particularly on large scale instances.

– 691 out of 912 best-known solutions are improved by the proposed GVNS heuris-
tic;

– The algorithm is also very fast compared to the previous methods.

The rest of the paper is organized as follows. The next section details the differ-
ent components of the new heuristic, and puts them all together within the GVNS
framework. This is followed by extensive computational work, which includes a vali-
dation of the selected VND structure and parameter specifications, a comparison with
the state-of-the-art, and a statistical analysis that confirms the superiority of the new
heuristic. Lastly, we provide some conclusions and suggestions for future research.

2 Proposed variable neighborhood search approach

In this section, we provide a detailed description of our solution approach. The section
starts by describing the solution representation and the procedure for generating an
initial solution. After that, details are provided on the various neighborhood struc-
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tures used to refine the solution. Finally, the main ingredients of the proposed general
variable neighborhood search are described.

2.1 Solution representation

Any solution of the pHLRP may be represented by the three following components:
set H = {hub1, hub2, . . . , hubp} containing the p selected hub nodes, set R =
{r1, r2, . . . , rp} containing the local routes assigned to the hubs, and the global route
denoted as hub_tour which connects the hubs from set H . In the established notation
each local route ri originates at hub node hubi . In other words, each route ri has the
form hubi − ni1 − · · · − nik − hubi where ni1 − ni2 · · · − nik is the ordered sequence of
non-hub nodes visited along the route starting and ending at hubi . Hence, the solution
is represented as the triplet S = (H , hub_tour , R).

2.2 Initial solution

To construct an initial solution we proceed in the following way. From the set V we
choose p nodes at random to constitute set H . After that, we assign nodes to hubs
and form routes as follows. For each non-hub node the corresponding hub is chosen at
random from the set H , and the node is added at the end of the route of the chosen hub.
The assignment is made while respecting the imposed constraint on the route length.
The hubtour is constructed as a tour that connects hubs hub1, hub2, . . . , hubp in
this order. The outline of the procedure is given by Algorithm 1. Note that a feasible
solution is generated in this way.

Algorithm 1: Generating an initial solution

Function Initial_Solution(S);
1 Choose randomly p nodes from V to constitute set
H = {hub1, hub2, . . . , hubp} ;

2 hub_tour ← hub1 − hub2 − · · · − hubp − hub1; /*global tour*/;
3 for i = 1 to p do
4 ri ← hubi − hubi ; /*creating local tours with just root hubs*/;
5 lengthi = 1;
end

6 for each n ∈ V − H do
7 Select at random i ∈ [1, p] such that lengthi < C ;
8 ri ← hubi − · · · − n − hubi ; /*adding node at the end of current tour*/;
9 lengthi ← lengthi + 1;
end

10 return (H , hub_tour , R);

2.3 Neighborhood structures

The solution generated by procedure Algorithm 1 will likely be far from the optimal
one. However, it may be improved by replacing a hub by a node which is not a hub, or
moving a non-hub node from one route to another, or changing the order of visiting
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nodes in the local routes and in the global route. Accordingly, we define the following
neighborhoods:

– Insert neighborhood (Ninsert )- This neighborhood is based on a move that takes
a single non-hub node from one local route and inserts it in another local route,
while respecting the capacity of the local routes.

– Exchange (Nexhange) - This neighborhood is based on a move that exchanges two
non-hub nodes from two different local routes. Note that these moves preserve the
number of non-hub nodes in each local route.

– Change hub (Nchange_hub) - This neighborhood is based on moves that replace a
single hub node by a non-hub node from the local route originating at this hub.

– LocalRoute neighborhoods - The purpose of LocalRoute neighborhoods is to opti-
mize the order of visiting non-hub nodes within local routes as well as hub nodes
within the global route. Here we adopt some k-opt neighborhoods used for solv-
ing the Traveling Salesman Problem (TSP) and its variants (see e.g. [12,24,28]).
They are: 1-opt, 2-opt and OR-opt-1. The 2-opt neighborhood is based on a move
that inverts a part of the route. A simplified variant of the 2-opt move is the 1-opt
move, which inverts a part of a tour consisting of 2 consecutive nodes. The OR-
opt-1 neighborhood is based on an insertion move that relocates a node from one
position to another. Two types of insertion move may be distinguished: forward
and backward insertion moves depending on whether a node is moved forward or
backward in the tour, respectively. 1-opt, 2-opt, OR-opt-1 forward and OR-opt-1
backward will be denoted as N1opt , N2opt , NOropt1 f or and NOropt1back , respec-
tively.

Note that all of these neighborhood allow feasible moves only, i.e., moves that
respect the capacity constraints (i.e., do not violate the maximum length of a local
route). The change in value of the objective function caused by performing any of
these moves may be calculated in constant time O(1).

2.4 Variable Neighborhood descent

The above neighborhood structures do not necessarily yield the same local optima.
That is, a local optimum with respect to one neighborhood structure is not necessarily
a local optimum with respect to another. In order to efficiently exploit the defined
neighborhood structureswe embed them in a sequential variable neighborhood descent
(VND) framework [7,13,24]. In this way, the VND takes a feasible solution at the
input and as the output returns a solution which is a local optimum with respect to all
employed neighborhood structures. The steps of the VND procedure are provided in
Algorithm 2. As observed in previous works on VND (see e.g. [24]), the ordering of
the neighborhood structures in the search as well as the search strategy may have a
significant impact on the final performance of theVNDprocedure. Due to the large size
of the neighborhood structures we selected a first improvement search strategy, i.e., as
soon as an improving solution is detected in some neighborhood structure it replaces
the incumbent solution, and the search is re-started from it. Regarding the order of
neighborhoods within the VND, we then performed an empirical study to identify
a most suitable one (see Sect. 3). This empirical study provided the final selected
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order shown in line 1 of the algorithm. The statement LocalSearch(S, Nk) in line
3 denotes the local search with respect to the kth neighborhood in the ordered list N
of neighborhoods.

Algorithm 2: Basic Sequential Variable Neighborhood Descent

Function BVND(S);
1 N = {Ninsert , Nexchange, Nchange_hub, N1opt , N2opt , NOropt1back, NOropt1 f or };
2 k ← 1;
while k ≤ 7 do

3 S′ ← LocalSearch(S, Nk);
4 k ← k + 1;

if S′ better than S then
5 S ← S′;
6 k ← 1;

end
end

7 return S

2.5 General variable neighborhood search

In this section we describe our general variable neighborhood search (GVNS) heuris-
tic. Recall that GVNS is a variant of variable neighborhood search [13,26] that uses
a variable neighborhood descent (VND) in the intensification phase (instead of a
basic local search with a single neighborhood (see e.g., [2,25])) and the usual shaking
procedure in the diversification phase. Our implementation employs the VND pre-
sented in Algorithm 2 for the intensification (or improvement) phase, while at the
diversification phase we employ the shaking procedure presented in Algorithm 3. The
shaking procedure moves the search to new regions of the solution space by relocating
non-hub nodes to different routes and changing the order of visitation of a single local
route. The improvement phase and the shaking procedure together with the neighbor-
hood change step are executed alternately until a predefined stopping criterion is met.
Here the stopping criterion is given by a limit on CPU time (Tmax ) (see line 10 in
Algorithm 4). GVNS has an additional parameter kmax which denotes the maximum
number of iterations (moves) that may be performed within a single shake (Algorithm
3) and which affects the level of diversification obtained by the shaking procedure.
The parameter kmax is determined empirically in our study (see Sect. 3).

Algorithm 3: Shaking procedure

Function shaking(S,k);
N = {N1,N2,N3} = {Ninsert , NOropt1 f or , NOropt1back};

1 for i = 1 to k do
2 Select S′′ in N1(S) at random;
3 S ← S′′;
end

4 for i = 1 to k do
5 Select S′′ in N2(S) ∪ N3(S) at random;
6 S ← S′′;
end

7 return S;
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Algorithm 4: General VNS

Function GVNS(S, kmax , Tmax );
1 S ← Initial_Solution(S);
2 repeat
3 k ← 1;
4 while k ≤ kmax do
5 S′ ← shaking (S, k) ;
6 S′′ ← BVND (S′) ;
7 k ← k + 1;
8 if S′′ is better then S then
9 S ← S′′; k ← 1;

end
end

10 T ← CpuTime();
until T > Tmax ;

11 Return S;

3 Computational results

In this section, we present the results obtained by our GVNS heuristic on benchmark
instances from the literature. In addition, we present the results of preliminary testing
used to determine the order of neighborhoods within the VND, as well as to determine
an appropriate value of the parameter kmax . Also note that a CPU time limit Tmax of
60s is imposed on all runs of the GVNS heuristic.

The experiments are conducted on a machine with an Intel(R) Core(TM) i5-3470
CPU @ 3.20GHz and 16GB of RAM.

3.1 Benchmark instances

For testing purposes, the benchmark instances originally proposed in [20] are used.
The benchmark set is derived from 76 TSPLIB instances by varying the value of
parameterα and considering different scenarios on the tour lengthC , and the requested
number of hubs p. More precisely, the value of the parameter α is taken from the set
{0.2, 0.4, 0.6, 0.8}, while three scenarios are considered for values of C and p:

– Scenario ST p = 
0.2|V |� and C = 
|V |
p �. In this case the local routes are forced

to be non-empty and tight.
– Scenario SL p = 
0.2|V |� and C = �1.8
 |V |

p �. Here some local routes may be
very large and some may be empty.

– Scenario SQ p = C = 
√|V |� . Here local routes may be large or empty, but not
as loose as scenario SL .

Hence, in total we have 76×4×3 = 912 test instances. The instances with 100 nodes
or less are classified as small, while the remaining ones are large.
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3.2 Determining the best order of neighborhoods

The aim of this section is to determine the best order of neighborhoods inside our
VND procedure. Due to the large number of neighborhood structures considered here,
examining all possible orders would be far too time consuming. For this reason, we
divide the neighborhood structures into two groups: hub-location neighborhoods and
LocalRoute neighborhoods. Hub-location neighborhoods are those that concern the
selection of hubs and node-hub assignments, while LocalRoute neighborhoods are
those that “optimize” local tours. Having such a division of neighborhoods, we are
now interested to determine the best order of neighborhood groups. The order of
neighborhoods within the set of hub-location neighborhoods may be determined so
that those based on changing node-hub allocations are examined first followed by
those that change the hubs. Such a way of exploring neighborhoods is suggested for
example in [16]. Hence, respecting the rule that the neighborhoods of smaller car-
dinality are examined first, we obtain the following order of neighborhoods within
the hub-location group: Nhub := {Ninsert , Nexchange, Nchange_hub}. In similar fash-
ion, we order neighborhood structures within the LocalRoute neighborhood group
as NLocal Route := {N1opt , N2opt , NOropt1back , NOropt1 f or }. To validate this order we
note the following observations: the lowest cardinality neighborhood is examined first;
the 2-opt neighborhood should be examined before the OR-opt neighborhoods (e.g.,
as noted in [24]); ORopt_backward should be examined before ORopt_forward (see
e.g., [12,27,32] ).

Now that the order of neighborhoods within each group is specified, we examine
the best order of groups within the VND paradigm. Hence, we consider the following
orders: 1) hub-location neighborhoods, LocalRoute neighborhoods; 2) LocalRoute
neighborhoods; hub-location neighborhoods, and 3) hybrid order, where after each
neighborhood in the hub-location group we apply the LocalRoute neighborhoods. To
differentiate these three VNDs we designate them as:

– VND_1-order of neighborhoods: NLocal Route, Nhub;
– VND_2-order of neighborhoods: Nhub, NLocal Route;
– VND_3-order of neighborhoods: Ninsert , NLocal Route, Nexchange, NLocal Route,

Nchange_hub, NLocal Route;

To assess the performance of the above three VNDs, each one is executed 50000
times on a selected subset of instances, each time starting from a different initial
solution generated at random as described in Algorithm 1. For testing purposes, we
selected a subset of 240 instances with different topologies. This subset is based on
the following 20 TSPlib instances: a280, li535, att532, bier127, brg180, ch130, d198,
d493, fl417, gil262, gr137, gr202, gr229, gr431, kroA150, kroA200, lin318, pa561,
pcb442, pr144. Each of these instances is considered under 3 different scenarios and 4
different values of the parameter α. For each VND, the average results taken over 20
instances, all using the same scenario and the same value of parameter α, are provided
in Table 1.More precisely, we report the averages of the best, the average and the worst
solution values (Columns ‘Best’, ‘Avg.’ and ‘Worst’, respectively), as well as the
average time-to-target (Columns ‘time’) in seconds. The time-to-target represents
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the CPU time consumed by a method to reach a final solution value reported at the
output.

From the reported results we observe, that average times-to-target of all threeVNDs
are almost the same. Regarding solution quality, VND_1 exhibits the poorest perfor-
mance. Comparing VND_2 and VND_3, we observe that in all cases but one (see the
line corresponding to the scenario SL and α = 0.8), VND_2 provides better (best)
solutions. In addition, in 9 out of 12 cases, we see that the averages of best, average
and worst solution values provided by VND_2 are better than the corresponding ones
of VND_3. Consequently, VND_2 may be identified as the best VND. This further
implies that the best order of neighborhoods is:
Ninsert , Nexchange, Nchange_hub, N1opt , N2opt , NOropt1back, NOropt1 f or .

3.3 Assessing the value of parameter kmax

After detecting the best order, we needed to also tune parameter kmax , which deter-
mines the level of diversification that will be used within GVNS to resolve local
optimum traps. It is known that for larger values of parameter kmax , the corresponding
VNS heuristic tends to behave as a random multi-start heuristic (i.e., a heuristic that
generates a completely random solution at each re-start that does not retain any fea-
tures of the current best solution). In order to avoid this worst-case scenario, we want
to keep the kmax value as small as possible while having at the same time high quality
results. Since the number of local routes in a solution is expressed by the parame-
ter p, we try to keep the number of local routes affected by the shaking procedure
to be as small as possible by attempting the following settings: kmax = min(5, p),
kmax = min(10, p) and kmax = min(20, p). In all testing, the time limit parameter
Tmax is set to 60s as noted above, and for each choice of kmax GVNS is executed 20
times, each time starting from a different initial solution generated by Algorithm 1.
For testing purposes, we used the same subset of 240 instances as described above.
The average results taken over 20 instances, all using the same scenario and the same
value of parameter α, are provided in Table 2. The column headings are defined in the
same way as previously described.

From the reported results, it follows that for scenarios ST and SL the best choice is
kmax = min(10, p), regardless of the value of α. This choice of the value of parameter
kmax , yields better best and average solution values than the other choices. On the
other hand for the SQ scenario the best choice turns out to be kmax = min(5, p).
Hence, in all subsequent testing, we will use kmax = min(10, p) for the ST and SL
scenarios, and kmax = min(5, p) for the scenario SQ. It should also be emphasized
that regardless of the value of kmax , our GVNS exhibits a good stability with respect
to time-to-target.

An interesting observation may be deduced after comparing the results reported
in Table 1 (multi-start VND) and Table 2 (GVNS). Namely, in all test cases, the
solutions obtained by the proposed GVNS are much better than the ones reached by
the multi-start VND. Hence, it follows that the proposed shaking procedure resolves
local optimum traps more effectively than the random re-start used within the multi-
start VND.

123



An efficient heuristic for a hub location routing problem 291

Ta
bl
e
1

E
xa
m
in
in
g
th
e
or
de
r
of

ne
ig
hb

or
ho

od
s

Sc
en
ar
io

α
V
N
D
_1

V
N
D
_2

V
N
D
_3

B
es
t

A
vg

W
or
st

T
im

e
B
es
t

A
vg

W
or
st

T
im

e
B
es
t

A
vg

W
or
st

T
im

e

ST
0.
20

71
7,
77

.7
4

90
1,
67

.8
4

12
1,
93

5.
08

0.
02

71
2,
26

.0
3

86
9,
69

.6
6

11
5,
41

8.
17

0.
03

71
,5
96

.9
1

90
,
07

5.
72

12
0,
59

0.
16

0.
02

0.
40

76
1,
84

.1
8

94
,
54

7.
77

12
6,
24

7.
10

0.
02

75
,6
77

.1
8

91
,
38

3.
44

11
9,
67

1.
61

0.
03

75
,9
86

.1
7

94
,
45

2.
92

12
4,
80

1.
37

0.
02

0.
60

80
,5
74

.5
0

98
,
92

7.
70

13
0,
55

9.
35

0.
02

80
,0
83

.3
7

95
,
79

7.
22

12
3,
94

3.
04

0.
03

80
,3
66

.3
3

98
,
83

0.
98

12
9,
04

6.
59

0.
02

0.
80

84
,9
27

.6
3

10
3,
30

7.
63

13
4,
95

4.
50

0.
02

84
,4
65

.9
1

10
0,

21
1.
00

12
8,
23

0.
27

0.
03

84
,7
11

.2
4

10
3,
21

0.
72

13
3,
37

8.
87

0.
02

SL
0.
20

60
,4
22

.6
3

78
,
51

6.
64

11
1,
67

1.
84

0.
02

59
,3
15

.5
3

77
,
71

3.
53

11
0,
93

1.
06

0.
03

59
,9
84

.3
0

77
,
44

6.
11

10
8,
33

5.
95

0.
02

0.
40

65
,5
68

.3
2

83
,
15

9.
29

11
5,
90

8.
96

0.
02

64
,6
14

.6
5

82
,
40

4.
74

11
5,
14

0.
66

0.
03

64
,9
80

.4
5

82
,
10

1.
35

11
2,
59

8.
39

0.
02

0.
60

69
,8
70

.8
2

86
,
75

5.
15

11
6,
88

2.
66

0.
02

69
,8
15

.1
5

87
,
09

5.
95

11
9,
54

4.
63

0.
03

70
,4
69

.4
5

87
,
80

1.
93

12
0,
19

0.
97

0.
02

0.
80

75
,2
69

.1
1

92
,
44

4.
57

12
4,
51

0.
93

0.
02

74
,7
52

.7
1

91
,
78

7.
16

12
4,
17

4.
51

0.
03

74
,4
75

.1
6

91
,
41

0.
92

12
1,
29

0.
36

0.
02

SQ
0.
20

79
,9
18

.1
1

11
0,

71
3.
92

15
2,
81

6.
48

0.
02

74
,9
42

.7
0

10
0,

97
9.
95

13
7,
25

9.
14

0.
02

76
55

8.
87

10
4,
85

3.
10

14
1,
01

4.
93

0.
02

0.
40

82
,0
31

.5
7

11
2,

57
0.
34

15
4,
38

2.
57

0.
02

77
,0
59

.4
1

10
2,

65
1.
91

13
8„
68

8.
81

0.
02

78
,7
13

.6
2

10
6,
76

8.
35

14
2,
82

1.
72

0.
02

0.
60

84
,0
72

.9
2

11
4,
42

6.
76

15
6,
06

2.
59

0.
02

79
,1
09

.8
9

10
4,
32

3.
87

14
0,
21

4.
11

0.
02

80
,8
63

.3
8

10
8,
68

4.
24

14
4,
93

7.
46

0.
02

0.
80

86
,0
86

.5
1

11
6,
28

3.
17

15
7,
85

9.
40

0.
02

81
,1
49

.1
2

10
5,
99

5.
84

14
1,
93

1.
68

0.
02

82
,9
73

.3
8

11
0,

59
9.
89

14
7,
08

9.
56

0.
02

123



292 M. Ratli et al.

Ta
bl
e
2

E
xa
m
in
in
g
th
e
be
st
va
lu
e
of

pa
ra
m
et
er

k m
a
x

Sc
en
ar
io

α
k m

a
x

=
5

k m
a
x

=
10

k m
a
x

=
20

B
es
t

A
vg

W
or
st

T
im

e
B
es
t

A
vg

W
or
st

T
im

e
B
es
t

A
vg

W
or
st

T
im

e

ST
0.
20

63
,4
44

.9
0

64
,5
16

.3
8

65
,8
98

.2
9

41
.4
2

63
,4
22

.1
7

64
,3
54

.0
5

65
,5
21

.3
8

39
.3
6

63
,5
74

.8
0

64
,8
10

.3
7

67
,1
28

.2
0

42
.7
5

0.
40

67
,9
73

.3
6

69
,0
01

.9
9

70
,5
75

.7
0

39
.4
7

67
,9
43

.8
1

68
,9
14

.6
7

71
,2
43

.8
4

38
.4
4

68
,0
28

.1
5

69
09

1.
72

70
,7
78

.2
3

42
.3
9

0.
60

72
,4
40

.3
4

73
,5
19

.1
5

75
,5
03

.0
6

40
.3
0

72
,0
15

.4
5

73
,1
03

.0
2

75
,2
30

.0
9

39
.7
0

72
,1
36

.8
6

73
,3
51

.9
6

75
,5
07

.7
1

41
.1
1

0.
80

76
,7
12

.7
2

77
,8
85

.9
5

79
,4
19

.6
5

40
.3
8

76
,0
75

.1
3

77
,2
44

.8
0

78
,7
99

.4
0

39
.2
0

76
,3
74

.0
6

77
,5
03

.1
5

79
,7
70

.7
3

41
.8
8

SL
0.
20

47
28

4.
34

49
,4
43

.2
8

52
,8
62

.2
4

47
.6
3

46
,2
65

.1
9

48
,3
09

.8
7

50
,9
28

.1
4

50
.7
7

46
,9
86

.6
7

49
,3
77

.7
2

52
„3
30

.9
8

51
.8
8

0.
40

52
,9
54

.1
0

54
,8
94

.2
3

56
,7
26

.3
5

47
.5
8

52
,0
67

.8
5

53
,9
97

.0
6

56
,5
75

.0
5

49
.3
4

52
,7
32

.1
8

54
,6
62

.3
4

56
,6
85

.8
7

50
.9
9

0.
60

58
,3
91

.7
0

59
,9
47

.7
3

62
,2
88

.7
1

47
.1
7

57
,6
73

.5
3

59
,1
35

.3
4

61
,8
71

.9
5

48
.9
7

58
,2
87

.4
3

59
,8
65

.2
5

62
,3
68

.4
0

50
.6
2

0.
80

62
,9
98

.7
7

64
,6
20

.6
6

67
,1
77

.3
8

45
.6
8

62
,1
63

.4
5

63
,8
17

.9
0

65
,8
07

.2
8

47
.7
1

63
,0
43

.7
2

64
,5
40

.6
3

66
,9
23

.0
7

50
.1
8

SQ
0.
20

59
„6
05

.4
4

61
,7
84

.5
8

65
,5
60

.3
5

37
.0
0

60
,1
32

.4
4

63
,7
24

.5
0

68
39

4.
79

40
.5
4

60
,1
04

.3
1

63
72

1.
53

70
,2
26

.2
7

42
.3
4

0.
40

61
,4
36

.8
6

63
,9
65

.3
2

68
,3
82

.9
5

37
.4
1

61
,9
26

.9
8

65
,7
49

.8
8

70
,5
23

.2
7

37
.9
1

62
,0
90

.5
1

65
,8
03

.1
1

72
,7
61

.9
5

41
.7
2

0.
60

63
,6
41

.5
4

66
,2
62

.4
2

70
,6
44

.0
2

38
.4
2

64
,9
27

.7
5

67
,9
14

.7
6

71
,8
65

.3
3

39
.4
2

64
,5
42

.7
6

68
,4
76

.9
9

72
,6
41

.2
6

41
.1
0

0.
80

65
,2
91

.5
3

68
,5
63

.5
5

73
,6
36

.9
6

37
.6
9

66
,6
76

.3
1

70
,0
68

.3
4

74
,9
33

.9
2

37
.1
5

67
,5
30

.6
9

70
,9
17

.5
0

77
,2
91

.0
6

40
.9
6

123



An efficient heuristic for a hub location routing problem 293

3.4 Comparison with the state-of-the-art

In this section we compare our GVNS against the state-of-the-art heuristics presented
in [20]: M-VND, M-CNS, and LocalSolver. In all tests the parameters of our GVNS
are set as previously described, i.e., Tmax = 60 s, kmax = min(10, p) on scenarios ST
and SL, and kmax = min(5, p) on scenario SQ. As an improvement routine, VND_2
is used. On each of the 912 instances tested GVNS is executed 20 times, each time
starting from a different initial solution generated by Algorithm 1.

The detailed comparison may be found at the following webpage: http://www.mi.
sanu.ac.rs/~nenad/p-hubLR/,while herewe present the summary results. All instances
of the same size type (small or large), tested under the same scenario (ST, SLor SQ) and
the same value of the parameter α ∈ {0.2, 0.4, 0.6, 0.8} are considered as a test case.
Hence, for each test case, we report the average results over all instances in that test
case. Table 3 reports the results on small instances, while Table 4 provides results on
large instances. The column headings are defined as follows. Columns ‘Scenario’
and ‘α’ provide information on the scenario considered and the value of parameter α,
respectively. The next column ‘Best Known’ provides the average of best-known
solution values obtained from the literature for each test case. After that, in the next
columns, for each of methods M-VND, M-CNS, and LocalSolver (LS), we report the
average percentage deviations of their solution values from the best-known solution
values and the average time-to-target. For our GVNS, we report the averages of the
best and average solution values on each test case, the average time-to-target and the
average percentage deviations of the best found solution values from the current best
known values. For each method, the percentage deviation is calculated as:

value − best_known

best_known
× 100,

where value stands for the solution value found by the considered method and
best_known is the best-known solution value reported in the literature [20]. Note that
the percentage deviations for M-VND, M-CNS, and LocalSolver are taken directly
from [20] as well as all other data related to these methods.

Table 5 provides the following information for each test case: number of
instances where the proposed GVNS establishes a new best-known solution (columns
‘Better’); number of instances where it reaches the previous best-known solution
(columns ‘Same’); and number of instances where it fails to improve or reach the
previous best-known solution (columns ‘Worse’).

From the results reported on small size instances in Table 3, we observe that our
GVNS provides very good solution values in short time. On all 12 test cases, the
averages of best and average solution values are less than the averages of best-known
values. The previous best-known solution values are improved up to 0.73%. Just on
two test cases (SL, 0.20 and SL, 0.80), ourGVNSprovides higher percentage deviation
from the best known solution values than LS. In the remaining 10 cases our GVNS
not only provides less percentage deviation than LS but also improves previous best-
known solution values. The total number of new best-known solutions established by
our GVNS is 135 (see Table 5). On 138 instances, our GVNS matches the previous
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Table 5 Number of instances where GVNS provides a better, same or worse solution than best-known from
the literature

Scenario α Small instances Large instances

Better Same Worse Better Same Worse

ST 0.2 11 16 1 47 0 1

0.4 9 19 0 47 0 1

0.6 10 17 1 47 0 1

0.8 12 16 0 46 0 2

SL 0.2 12 0 16 47 0 1

0.4 13 1 14 47 0 1

0.6 12 3 13 43 0 5

0.8 12 2 14 47 0 1

SQ 0.2 11 14 3 45 0 3

0.4 13 15 0 46 0 2

0.6 10 17 1 47 0 1

0.8 10 18 0 47 0 1

Total 135 138 63 556 0 20

best-known solutions, while on 63 instances it fails to improve or match the previous
best-known solutions.

Comparing the results on large scale instances, it follows that our GVNS exhibits
better performance than any other solution approach. On every instance it either
improves or matches the previous best-known solution. The average percentage
improvement is in the range of 5.32 and 11%. It should be emphasized that our GVNS
consumes a lot less CPU time-to-target than any other method. M-VND has very high
percentage deviation from the previous best-known solution values, reaching as high
as 14.51%. M-CNS and LS exhibit better performance than M-VND, but still worse
than GVNS. For example, on test case SL 0.60, where percentage deviations of M-
CNS and LS are both 4.51%, our GVNS improves best-known solutions by 6.52%.
Moreover, our GVNS improves the previous best-known solutions on 556 out of 576
test instances (see Table 5). It should be emphasized that, as reported in [20], M-CNS
and LS exhibit the same performance on all large instances.

Overall, we see that GVNS improves best known solution values on 691 out of 912
instances; matches the previous best-known solution values on 138 instances, while
on only 83 instances it neither improves nor reaches the previous best-known solution
values. Thus as of now, 829 out of 912 best-known solutions are attributed to the
proposed GVNS, i.e., around 90% of the current best-known solutions. In addition, it
follows that the proposed GVNS is highly suitable for solving large scale instances in
a short time by providing high quality solutions within 60s. This further implies that
our GVNS successfully responds to the main requirement of a heuristic approach, that
is, to provide high quality solutions in short time.
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Table 6 p-values of the Wilcoxon signed-rank test

Scenario α Small instances Large instances

M-VND M-CNS LS M-VND M-CNS LS

ST 0.2 5.35E-04 5.35E-04 1.22E-02 1.63E-09 3.06E-09 3.06E-09

0.4 1.22E-04 2.93E-04 3.90E-03 1.63E-09 5.03E-09 5.03E-09

0.6 6.10E-05 2.92E-04 2.00E-03 1.63E-09 4.18E-09 4.18E-09

0.8 2.93E-04 6.10E-05 4.88E-04 2.40E-09 7.56E-09 7.56E-09

SL 0.2 3.97E-02 2.50E-03 9.23E-01 1.63E-09 2.56E-08 2.56E-08

0.4 3.06E-02 7.40E-03 7.19E-01 1.63E-09 1.41E-08 1.41E-08

0.6 9.40E-03 1.28E-02 7.37E-01 1.97E-09 4.05E-07 4.05E-07

0.8 7.40E-03 1.99E-02 5.01E-01 1.63E-09 9.26E-09 9.26E-09

SQ 0.2 1.60E-03 1.00E-03 2.45E-02 1.63E-09 4.08E-08 4.08E-08

0.4 1.22E-04 1.32E-04 2.44E-04 1.63E-09 1.41E-08 1.41E-08

0.6 3.05E-04 3.05E-04 3.05E-04 1.63E-09 8.72E-09 8.72E-09

0.8 4.38E-04 1.22E-04 2.00E-03 1.63E-09 1.25E-08 1.25E-08

3.5 Statistical tests

The aim of this section is to determine if the difference in performance between our
GVNSand each othermethod in the comparison is statistically significant or not. In this
regard, the Wilcoxon signed-rank test is performed with a significance level of 0.05.
The outcome of the tests is provided in Table 6. For each test case, the corresponding
row provides p-values obtained after applying the Wilcoxon signed-rank test on the
results found by the proposed GVNS and the methods shown in the column headings.
A p-value less than 0.05 indicates that there is a significant difference between the
two methods, otherwise there is insufficient evidence. From the table we see that on
large instances all p-values are orders of magnitude less than 0.05, which implies
that there is a significant difference between the proposed GVNS and each of the
previously proposed methods. Since, on large instances, the proposed GVNS provides
better solution values than any existing method (see Table 4), it may be inferred that
the GVNS is the superior method on large size instances, in terms of the solution
quality. Similar conclusions may be drawn when comparing GVNS with M-VND and
M-CNS on small instances. When comparing the GVNS and LS on small instances,
the previous conclusions are applicable on all test cases except for small instances and
scenario SL, where no significant differences between GVNS and LS are observed.

4 Conclusions

In this paper an established hub location routing problem is studied, and an efficient
solution approach is proposed. The new solution approach follows the general variable
neighborhood search frameworkwhere in our case seven different neighborhood struc-
tures are identified to exploit the nature of the problem. These seven neighborhoods
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are embedded in a sequential variable neighborhood descent scheme in an efficient and
effective ordering determined from a detailed empirical study. In addition, all other
parameters and components of our approach are carefully tailored with the aim to
obtain high-quality solutions in a short time. Comparing our heuristic with the state-
of-the-art approaches reveals that we succeeded to do so to a great extent. Our heuristic
established 691 new best-known solutions on a benchmark set of 912 instances while
consuming orders of magnitude less CPU time than all competitors. In addition, 829
out of 912 current best-known solutions can be attributed to the proposed GVNS. The
statistical tests we conducted strongly confirm the superiority of our approach over
the previous ones.

The SL small-sized instances with poor GVNS performance should be the subject
of future work in order to detect possible anomalies in the solution space of these
instances. As additional future research directions, we suggest the hybridization of
the proposed solution method with some exact approaches to hopefully obtain guar-
anteed optimal solutions, as well as extending the study to other hub location routing
problems. Some variants to be studied include for example, capacitated variants of the
current problem, with capacities on the edges or at the hubs, allowing the assignment
of non-hub nodes to more than one hub, and allowing for different configurations such
as a tree structure for inter-hub connections.

In addition, some recent works use an adaptive search strategy, which combines first
and best improvement strategies. More specifically, the best improvement is selected
for small- and medium-sized instances, and the first improvement for the solution of
large problem instances [18,19]. Therefore, this approach may be also a promising
future work direction. Moreover, in [19] new adaptive shaking approaches can be
found, which may further enhance the efficiency of GVNS. Hence, this is one more
possible research direction. Another possible research directionmay be to examine the
use of an adaptive neighborhoods’ ordering mechanism of neighborhood structures as
was done in [33], for example.
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