
Optimization Letters (2021) 15:1041–1060
https://doi.org/10.1007/s11590-020-01667-z

ORIG INAL PAPER

Linear size MIP formulation of Max-Cut: new properties,
links with cycle inequalities and computational results

Viet Hung Nguyen1 ·Michel Minoux2

Received: 22 June 2018 / Accepted: 8 November 2020 / Published online: 20 November 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
We consider the Max-Cut problem on an undirected graph G = (V , E) with |V | = n
nodes and |E | = m edges. We investigate a linear size MIP formulation, referred to
as (MIP-MaxCut), which can easily be derived via a standard linearization technique.
However, the efficiency of the Branch-and-Bound procedure applied to this formula-
tion does not seem to have been investigated so far in the literature. Branch-and-bound
based approaches for Max-Cut usually use the semi-metric polytope which has either
an exponential size formulation consisting of the cycle inequalities or a compact
size formulation consisting of O(mn) triangle inequalities (Barahona and Mahjoub
in Math Prog 36:157–173, 1986; Nguyen and Minoux in Networks 69(1):142–150,
2017). However, optimizing over the semi-metric polytope can be computationally
demanding due to the slow convergence of cutting-plane algorithms and the high
degeneracy of formulations based on the triangle inequalities. In this paper, we exhibit
new structural properties of (MIP-MaxCut) that link the binary variables with the
cycle inequalities. In particular, we show that fixing a binary variable at 0 or 1 in
(MIP-MaxCut) can result in imposing the integrity of several original variables and
the satisfaction of a possibly exponential number of cycle inequalities in the semi-
metric formulation. Numerical results show that for sparse instances of Max-Cut, our
approach exploiting this capability outperforms the branch-and-cut algorithms based
on semi-metric polytope when implemented on the same framework; and evenwithout
any extra sophistication, the approach is capable of solving hard instances of Max-Cut
within acceptable CPU times.

Keywords Max-Cut · Cycle inequalities · Triangle inequalities · Semi-metric
polytope

B Viet Hung Nguyen
vhnguyen@isima.fr

Michel Minoux
michel.minoux@lip6.fr

1 Clermont Auvergne University, LIMOS, CNRS UMR 6158, Aubière, France

2 Sorbonne University, LIP6 CNRS UMR 7606, Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-020-01667-z&domain=pdf
http://orcid.org/0000-0003-2181-3847

1042 V. H. Nguyen, M. Minoux

1 Introduction

1.1 TheMax-Cut problem

Let G = (V , E) be an undirected graph with n = |V | and m = |E |. We suppose that
the edges ofG are weighted by a vector c ∈ R

E , the real space of dimensionm indexed
by the edges in E . In particular, G could be the complete graph Kn = (Vn, En) of
n nodes. We denote by i j the edge between the two nodes i and j of V . A cut in G
associated with a node subset S ⊂ V , denoted δ(S), is the set of the edges that have
exactly one end-node in S. The Max-Cut problem is to find a cut of maximum total
weight or equivalently to find a node subset S such that

∑
i j∈δ(S) ci j is maximum.

For each cut δ(S), the incidence vector associated with δ(S) is a vector χ(δ(S)) ∈
{0, 1}E where

χ(δ(S))i j =
{
1 if i j ∈ δ(S),

0 otherwise

Hence, finding amaximumweight cut is equivalent to optimizing over the cut polytope
CUTP(G) which is the convex hull of the incidence vectors associated with the cuts
in G.

1.2 Cycle inequalities and the semi-metric polytope

A chordless cycle C in G is a cycle whose induced subgraph is the cycle itself. Let C
be the set of chordless cycles in G. For a vector x ∈ R

E and for any subset F ⊆ E ,
let x(F) = ∑

e∈F xe.
As a cut always intersects a cycle C in an even number of edges, the incidence

vectors associatedwith the cuts inG satisfy the following cycle inequalities introduced
by Barahona and Mahjoub [2]:

x(F) − x(C\F) ≤ |F | − 1,

∀C ∈ C and F ⊆ C with |F |odd, (1)

The cycle inequalities togetherwith some trivial lower bound and upper bound inequal-
ities define the so-called semi-metric polytope METP(G) associated with G in RE :

x satisfies (1),

xe ≥ 0 ∀e ∈ E s.t. e does not belong to any triangle

xe ≤ 1 ∀e ∈ E s.t. e does not belong to any triangle (2)

Hence the semi-metric polytope is a relaxation of CUTP(G). If we replace the trivial
inequalities by the 0/1 constraints x ∈ {0, 1}E , we obtain an integer formulation for
CUTP(G). Thus, the semi-metric polytope is a linear programming relaxation for the
Max-Cut problem. Moreover, Barahona andMahjoub [2] showed that the semi-metric
polytope coincides with the cut polytope when G is no contractible to K5.

123

Linear size MIP formulation of Max-Cut: new properties… 1043

Note that since there is a priori no known polynomial upper bound (in terms of n
andm) on the number of chordless cycles and theremay be also an exponential number
of possible choices for the set F given a chordless cycle C , the above formulation of
METP(G) has a priori an exponential number of inequalities. However, METP(G)

has polynomial size extended formulations [1,16], called METP(Kn), which con-
sist of O(n2) variables where additional variables correspond to the additional edges
which completeG to Kn . These extended formulations involve the following so-called
triangle inequalities:

xi j + xik + x jk ≤ 2 for all i, j, k ∈ T . (3)

xi j − xik − x jk ≤ 0, (4)

xik − xi j − x jk ≤ 0, (5)

x jk − xi j − xik ≤ 0 for all i, j, k ∈ T . (6)

where T is the set of all (unordered) triples of distinct nodes i, j, k ∈ V such that at
least i j , ik or jk is an edge in E .

The semi-metric polytope forms the core of the linear programming relaxations in
many practical solution procedures for the Max-Cut problem. Moreover, when G is
sparse, it is well known that the corresponding relaxation given by the semi-metric
polytope is quite good. In this case, for the Max-Cut problem on large sparse graphs,
branch-and-cut algorithms based on the integer formulation obtained from the cycle
inequalities and the 0/1 constraints remain the best approaches so far (SDP approaches
do not take advantage of sparsity and are currently limited to medium-size instances,
typically less than 300 nodes see e.g. [17]). Hence, optimizing over the semi-metric
polytope appears to be of key importance. This is achieved either via a cutting-plane
approach (using the polynomial time separation algorithm for the cycle inequalities
given in [2]) or by solving the compact extended formulation involvingO(n2)variables
and O(nm) constraints. However, solving the latter turns out to be very hard [11] as
the linear program to be solved is highly degenerate and its size quickly becomes
impractical when n exceeds, say, 150–200.

1.3 A basic unconstrained binary quadratic formulation for Max-Cut

Let z ∈ {0, 1}V (the node set of the hypercube of dimension n indexed by the nodes
in V), then z can be viewed as an incidence vector associated with a node subset S in
G, such that

zi =
{
1, i ∈ S,

0, otherwise
for all i ∈ V

We observe that for any edge i j ∈ E , i j ∈ δ(S) if and only if the sum zi (1 − z j) +
z j (1 − zi) = 1. Hence the Max-Cut problem can be formulated as the following
unconstrained 0–1 quadratic program (UBQP):

123

1044 V. H. Nguyen, M. Minoux

max
∑

i j∈E
ci j (zi (1 − z j) + z j (1 − zi))

s.t. zi ∈ {0, 1} for all i ∈ V . (7)

A simple direct way of linearizing this problem consists in adding m continuous
variables xi j defined by xi j = zi (1− z j)+ z j (1− zi) and applying RLT reformulation
[19] on the constraints 0 ≤ zi ≤ 1, 0 ≤ z j ≤ 1. This leads to adding the inequalities
zi z j ≤ zi , zi z j ≤ z j and zi z j ≥ zi + z j − 1 for all i j ∈ E and replacing zi z j by
zi+z j−xi j

2 in the above inequalities. We obtain the following mixed integer formulation
(MIP-MaxCut) for Max-Cut.

max
∑

i j∈E
ci j xi j

xi j + zi + z j ≤ 2, (8)

xi j − zi − z j ≤ 0, (9)

−xi j + zi − z j ≤ 0, (10)

−xi j − zi + z j ≤ 0 for all i j ∈ E, (11)

zi ∈ {0, 1} for all i ∈ V (12)

The above **formulation has already been known in the literature, in particular, it
has been used to explore the links between the boolean quadric polytope (BQP),
which is the convex hull of the solutions of (7) in the space R

V+E (with variables
yi j for all i j ∈ E replacing the product zi z j), and the Max-Cut polytope [10]. More
precisely, Hammer [12] showed that the Max-Cut polytope defined on G + u (where
G + u is the graph obtained by adding to G an universal vertex u) is equivalent under
linear transformations to the BQP defined on G. From this result and the result on the
Max-Cut polytope on graphs not contractible to K5 in [2], DeSimone [10] derived a
complete description of BQP on graphs not contractible to K4.

However, the possible use of (MIP-MaxCut) in practical solution procedures for
Max-Cut does not appear to have attracted much interest in the literature so far. The
main reason probably lies in the fact that its linear programming relaxation is very
weak. To be convinced of this, just observe that setting zi = 1

2 for all i ∈ V makes
the variables xi j completely free between 0 and 1 for all i j ∈ E .

1.4 Contributions and organization of the paper

The main contributions of the paper are the following:

– We prove a new property relating the integrity of the variables zi in (MIP-MaxCut)
and the cycle inequalities. More precisely, it is shown that for any edge i j ∈ E , the
fact that the variables zi and z j are integer could imply simultaneous satisfaction
of all (possibly exponentially many) cycle inequalities involving edge i j and the
integrity of the variable xi j .

123

Linear size MIP formulation of Max-Cut: new properties… 1045

– We analyze the impact of this key property when applying a Branch-and-
Bound/Cut procedure to the (MIP-MaxCut) formulation. In particular, we show
that branching on a variable zi could have very strong effects such as satisfying
a possibly exponential number of cycle inequalities and forcing several variables
xi j to be integer valued.

– As an experimental confirmation of our analysis, we present and discuss in Sect. 4
a series of computational results on Max-Cut for a set of large size sparse graph
instances obtained by applying a standard Branch-and-Bound solver to (MIP-
MaxCut) without using any of the sophisticated techniques previously proposed
in the existing literature for the exact solution of such large scale problems. It is
observed that the results obtained turn out to significantly outperform a branch-
and-cut algorithm based on cycle inequalities implemented on the same platform.

2 Polyhedral link between (MIP-MaxCut) and the cycle inequalities
and application for solvingMax-Cut

In the present section, we first introduce the concept of pointed triangulation and
prove a basic equivalence result (Lemma 1) which turns out to be a basic building
block for deriving the link between (MIP-MaxCut) and the cycle inequalities. The
computational attractiveness of the new formulation in view of solving the Max-Cut
problem via branch-and-bound and branch-and-cut algorithms is also analyzed.

2.1 Pointed triangulation and cycle inequalities

Let us consider any chordless cycle C in G. Let us suppose that the nodes in C are 1,
2, …, k which are numbered clockwise from 1 (see Fig. 1) and its edges are i(i + 1)
for i = 1, . . . , k − 1 and k1.

Let us take any subset F = { f1, . . . , f p} ⊆ C with p odd. The cycle inequality
associated with C and F reads:

x(F) − x(C\F) ≤ p − 1. (13)

Consider the triangulation θ of C obtained by adding k − 3 distinct edges (chords) 1 j
for j = 3, . . . , k − 1 (see the thin solid edges in Fig. 1). As the newly added edges all
have 1 as an end node, θ is called pointed triangulation at node 1. Let us call Ē the set
of these new added edges and let E ′ = E ∪ Ē . The triangle inequalities corresponding
to the various triangles thus created read:

x1i + x1(i+1) + xi(i+1) ≤ 2 for all i = 2, . . . , k − 1, (a,i)

x1i − x1(i+1) − xi(i+1) ≤ 0 for all i = 2, . . . , k − 1, (l,i)

x1(i+1) − x1i − xi(i+1) ≤ 0 for all i = 2, . . . , k − 1, (r,i)

xi(i+1) − x1i − x1(i+1) ≤ 0 for all i = 2, . . . , k − 1. (m,i)

123

1046 V. H. Nguyen, M. Minoux

Fig. 1 A pointed triangulation of a chordless cycle C

Lemma 1 If x ∈ [0, 1]E ′
satisfies all the triangle inequalities (a,i), (l,i), (r,i) and (m,i)

then the restriction of x on [0, 1]E , x|E , satisfies all the cycle inequalities associated
with the cycleC.Conversely, if x ∈ [0, 1]E satisfies all the cycle inequalities associated
with the cycle C then there is an extension of x to [0, 1]E ′

satisfying all the inequalities
(a,i), (l,i), (r,i) and (m,i).

Proof ⇒ The proof of the first part of the lemma given here closely follows the one
given in [16] for deriving a different result, namely the fact that the number of triangle
inequalities can be reduced to O(nm) instead of O(n3) in the extension of METP(G)
to METP(Kn). Since the purpose of the present lemma is both to prove Theorem 1 and
to provide a constructive way of strengthening the new linear size formulation to be
discussed in Sect. 3, we provide the full proof in the appendix for self-containedness.

⇐Let x ∈ [0, 1]E be a vector satisfying all the cycle inequalities associatedwithC .
Let us extend x to x ∈ [0, 1]E ′

by determining the intervals of possible values that the
extra variables x1 j for j = 3, . . . , k−1 in E ′\E can take.Wewill compute the intervals
in clockwise order, i.e. for x13 first then for x14, …and at the end for x1(k−1). Let us
consider x13 and the triangle {1, 2, 3}, we can see that for the validity of the inequalities
(a,i), (l,i), (r,i) and (m,i) associated with this triangle, x13 should belong to the interval
I3 = [max(x12 − x23, x23 − x12),min(x12 + x23, 2− x12 − x23)]. Note that if x12 and
x23 belong to [0, 1] then this interval is not empty. To compute the possible values of
x14, the triangle {1, 3, 4} and the validity of the inequalities (a,i), (l,i), (r,i) and (m,i)
associated with this triangle imply that for each possible fixed value of x13 (i.e. one of
the values in I3), x14 should belong to the interval, say I x134 where I x134 = [max(x13 −
x34, x34 − x13),min(x13 + x34, 2 − x13 − x34)]. Generally, for j = 4, . . . , k − 1,
for each possible fixed value of x1(j−1) previously computed, x1 j should belong to

123

Linear size MIP formulation of Max-Cut: new properties… 1047

the interval I
x1(j−1)
j = [max(x1(j−1) − x(j−1) j , x(j−1) j − x1(j−1)),min(x1(j−1) +

x(j−1) j , 2 − x1(j−1) − x(j−1) j)] by the validity of the inequalities (a,i), (l,i), (r,i) and
(m,i) associated with the triangle {1, (j−1), j}. These intervals are always non-empty
as a possible fixed value of x1(j−1) is always between 0 and 1. In particular, when
j = k − 1, for a possible fixed value of x1(k−2), we have x1(k−1) ∈ I

x1(k−2)
k−1 . However,

by the triangle {1, (k − 1), k}, x1(k−1) should also belong to the following interval
I 2k−1 = [max(x1k − x(k−1)k, x(k−1)k − x1k),min(x1k + x(k−1)k, 2 − x1k − x(k−1)k)]
as the (a,i), (l,i), (r,i) and (m,i) inequalities associated with the triangle {1, (k − 1), k}
should also be satisfied. Hence, for each possible fixed value of x1(k−2), the possible
values of x1(k−1) should belong to I

x1(k−2)
k−1 ∩ I 2k−1. Thus, the extension of x to [0, 1]E ′

requires I
x1(k−2)
k−1 ∩ I 2k−1 = ∅. We will show that if the opposite happens, i.e. I

x1(k−2)
k−1 ∩

I 2k−1 = ∅, then x violates a cycle inequality associated withC , contradicting the initial

assumption on x . Thus, let us suppose that I
x1(k−2)
k−1 ∩ I 2k−1 = ∅. Then one of following

two cases necessarily arises:

– The first case is when the lower bound of I 2k−1 is strictly greater than the

upper bound of I
x1(k−2)
k−1 , i.e. max(x1k − x(k−1)k, x(k−1)k − x1k) > min(x1(k−2) +

x(k−2)(k−1), 2 − x1(k−2) − x(k−2)(k−1)). Let us suppose that x1k ≥ x(k−1)k . (The
case x1k ≤ x(k−1)k would be treated in a similar way).

(i) x1k − x(k−1)k > x1(k−2) + x(k−2)(k−1). Hence, x1k − x(k−1)k − x1(k−2) −
x(k−2)(k−1) > 0. This can be viewed as the violation of x on the cycle inequality
x(F) − x(Ck−2\F) ≤ 0 where Ck−2 = {1(k − 2), (k − 2)(k − 1), (k −
1)k, 1k} and F = {1k}. We can see that replacing x1(k−2) by min(x1(k−3) +
x(k−3)(k−2), 2−x1(k−3)−x(k−3)(k−2)) -which is a possible fixed value of x1(k−2)
with respect to some possible fixed value of x1(k−3) in the above violated cycle
inequality -yields another violated cycle inequality associated with the cycle
Ck−3 = {1(k − 3), (k − 3)(k − 2), (k − 2)(k − 1), (k − 1)k, 1k}.

(ii) x1k −x(k−1)k > 2−x1(k−2)−x(k−2)(k−1). Hence, x1k +x1(k−2)+x(k−2)(k−1)−
x(k−1)k > 2.This can also beviewed as the violation of x on the cycle inequality
x(F) − x(Ck−2\F) ≤ 2 where Ck−2 as in case (i) and F = {1k, 1(k −
2), (k−2)(k−1)}. Similarly as in case (i), replacing x1(k−2) by max(x1(k−3) −
x(k−3)(k−2),−x1(k−3) + x(k−3)(k−2)) yields another violated cycle inequality
associated with the cycle Ck−3.

– The second case is when the lower bound of I
x1(k−2)
k−1 is strictly greater than the

upper bound of I 2k−1, i.e. max(x1(k−2) − x(k−2)(k−1), x(k−2)(k−1) − x1(k−2)) >

min(x1k + x(k−1)k, 2 − x1k − x(k−1)k).

– Suppose that x1(k−2) > x(k−2)(k−1). In this case, x1(k−2) − x(k−2)(k−1) >

x1k + x(k−1)k or x1(k−2) − x(k−2)(k−1) > 2 − x1k − x(k−1)k and both cases
will imply a violated cycle inequality x(F) − x(Ck−2\F) ≤ |F | − 1 where
Ck−2 = {1(k − 2), (k − 2)(k − 1), (k − 1)k, 1k} and F is either {1(k − 2)} or
{1(k−2), (k−1)k, 1k}. In both cases, we can replace x1(k−2) bymax(x1(k−3)−
x(k−3)(k−2),−x1(k−3)+x(k−3)(k−2)) to obtain another violated cycle inequality
associated with the cycle Ck−3.

123

1048 V. H. Nguyen, M. Minoux

– Suppose that x1(k−2) < x(k−2)(k−1). Similarly as in the previous item, we can
replace x1(k−2) by min(x1(k−3) + x(k−3)(k−2), 2 − x1(k−3) − x(k−3)(k−2)) to
obtain another violated cycle inequality associated with the cycle Ck−3.

In all cases, one can reiterate the above process, which leads to exhibit violated
inequalities associated with cycles Ck−3, Ck−4,…, C2. By remarking that C2 = C , a
contradiction is obtained and the proof for the second part of the lemma is completed.

��
A major practical and theoretical interest of the pointed triangulation is to provide
an alternative compact representation subsuming potentially huge cardinality sets of
cycle inequalities as shown in the following corollary.

Corollary 1 Let C be a cycle of size �(n) (i.e. not too small compared to n) in G, the
number of cycle inequalities associated with C is in �(2n−1) while the number of
triangle inequalities resulting from a pointed triangulation of C is (|C |−2)∗4 which
is in O(n).

Another noticeable consequence of Lemma 1 and Corollary 1 is to give linear size
extended formulations for the Max-Cut polytope on some special graphs including
wheel and cactus graphs.

Corollary 2 Let G = (V , E) be a graph which satisfies the two following conditions:
theMax-Cut polytope and themetric polytope coincide for G, (i.e. G is not contractible
to K5 [2]) and the number of chordless cycles in G is linear in terms of m or n. Then
a linear size extended formulation for the Max-Cut polytope on G , can be obtained
by using a pointed triangulation of each chordless cycle, and imposing the various
constraints (a,i), (l,i), (r,i) and (m,i) associated with each such chordless cycle.

2.2 Polyhedral link between (MIP-MaxCut) and the cycle inequalities

If we add 0/1 constraints to the linear representation of the semi-metric polytope,

(Metric-IP)

⎧
⎨

⎩

max
∑

i j∈E ci j xi j
x(F) − x(C\F) ≤ |F | − 1 ∀C ∈ C and F ⊆ C with |F | odd,
xi j ∈ {0, 1} for all i j ∈ E .

we obtain (Metric-IP), an IP formulation for Max-Cut. The latter is the standard
IP formulation used in LP-based approaches for solving Max-Cut. In the following
theorem, we will show that in fact (MIP-MaxCut) is equivalent to (Metric-IP).

Theorem 1 (MIP-MaxCut) is equivalent to (Metric-IP).

Proof We first show (MIP-MaxCut) ⊆ (Metric-IP). Let x ∈ R
E and z ∈ {0, 1}V a

feasible solution of (MIP-MaxCut). For any edge i j ∈ E , it is quite easy to verify that
when zi = z j = (0 or 1), xi j = 0 and when zi = z j then xi j = 1. Hence xi j ∈ {0, 1}
for all i j ∈ E . Moreover, one can observe that xi j = |zi − z j | or equivalently
xi j = max(zi − z j , z j − zi). Now, let C be any chordless cycle in G. Let i j be any

123

Linear size MIP formulation of Max-Cut: new properties… 1049

edge in C and let F ⊆ C such that p = |F | is odd and i j ∈ F . Note that as F is
never empty, the case when i j /∈ F will be covered by the cases when some other edge
i ′ j ′ = i j belongs to F . Let us build an extended graphG ′ = (V ′, E ′) deduced fromG
by adding toG a universal node u (i.e. V ′ = V ∪{u} and E ′ = E∪{ui | for all i ∈ V })
and think of the variable zi as the variable associated with the edge ui in the extended
graph. Let Ci j be the cycle obtained by replacing in C the edge i j by the edges ui and
u j , i.e. Ci j = (C\{i j}) ∪ {ui, u j}.

We can see thatCi j is triangulated by a pointed triangulation at u. As all the triangle
inequalities corresponding to this triangulation are expressed in (MIP-MaxCut), by
Lemma 1, (x, z) satisfies all the cycle inequalities involving Ci j . Let Fi = (F\{i j})∪
{ui} and Fj = (F\{i j})∪ {u j}. We can observe that Fi and Fj are two odd subsets of
Ci j of cardinality p. Hence, the cycle inequalities associated withCi j and respectively
Fi and Fj can be expressed as

x(F\{i j}) + zi − z j − x(C\F) ≤ p − 1, and

x(F\{i j}) + z j − zi − x(C\F) ≤ p − 1.

As xi j = max(zi − z j , z j − zi), one of the above inequalities gives:

x(F\{i j}) + xi j − x(C\F) ≤ p − 1, i.e.

x(F) − x(C\F) ≤ p − 1.

As C is any cycle in G and i j is any edge in C , we conclude that x satisfies all the
cycle inequalities. Moreover, x is integer as shown above, thus x is a feasible solution
of (Metric-IP).

Now let us show that (Metric-IP)⊆ (MIP-MaxCut). Let x ∈ {0, 1}E be any feasible
solution of (Metric-IP). Consequently, x is the incidence vector of a cut δ(S) such that
S ⊂ V . Let us build z ∈ {0, 1}V as follows. For all nodes i ∈ S, let us set zi = 0
and for all nodes i ∈ V\S, let us set zi = 1. It is then easy to see that x and z form a
feasible solution for (MIP-MaxCut). ��

3 Efficiency of the newMIP formulation for solvingMax-Cut

In this section, we discuss the practical use of (MIP-MaxCut) in branch-and-cut algo-
rithms for exactly solving large scale Max-Cut instances, especially in sparse graphs
for which linear programming relaxations containing the cycle inequalities are strong
enough.

3.1 Properties of (MIP-MaxCut) in a branch-and-bound framework for solving
Max-Cut

In particular, we show that using (MIP-MaxCut) could be more efficient than (Metric-
IP) in the same branch-and-cut framework. More precisely, a basic branch-and-cut
algorithm for solving (Metric-IP) consists of the following tasks:

123

1050 V. H. Nguyen, M. Minoux

– Solve linear programs consisting of a system of valid inequalities Ax ≤ b which
contains a subset of the cycle inequalities and other possible valid inequalities for
CUTP(G) at each node of the branch-and-bound search tree and possibly generate
violated inequalities including violated cycle inequalities to be added to Ax ≤ b.

– Branch on one or several variables x .

A basic branch-and-cut algorithm for solving (MIP-MaxCut) consists of the following
tasks:

– Solve linear programs consisting of the same system Ax ≤ b together with the
inequalities (8)–(11) at each node of the branch-and-bound search tree and possibly
generate violated inequalities which may be cycle inequalities to be added to
Ax ≤ b.

– Branch on one or several variables z.

The difference between the two algorithms is that instead of generating violated cycle
inequalities and branching on the x variables as in the first algorithm, the second
algorithm branches on the z variables. The fact that this can be more efficient is a
consequence of the following proposition which shows that branching on a variable
zi is equivalent to branching on several variables xij and generating a (possibly expo-
nential) number of cycle inequalities.

Proposition 1 When some variable zi is fixed at an integer value by branching in a
branch-and-bound framework then for all variables z j fixed at an integer value before
zi , the variable xi j is integer valued and the current solution x satisfies all the cycle
inequalities such that the set F contains the edge i j .

Proof As we can see from the proof of Theorem 1, when zi and z j are integer, the
inequalities (8)–(11) which involve zi , z j and xi j force xi j to be integer. Moreover,
xi j = max(zi − z j , z j − zi). The proof of Theorem 1 uses this fact together with
Lemma 1 to prove that all the cycle inequalities such that the set F contains the edge
i j are subsequently satisfied. Hence, branching on a variable zi can have very strong
effects:

– on the one hand, this action forces the integrality of all the variables xi j such that
z j is integer valued,

– on the other hand, it forces all the cycle inequalities such that the set F contains
the edge i j to be satisfied by the forthcoming solutions. The number of such
cycle inequalities may obviously be very big and possibly exponential even if G
is sparse. ��

It is then realized that branching in (MIP-MaxCut) can be much more efficient than
cut generation and branching in (Metric-IP) where only a small number of cycle
inequalities may be added and one variable xi j is fixed at each round of cut generation
or branching. This will be confirmed by our numerical results in the next section.

Let us call PCUT(G) the system Ax ≤ b used as relaxation for CUTP(G) in a
branch-and-cut algorithm based on (Metric-IP). Let us call EPCUT(G) the system
defined in R

E+V that consists of Ax ≤ b together with the inequalities (8), (9), (10)
and (11). We have the following theorem.

123

Linear size MIP formulation of Max-Cut: new properties… 1051

Theorem 2 The projection of EPCUT(G) on R
E , i.e. on the variables x, is exactly

PCUT(G).

Proof It is clear that the projection of EPCUT(G) on R
E is contained in PCUT(G)

since in every solution (x, z) satisfying EPCUT(G), we have x satisfies Ax ≤ b.
The restriction of EPCUT(G) on the linear variety zi = 1

2 for all i ∈ V is exactly
the system Ax ≤ b, i.e. PCUT(G). As the projection of EPCUT(G) on R

E contains
this restriction, Ax ≤ b is contained in this projection.

Hence, the projection of EPCUT(G) on R
E is equal to PCUT(G). ��

The above theorem states that a system of valid inequalities Ax ≤ b will give the
same upper bound regardless of whether the branch-and-cut algorithm is based on
(Metric-IP) or (MIP-MaxCut). Moreover, the bounding procedure in branch-and-cut
algorithms based on (MIP-MaxCut) is probably more efficient than those based on
(Metric-IP) due to the strong effects of the branching on the variables z. Hence, we
have the following important corollary.

Corollary 3 Any existing branch-and-cut algorithms based on (Metric-IP) can be read-
ily adapted to work on (MIP-MaxCut) with more efficiency thanks to the properties of
branching on the z variables.

Such an adaption simply consists in switching the branching strategy from variables x
to variables z and keeping the same strategy of cut generation. Indeed, in the next sec-
tions, we will show by numerical results that with the same initial linear programming
relaxation and the same cut generation strategy, a branch-and-cut algorithm based
on (MIP-MaxCut) is much more efficient than a branch-and-cut algorithm based on
(Metric-IP). This suggests that a potentially interesting idea for future developments
might be to adapt recent advanced branch-and-cut algorithms based on (Metric-IP)
such as [4,7], …to (MIP-MaxCut) to improve their efficiency.

3.2 Building an initial linear programming relaxation

One important factor in LP-based branch-and-bound algorithms is the initial LP to
be solved at the root node of the branch-and-bound search tree. This LP should be of
reduced size and give a good upper bound for Max-Cut. We will show below that for
algorithms using (MIP-MaxCut) as well as (Metric-IP), the question is how to build
such an LP by choosing a suitable subset of cycle inequalities. Let us consider the
linear programming relaxation (R-MIP-MaxCut) of (MIP-MaxCut). Note that when
z∗i = 1

2 for all i ∈ V , any vector x∗ ∈ [0, 1]E satisfies the constraints (8), (9), (10) and
(11). Such a (z∗, x∗) then satisfies (R-MIP-MaxCut). Hence, the upper bound given
by (R-MIP-MaxCut) is very weak (all xi j equal to 1) when compared with the one
provided by (R-Metric), the linear programming relaxation of (Metric-IP). However,
the latter is hard to compute since it is highly degenerate [11]. Moreover, the number
of cycle inequalities can be huge for big values of n even with an extended formulation
of (Metric-IP). Hence, in practical branch-and-bound algorithms for Max-Cut using
(Metric-IP), a small subset of the cycle inequalities is usually chosen to be included
in the initial LP relaxation, called (iR-Metric), in order to obtain a reasonably good

123

1052 V. H. Nguyen, M. Minoux

initial upper bound at the root node of the branch-and-bound tree.We can use the same
cycle inequalities in the initial LP relaxation, called (iR-MIP-MaxCut), in a branch-
and-bound algorithm using (MIP-MaxCut) to obtain the same upper bound as shown
in the following theorem.

Proposition 2 (iR-MIP-MaxCut) provides the same upper bound for Max-Cut as (iR-
Metric) if both formulations contain the same subset of the cycle inequalities (1).

Proof The proof directly follows from Theorem 2. ��
The above proposition tells us that building the initial LP provides relaxations with

the same strength regardless of whether (MIP-MaxCut) or (Metric-IP) is used but it
does not tell us how to choose the subset of the cycle inequalities to be included in
this LP. We now describe how we have chosen such a subset, denoted by S, of the
cycle inequalities in our experiments involving sparse graphs. We consider the two
following criteria for selecting S:
– |S| ∈ O(n), i.e. the size of the initial LP should be linear in n,
– The upper bound given by S should be “sufficiently good”.

In order to meet these two criteria, we use an observation borrowed from previous
works on Max-Cut on Ising Spin Glass 2D grid instances, namely that the LP that
consists of the cycle inequalities expressed for all the 4-cycles gives a very good
bound for Max-Cut [13,15]. Note that the number of 4-cycles in (toroidal) 2D grid
graphs is at most n and the number of cycle inequalities expressed on each 4-cycle is 8.
Hence the set of the 4-cycles in these graphs satisfies the above two criteria for being
selected in S. Notice that for 2D grid graphs, the set of all the 4-cycles forms a cycle
basis which generates all the cycles in G by linear combination in the Galois field of
two elements GF(2), i.e. based on parity of the intersection of cycles. Hence, for a
general sparse graph G, we may take the set of all the cycle inequalities associated
with a cycle basis as the set S. Such a set S may be interesting as cycle inequalities
also express the parity of the intersection between cuts and cycles. Moreover, as the
number of cycles in a cycle basis is m − n + 1, and hence O(n) in sparse graphs and
thanks to Lemma 1 and Corollary 1, we can represent such a set S of cycle inequalities
by O(n) triangle inequalities. The numerical experiments reported in the next section
seem to confirm this analysis.

4 Numerical results

In this section, we present experiments aimed at computing exact solutions based on
(MIP-MaxCut) for Max-Cut on sparse graph instances of various types. For compar-
ison, we also run the same experiments with (Metric-IP) instead of (MIP-MaxCut)
in the same computer and branch-and-cut algorithmic framework. To be more pre-
cise, we present comparative experiments based on the following three variants of
branch-and-cut to solve Max-Cut on sparse graph instances.

– (Metric-IP). The branch-and-cut framework applied to the (Metric-IP) formulation
in x variables only with branching on the x variables.

123

Linear size MIP formulation of Max-Cut: new properties… 1053

– (MIP-MaxCut). The branch-and-cut framework applied to the (MIP-MaxCut) for-
mulation in both z and x variables with branching on the z variables.

– (MIP-MaxCut-SBR).Thebranch-and-cut framework applied to the (MIP-MaxCut)
formulation with a special branching rule (SBR) on the z variables derived from
Proposition 1.

4.1 Computer framework

All the experiments have been conducted on an Intel i3-8130 CPU 2.20 GHz computer
with 8GB of RAM under Linux Ubuntu 18.4. Single thread have been used for all the
runs performed.

4.2 Branch-and-cut framework

4.2.1 LP solver and branch-and-bound search tree handling

CPLEX 12.7.1 has been used as LP solver and for handling the branch-and-bound
tree. In particular, for the (Metric-IP) and the (MIP-MaxCut) variants, the default
automatic branching rule of CPLEX 12.7.1 has been used for branching on the x
variables and on the z variables, respectively. For the (MIP-MaxCut-SBR) variant, we
have implemented a special rule for branching (SBR) on the z variables which can be
defined as follows:

Special branching rule This rule consists in choosing a variable zi such that the
number of neighbours j with z j integer in the current solution is greater than the
average node degree of the graph. We keep track of bi , which is the number of times
a variable zi has been chosen for branching with this rule (in previous steps of the
construction of the branch-and-bound search tree). In case several variables zi are
eligible, we choose any variable with smallest bi .

According to Proposition 1, branching on such a variable zi would force a number
of variables xi j to be integer and would also imply the satisfaction of many of the
cycle inequalities. Notice that no other feature of CPLEX has been used, in particular
no generic cut generation procedure and no presolve have been activated.

Initial LP The initial LP contains the same subset S of cycle inequalities in all
the three cases. Hence, by Proposition 2, the same initial upper bound for Max-Cut
is obtained. To build the set S, we generate a cycle basis B of G and with a fixed
parameter k, we perform a pointed triangulation of all the cycles of length at most k
in B. The associated triangle inequalities are all added to S.
Violated cycle inequality generation The separation procedure is based on the exact
separation algorithm for cycle inequalities which operates on a graph H of 2n nodes
(n original nodes and n copies) as described in [2]. The algorithm consists of n calls
of the bidirectional Dijkstra algorithm for finding the shortest paths between every
original node i for i = 1, . . . n and its copy in H .

In the computational experiments reported in Sects. 4.3.2 and 4.3.3, this procedure
is applied to the three variants (Metric-IP), (MIP-MaxCut) and (MIP-MaxCut-SBR).
For the toroidal 2Dgrid instances (Sect. 4.3.1), the separation procedure is only applied

123

1054 V. H. Nguyen, M. Minoux

to the (Metric-IP) variant since we have observed that adding violated cycle inequal-
ities does not improve the efficiency of the (MIP-MaxCut) and (MIP-MaxCut-SBR)
variants.

For the (Metric-IP) variant, the separation procedure is also applied to separate
integer solutions if these solutions do not represent cuts.

4.3 Numerical experiments

4.3.1 Toroidal 2D grid instances

Generation of instancesWe consider instances of toroidal 2D grid graphs which have
been generated according to the description in [9]. More precisely, the first and the
second half of the edge weights are initialized with −1 and +1, respectively. Then, a
random permutation of the edge weights is computed.

Branch-and-cut tuning To set up the initial LP, we generate the set S by taking
the cycle basis containing all the 4-cycles and by setting k = 4. We only activate the
generation of violated cycle inequalities when the relative gap goes below 0.5% (the
relative gap is defined to be the ratio of the difference between the upper bound and
the lower bound of the branch-and-bound tree over the lower bound). The separation
routine is called every 100 nodes of the branch-and-bound tree.
Numerical results

In Table 1, we compare (Metric-IP) and (MIP-MaxCut). Each entry of the table
represents an average taken over ten randomly generated instances. The columnCPU is
the averageCPU time (in seconds) and the columnNodes indicates the average number
of nodes of the branch-and-bound search tree. For (Metric-IP), there is an additional
columnC-Inewhich reports the number of violated cycle inequalities generated during
the branch-and-cut process. We restrict our experiments to relatively small sizes of
toroidal 2D grid instances as (Metric-IP) can not go beyond the size of 50× 50 within
ten CPU hours. We can see that (MIP-MaxCut) significantly outperforms (Metric-IP)
in both CPU time and size of the branch-and-bound search tree. Table 2 reports the
average results of (MIP-MaxCut) and (MIP-MaxCut-SBR) on ten random instances
of larger sizes 55× 55, 60× 60 and 65× 65, respectively. We can see that the special
branching rule (SBR) derived from Proposition 1 is more efficient than the default
branching rule of CPLEX and helps to improve the results of (MIP-MaxCut).

4.3.2 Rudy instances

Generation of instances We consider 10 instances generated using rudy [18] with
n = 100 and an edge density of 0.1 (series of instances with prefix pm1s). The edge
weights are chosen uniformly from {−1, 0, 1}.
Branch-and-cut tuning To set up the initial LP, the set S is built by generating a cycle
basis of G and by setting k = 5. The separation procedure for cycle inequalities is
called every ten nodes of the branch-and-bound tree.

Numerical results Table 3 reports the performance of (Metric-IP), (MIP-MaxCut)
and (MIP-MaxCut-SBR) on 10 rudy instances. In general, (Metric-IP) generates the

123

Linear size MIP formulation of Max-Cut: new properties… 1055

Table 1 Comparisons between
(Metric-IP) and (MIP-MaxCut)
on toroidal 2D grid instances
with random +1/ − 1 weights

Size (Metric-IP) (MIP-MaxCut)

CPU Nodes C-Ine CPU Nodes

30 × 30 760 3431 11,959 25 65

35 × 35 1249 2331 16,882 36 130

Table 2 Comparisons between
(MIP-MaxCut) and
(MIP-MaxCut-SBR) on toroidal
2D grid instances with random
±1 weights

Size (MIP-MaxCut) (MIP-MaxCut-SBR)

CPU Nodes CPU Nodes

55 × 55 1309 4197 1118 3135

60 × 60 2693 4653 1687 2864

65 × 65 4550 8447 3889 7518

largest number of cycle inequalities and has the least size of the branch-and-bound
search tree but requires more CPU time. (MIP-MaxCut) needs fewer cycle inequal-
ities and features more nodes in the branch-and-bound search tree than (Metric-IP)
but spends significantly less CPU time. Finally, (MIP-MaxCut-SBR) achieves the best
CPU time on average with a slight increase in the number of generated cycle inequali-
ties and a slight decrease in the size of the branch-and-bound search tree compared to
(MIP-MaxCut). Getting into more detail, (MIP-MaxCut-SBR) achieves the best CPU
time for seven out of ten instances. (Metric-IP) may give the best CPU time for easy
instances but the difference of CPU time as compared to (MIP-MaxCut) and (MIP-
MaxCut-SBR) is tiny. Note that we have also run (MIP-MaxCut-SBR) for solving
one instance g05_60.0 with n = 60 of the series with prefix g05 (i.e. unweighted
graphs with an edge probability of 0.5) which are known to be difficult to solve for
LP-based approaches for Max-Cut. The instance is solved optimally with a CPU time
of 18627 seconds. The size of the branch-and-bound search tree is 199457 nodes and
only 2356 violated cycle inequalities have been generated. Note that (Metric-IP) and
(MIP-MaxCut) are unable to solve this instance within 10 CPU hours.

4.3.3 Quadratic 0/1 programming instances

Generation of instances We consider several instances of the quadratic 0/1 program-
ming problem from the BiqMac library [20]. These instances are rather well solved by
SDP-based solvers such as BiqMac [17] and BiqCrunch [14] but known to be difficult
for LP-based Max-Cut solvers. We particularly experiment on two series of instances:
bqp250 (n = 250) of density 0.1 generated by Beasley [5]; be120 and be250
(n = 120 and 250) of densities respectively 0.3 and 0.1 generated by Billionnet and
Elloumi [6]. Branch-and-Cut tuning To set up the initial LP, the set S only contains
the triangle inequalities involving the binary variables z. Violated cycle inequalities
are generated every ten nodes of the branch-and-bound tree. Numerical results The
results are reported in Table 4. When the program has not been able to solve the
instance to optimality within ten CPU hours, all the column values are represented by

123

1056 V. H. Nguyen, M. Minoux

Table 3 Comparisons of (Metric-IP), (MIP-MaxCut) and (MIP-MaxCut-SBR) on rudy sparse instances
with n = 100

Instances (Metric-IP) (MIP-MaxCut) (MIP-MaxCut-SBR)

CPU Nodes C-Ine CPU Nodes C-Ine CPU Nodes C-Ine

Pm1s_100.0 201 434 8508 226 752 3666 222 734 3520

Pm1s_100.1 951 1466 18,769 448 1439 4326 379 1436 4432

Pm1s_100.2 470 618 18,205 148 759 2359 125 455 2750

Pm1s_100.3 975 1515 18,700 384 1634 3595 330 1383 3927

Pm1s_100.4 424 915 1299 317 1303 3227 214 853 3451

Pm1s_100.5 255 355 12,630 366 1408 3695 247 777 3780

Pm1s_100.6 660 903 15,288 278 1256 3608 348 1215 4269

Pm1s_100.7 195 181 9123 172 696 1986 102 332 2013

Pm1s_100.8 231 196 10,612 193 829 2878 147 452 2788

Pm1s_100.9 95 83 6750 105 551 1765 97 307 2058

Average 446 667 11988 264 1063 3111 221 794 3299

a ‘-’. We can see that on average (MIP-MaxCut) significantly outperforms (Metric-IP)
in all respects: the CPU time, the number of nodes in the branch-and-bound search
tree and the number of cycle inequalities generated. (MIP-MaxCut) reduces the CPU
times by a factor between two and four as compared to (Metric-IP). Finally, (MIP-
MaxCut-SBR) achieves the best performance. The special branching rule (SBR) really
helps to improve (MIP-MaxCut), especially for hard instances such as Bqp250.2
and Bqp250.4 which (MIP-MaxCut) could not solve within 10 CPU hours. The
performance of (MIP-MaxCut-SBR) regarding the CPU times is quite satisfactory for
a linear programming based algorithm compared to the results reported in [7]. More-
over, the CPU times are in a ratio of 1:6 from the easiest instance to the hardest one
(in the same series) which indicates a rather stable behaviour. In any case, this ratio
turns out to be much smaller than the one observed for other LP-based or SDP-based
algorithms for Max-Cut such as those described for instance in [7–9,14,17].

4.4 Concluding remarks on numerical experiments

Our numerical experiments on various sparse instances of Max-Cut confirm the pos-
itive impact of using (MIP-MaxCut) instead of (Metric-IP) for sparse instances of
Max-Cut. The fact that (MIP-MaxCut-SBR) achieves the best performance on these
instances confirms the theoretical relevance of the analysis leading to our Proposition 1
and its potential for suggesting ways of improving practical algorithmic efficiency.

5 Conclusions

In this paper, a linear size MIP formulation for integer metric polyhedra has been
proposed and its application to the Max-Cut problem for sparse graphs has been

123

Linear size MIP formulation of Max-Cut: new properties… 1057

Ta
bl
e
4

N
um

er
ic
al
re
su
lts

on
qu
ad
ra
tic

0/
1
pr
og
ra
m
m
in
g
sp
ar
se

in
st
an
ce
s.
E
nt
ri
es

fe
at
ur
in
g
‘-
’
in
di
ca
te
th
at
no

ex
ac
ts
ol
ut
io
n
co
ul
d
be

ob
ta
in
ed

w
ith

in
10

C
PU

ho
ur
s

In
st
an
ce
s

(M
et
ri
c-
IP
)

(M
IP
-M

ax
C
ut
)

(M
IP
-M

ax
C
ut
-S
B
R
)

C
PU

N
od

es
C
-I
ne

C
PU

N
od

es
C
-I
ne

C
PU

N
od

es
C
-I
ne

B
e1
20

.3
.1

96
52

15
92

19
,9
34

25
81

99
5

84
94

24
70

10
11

88
74

B
e1
20

.3
.2

67
34

12
63

16
,6
09

26
16

96
2

82
60

20
21

87
8

78
51

B
e1
20

.3
.3

52
52

12
73

15
,3
05

22
10

86
7

77
34

21
93

90
8

77
15

B
e1
20

.3
.4

50
36

11
98

15
,9
25

20
92

87
3

71
72

18
45

88
1

70
67

B
e1
20

.3
.5

13
,2
68

19
23

25
,4
01

24
20

95
9

79
63

27
43

10
54

88
13

B
e1
20

.3
.6

78
74

14
31

19
,4
75

18
98

82
9

77
41

20
48

84
6

73
65

B
e1
20

.3
.7

22
40

80
4

10
,6
73

11
00

70
1

56
60

10
71

67
9

56
19

B
e1
20

.3
.8

39
91

10
36

12
,4
43

19
26

83
7

78
19

17
32

83
1

68
28

B
e1
20

.3
.9

–
–

–
95

46
27

56
18

,1
47

64
03

20
82

13
38

1

B
e1
20

.3
.1
0

68
38

14
89

16
,9
97

34
75

11
25

95
04

26
11

10
02

80
86

A
ve
ra
ge

–
–

–
29

86
10

90
88

49
25

14
10

17
81

60

B
e2
50

.1
14

,5
15

10
19

20
,8
94

66
07

76
8

12
,4
99

68
92

73
5

12
,7
97

B
e2
50

.2
–

–
–

27
17

5
18

83
25

04
3

19
28

5
14

58
20

33
9

B
e2
50

.3
30

,5
57

13
94

29
,9
87

12
01

6
10

19
16

,4
69

12
13

8
99

5
16

,3
20

B
e2
50

.4
22

,8
44

11
68

25
37

1
77

95
79

4
15

,2
39

76
70

80
0

12
,7
57

A
ve
ra
ge

–
–

–
13

39
8

11
16

17
,3
13

11
49

6
99

7
15

,5
53

B
qp

25
0.
1

25
23

1
13

06
26

,9
41

10
,0
42

92
8

16
,1
83

88
09

85
2

14
,5
48

B
qp

25
0.
2

–
–

–
–

–
–

28
32

3
20

57
22

,5
47

B
qp

25
0.
3

22
,5
04

11
,7
1

26
,9
28

94
28

76
4

13
,3
34

92
16

81
4

13
,,2

93

B
qp

25
0.
4

–
–

–
–

–
–

35
95

6
23

66
24

,1
10

A
ve
ra
ge

–
–

–
–

–
–

20
57

6
15

22
18

62
5

123

1058 V. H. Nguyen, M. Minoux

discussed. When the formulation is used for solving Max-Cut via branch-and-bound,
a detailed analysis has been carried out which reveals that each step of branching
amounts to implicitly imposing simultaneous satisfaction of many cycle inequalities
(those inequalities defining themetric polyhedron). Numerical experiments on a series
of large size instances involving sparse graphs have confirmed the efficiency of a
standard branch-and-bound procedure when applied to the formulation, even without
resorting to any of the advanced techniques usually required to cope with large size
Max-Cut instances. Among the perspectives thus opened to future investigations, it
is clear that further significant improvements in efficiency can be expected from the
combined use of the (MIP-MaxCut) formulationwith some of the advanced techniques
available in the literature, such as: the use of the VolumeAlgorithm in line with [3], [4]
or the contraction-lifting approach from [9]. Implementing such combined procedures
can easily be achieved as suggested by Corollary 3.

Acknowledgements Thework is supported by theProgrammeGaspardMongepourOptimisation (PGMO).
We would like to thank one anonymous referee for his/her helpful comments to improve the presentation
of the paper.

A Proof of the first part of Lemma 1 [16]

Let F = { f1, . . . , f p} ⊆ C be any odd subset of C . We will show that x|E satisfies

x(F) − x(C\F) ≤ p − 1.

For brevity, we will refer to the triangle (1, i, i+1) as “triangle i” with 2 ≤ i ≤ k−1.
The edges 1i , i(i +1), 1(i +1) will be respectively referred to as the left edge,middle
edge, right edge of triangle i (in the system stated just before the statement of Lemma1,
the notation ”a“ stands for ”all“, and (a,i) refers to the inequality related to triangle i
for which all edges are involved with positive coefficients; l, r , and m stand for ”left“,
”right“, and ”middle“ respectively and the inequalties are labelled (l,i), (r,i) or (m,i)
depending on which edge is involved with positive coefficient). Now, for each triangle
i with 2 ≤ i ≤ k − 1, let us choose one and exactly one of inequalities (a,i), (l,i), (r,i)
and (m,i) according to the following rule:

– if the middle edge i(i + 1) is an edge fq ∈ F with q odd, choose inequality (m,i),
– if the middle edge i(i + 1) is an edge fq ∈ F with q even, choose inequality (a,i),
– if the middle edge i(i + 1) ∈ C\F , then by scaning clockwise the edges of C from
i(i + 1) until reaching the node 1, we may or may not meet edges in F . In the
former case, let fq ∈ F be the first edge in F that we meet.

– If fq exists and q is odd, choose inequality (r,i),
– If fq does not exist or fq exists and q is even, choose inequality (l,i).

We are going to show that the sum over i = 2, . . . , k − 1 of the inequalities chosen
according to the above rule gives inequality (13). Let us consider first any edge 1 j
(3 ≤ j ≤ k − 1) which is in En\E and show that x1 j vanishes in the sum. Note

123

Linear size MIP formulation of Max-Cut: new properties… 1059

that x1 j appears only in two chosen inequalities which correspond respectively to the
triangles j − 1 and j . There are four possible cases:

– (j − 1) j and j(j + 1) /∈ F , hence the two chosen inequalities for the triangles
j − 1 and j are of the same type: either (l,j-1) and (l,j) or (r,j-1) and (r,j). In both
cases, the signs of x1 j in these two inequalites are opposite.

– (j −1) j is an edge fq ∈ F and j(j +1) ∈ C\F . If q is even, then the two chosen
inequalities are (a,j-1) and (r,j) in which the signs of x1 j are opposite. If q is odd,
then the two chosen inequalities are (m,j-1) and (l,j) in which the signs of x1 j are
also opposite.

– (j − 1) j ∈ C\F and j(j + 1) is an edge fq ∈ F . If q is even, then the two chosen
inequalities are (l,j-1) and (a,j) in which the signs of x1 j are opposite. If q is odd,
then the two chosen inequalities are (r,j-1) and (m,j) in which the sign of x1 j are
also opposite.

– both (j − 1) j and j(j + 1) are in F . Let (j − 1) j = fq ∈ F . If q is even, then the
two chosen inequalities are (a,j-1) and (m,j) in which the signs of x1 j are opposite.
Similarly, if q is odd, then the two chosen inequalities are (m,j-1) and (a,j) in which
the signs of x1 j are opposite.

In all cases, the signs of x1 j in the two chosen inequalities containing it are opposite,
thus x1 j vanishes in the sum.

For any edge e ∈ C\{12, (k−1)k}, xe appears only in one of the chosen inequalities
which corresponds to the triangle having e as the middle edge. The edges 12 and
(k − 1)k also appear only once, respectively in the inequalities corresponding to the
triangles 2 and k − 1. It is then clear that for any edge e ∈ C the coefficient of xe in
the sum is 1 if e ∈ F and −1 if e ∈ C\F .

It remains to show that the sum of the right hand sides is p− 1. We can see that the
only chosen inequalities with non-zero right hand side are of type (a,i), i.e., the ones
corresponding to the triangles having fq ∈ F with q even as the middle edge. There
are clearly p−1

2 such inequalities with 2 as the right hand side. The proof of the first
part of the lemma is then done.

References

1. Barahona, F.: On cuts and matchings in planar graphs. Math. Prog. 60, 53–68 (1993)
2. Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Prog. 36, 157–173 (1986)
3. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with a subgradient method.

Math. Prog. 87(3), 385–399 (2000)
4. Barahona, F., Ladányi, L.: Branch and cut based on the volume algorithm: Steiner trees in graphs and

max-cut. RAIRO-Oper. Res. 40(1), 53–73 (2006)
5. Beasley, J.: Or-library. Tech. rep. (1990)
6. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained

quadratic 0–1 problem. Math. Program. 109(1), 55–68 (2007). https://doi.org/10.1007/s10107-005-
0637-9

7. Bonato, T.: Contraction-based Separation and Lifting for Solving the Max-Cut Problem. Ph.D. thesis,
University of Heidelberg (2011). https://archiv.ub.uni-heidelberg.de/volltextserver/12289/

8. Bonato, T.: Contraction-based Separation and Lifting for Solving the Max-cut Problem. Optimus-
Verlag (2011). https://books.google.fr/books?id=7ARLMwEACAAJ

123

https://doi.org/10.1007/s10107-005-0637-9
https://doi.org/10.1007/s10107-005-0637-9
https://archiv.ub.uni-heidelberg.de/volltextserver/12289/
https://books.google.fr/books?id=7ARLMwEACAAJ

1060 V. H. Nguyen, M. Minoux

9. Bonato, T., Jünger, M., Reinelt, G., Rinaldi, G.: Lifting and separation procedures for the cut polytope.
Math. Prog. 146(1–2), 351–378 (2014)

10. De Simone, C.: The cut polytope and the Boolean quadric polytope. Discrete Math. 79(1), 71–75
(1990). https://doi.org/10.1016/0012-365X(90)90056-N

11. Frangioni, A., Lodi, A., Rinaldi, G.: New approaches for optimizing over the semimetric polytope.
Math. Prog. 104(2–3), 375–388 (2005)

12. Hammer, P.L.: Some network flow problems solved with pseudo-boolean programming. Oper. Res.
(1965). https://doi.org/10.1287/opre.13.3.388

13. Helmberg, C.: A Cutting Plane Algorithm for Large Scale Semidefinite Relaxations, chap. 15, pp.
233–256. SIAM (2004)

14. Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure for solving Max-Cut
problems to optimality. Math. Program. 143(1–2), 61–86 (2014). 10.1007/s10107-012-0594-z. https://
hal.archives-ouvertes.fr/hal-00665968

15. Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing Exact Ground States of Hard Ising Spin
Glass Problems by Branch-and-Cut, pp. 47–69. Wiley, Hoboken (2005)

16. Nguyen, V.H., Minoux, M., Nguyen, D.P.: Reduced-size formulations for metric and cut polyhedra in
sparse graphs. Networks 69(1), 142–150 (2017)

17. Rendl, F., Rinaldi, G.,Wiegele,A.: Solvingmax-cut to optimality by intersecting semidefinite and poly-
hedral relaxations. Math. Program. 121(2), 307 (2008). https://doi.org/10.1007/s10107-008-0235-8

18. Rinaldi, G.: Rudy, a graph generator. Tech. rep. http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.
gz(1998)

19. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull rep-
resentations for zero-one programming problems. SIAM J. Discrete Math. (2006). https://doi.org/10.
1137/0403036

20. Wiegele, A.: Biq mac library–a collection of max-cut and quadratic 0-1 programming instances of
medium size. Tech. rep. (2007). http://biqmac.uni-klu.ac.at/biqmaclib.html

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/0012-365X(90)90056-N
https://doi.org/10.1287/opre.13.3.388
https://hal.archives-ouvertes.fr/hal-00665968
https://hal.archives-ouvertes.fr/hal-00665968
https://doi.org/10.1007/s10107-008-0235-8
http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz
http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz
https://doi.org/10.1137/0403036
https://doi.org/10.1137/0403036
http://biqmac.uni-klu.ac.at/biqmaclib.html

	Linear size MIP formulation of Max-Cut: new properties, links with cycle inequalities and computational results
	Abstract
	1 Introduction
	1.1 The Max-Cut problem
	1.2 Cycle inequalities and the semi-metric polytope
	1.3 A basic unconstrained binary quadratic formulation for Max-Cut
	1.4 Contributions and organization of the paper

	2 Polyhedral link between (MIP-MaxCut) and the cycle inequalities and application for solving Max-Cut
	2.1 Pointed triangulation and cycle inequalities
	2.2 Polyhedral link between (MIP-MaxCut) and the cycle inequalities

	3 Efficiency of the new MIP formulation for solving Max-Cut
	3.1 Properties of (MIP-MaxCut) in a branch-and-bound framework for solving Max-Cut
	3.2 Building an initial linear programming relaxation

	4 Numerical results
	4.1 Computer framework
	4.2 Branch-and-cut framework
	4.2.1 LP solver and branch-and-bound search tree handling

	4.3 Numerical experiments
	4.3.1 Toroidal 2D grid instances
	4.3.2 Rudy instances
	4.3.3 Quadratic 0/1 programming instances

	4.4 Concluding remarks on numerical experiments

	5 Conclusions
	Acknowledgements
	A Proof of the first part of Lemma 1 network
	References

